
i ,

t

Xerox Real-Time Batch Monitor (RBM)
Xerox 530 and Sigma 2/3 Computers

Real-Time and Batch Processing
Reference Manual

9010371

Xerox Corporation
701 South Aviation Boulevard
EI Segundo, California 90245
213679-4511

Xerox Real-Time Batch Monitor (RBM)
Xerox 530 and Sigma 2/3 Computers

Real-Time and Batch Processing

Reference Manual

90 10 371

February 1975

Pd<;:e: $6.50

XEROX

Printed in USA

REVISION

This publication is a major revision of the Xerox Real-Time Batch Monitor (RBM)/RT, BP Reference Manual for
Xerox 530 and Sigma 2/3 computers, Publication Number 9010 37H (dated June, 1973). Technical changes made to
the text are for the GOO version of RBM. All technical changes from that of the previous manool are indicated by
a vertical line in the margin of the page.

RELATED PUBLICATIONS

Title Pubrication No.

XeTox 530 Computer/Reference Manual 90 1960

Xerox Sigma 2 Computer/Reference Manual 900964

Xerox Sigma 3 Computer/Reference Manual 90 1592

Xerox Real-Time Batch Monitor (RBM)/OPS Reference Manual 90 1555

Xerox Real-Time Batch Monitor (RBM)/SM Reference Manual 903036

Xerox Rea.I-Time Batch Monitor (RBM)/User's Guide 90 1785

Xerox Real-Time Batch Monitor (RBM)/System Technical Manual 90 11 53

Xerox Extended Symbol/LN,OPS Reference Manual 90 1052

Xerox Symbol/LN ,OPS Reference Manual 90 1051

Xerox Basic FORTRAN and Basic FORTRAN IV /IN Reference Manual 900967

Xerox Basic FORTRAN/OPS Reference Manual 90 1061

Xerox Basic FORTRAN IV lops Reference Manual 90 15 25

Xerox FORTRAN/Library Technical Manual 90 1036

Xerox ANS FORTRAN IV /LN Reference Manual 90 1806

Xerox ANS FORTRAN IV lops Reference Manual 90 1807

Xerox Sort/Reference Manual 90 1787

Xerox Report Program Generator (RPG)/Reference Manual 90 1841

Manual Content Codes: BP - batch processing, IN - languoge, OPS - operations, RP - remote processing,
RT - real-time, SM - system management, TS - time-sharing, ur - utilities.

The spec.ifications of the software system described in this publication are subject to chal'1ge without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their Xerox sales representative
for detai Is.

CONTENTS

GLOSSARY vii

1. INTRODUCTION

RBM Characteristics __________ _
Resident Section ___________ _
Nonresident Section _________ _
System Environment 1
Foreground (High-Level Priority Response) __ 2
Background (Low-Level, No Priority) 2
Secondary Storage Management 3
Overlay Capabilities 4
Task Dismissal 4
Checkpoint/Restart 4
Publ ic Library 4
Reentrant Routines 5
Accounting and Elapsed Time 5
System Initial ization and Creation 5

RBM Subsystems and Processors 6
Standard Subsystems 6
Language and Service Processors 6
Optional Foreground Faci I ities 7

RBM Terms and Processes 8
Task 8
Progrom 8
Fo reg rou nd 8
Background 8
Job 9
Job Step 9
Monitor Service Routines 9
Temporary Stack 9
Floating Accumulator 9
RBM Control Task 9
Nonresident Foreground 9
Compressed RAD Files 9

2. CONTROL COMMANDS 10

Job Control Processor (JCP) _________ 10
Moni.tor Control Commands 10

ABS 10
ASSIGN 11
ATTEND 13
C: 14
CC 14
DEFINE 14
EOO 14
FIN 15
FSKIP, FBACK, RSKIP, RBACK 15
HEX 15
JOB 15
JOBC 15
LIMIT 15
MESSAGE 16
PAUSE 16

3.

PMD 16
PURGE 16
REL 17
REWIND 17
TEMP 17
UNLOAD 17
WEOF 18
XEQ 18
XED 18

Processor Control Commands 18
Extended Symbol Control Command Format __ 19
FORTRAN IV Control Command Format 20

RBM/Processor Interface 20
GO and OV Fi les 20

OPERATOR COMMUNICATION 22

System Communication 22
I/O Recovery Procedure 22

Operator Control 26
Solicited Control 26
Unsolicited Control 26
* Comment 27
BL 27
BR 27
C 27
CC 27
DA 27
DB 27
DC 27
DE 28
DF 28
DM 28
OCT] 28
DR 28
OS 28
OU 28
F 28
FG 29
FL 29
FR 29
H 29
KP 29
L 29
M 29
Q 30
R 30
RA 30
RE 30
RC 30
RD 30
S 30
SY 30
T 30
TO 30
UL 30
W 30
X 30
Z 30

iii

4. MONITOR SERVICE ROUTINES 31

Branchi ng to Service Routines ________ 31
Se.rv ice Rouf·ines 32

M:IOEX 32
TIO, TDV., HI035
SIO 35
I/o CHECK 36

M:READ 36
M:WRITE42
M~rnl ~

M:DATIME 48
M:TERM 4:9
M.:ABORT 49
M:SAVE 49
M:EXIT 50
M:HEXIN 50
M:INHEX 50
M£K~ST ~

M:LOAD 51
M:OPfN 52
M:CLOSE 53
M:DKEYS 54
M:WAIT S4
M:SEGLD 54
M:DEFINE 55
M:ASSIGN 56
M~S ~

M:POP 59
M:OPFILf60
M:RSVP 60
M:DOW 62
M:COC 62

5. I/o OPERATIONS 68

Byte-Oriented System 68
I/o Initiation 68
End Action 68
Log.ical/Phys1cai Device fquivaJen·ce 69

Logical Devices 69
RAD Files 70

Sequentia:I Files 70
Random Files .71
Granules 71
Blocking Buffers 71

RAD File Management 72

6. REAL-TIME PROGRAMMING 73

Fore.ground Pr~grams 73
Resident Foreground Programs 73
Semiresident Foreground Pr~grams 73
Nonresident ForegroundProgroms 73

'Monitor Tasks 73
Power On Task 73
Power Off Task 74
Machine Fault Task 74
Protection Viol-aHon Task 76
Multiply/Div1de Ex'Cep'fion TaSKS 76

iv

7.

Input/Output Task 76
Contro.lPane,1 Task 76
RBM Contro 1 Task 77

Schedulin9 Resident Foreground Tasks 77
loodi ngForegr()und Progmms 77

Loading Nonres'ident Foreground Progroms __ 80
foreground lnitializcrtion 80
Task Contro,f BJockFunct.ions 80
Foreground Prior'ity Levels and I/o Priority ___ 84
Task Dismissal 84
AID Recei vers 85
ClOCK1Rece iver85
Chec'kpointing .the Boc'kground 86

o VERLA Y lOADERS87

Overlay Cluster Organization '87
Core Layout During loading89
Overlay Loader Operationaf tobe;\s 89
Map 90
CaUing Overlay Loader 92

COMMON Allocati on 1 n Foreground
Loading 93

Contro'l Command format 93
Ccmtrol Command Repertoire 93

BLOCK 93
RUFEND 95
Lffi 95
MS,ML,MP95
TeB 96
ROOT 97
LD 97
1:8 97
INCLUDE 9;8
EXCLUDE 98
MD 98
~S ~

LCOM 98
SEG 99
PUBUB99
mD 100

Loader Error .Messages 100

8. RADEDITOR 101

Standard RAD/Disk Pack Area Orgonization __ lOl
Data Files 1'02
tihrory Files lO2
Algorifhms for Comput.ing Uhrary file Sizes_102

RAD Editor Operati0nal Labels)03
Calling RA D Editor]{)4

Control Command Format 104
Control Command Reperto1re 1.04

ADD 1~4

mun 100
FCOPY 106
DPCOl'Y 106
LADD 106
lREfLACE 1:06
LDELETE]06
tCOPV 106

LSQUEEZE 106
MAP 107
LMAP 107
DUMP 107
SAVE 107
VERIFY 108
RESTORE 108
SQUEEZE 108
CLEAR 108
BDTRACK 109
GDTRACK 109
INITIALIZE 109
MESSAGE 110
PAUSE 110
TRUNCATE 110
END 110

RAD Editor Messages 110

]11

9. UTILITY

Introduction 111
Util ity Program Organization 111
Control Routine Operational Labels 112

Calling Utility 112
Control Command Format 113
Control Function Commands 113

FBACK 113
FSKIP 113
MESSAGE 113
PAUSE 113
PRESTORE 113
REWIND 114
RBACK 114
RSKIP 114
UNLOAD 114
END 114
WEOF 114
ASSIGN 114

COpy Routine 114
COpy Operationat Labels 115
COpy Operating Charact.eristics 115
Calling COpy 115
COpy Control Commands 115

OPLBS 115
COpy 116
BCOPY 1]6
VERIFY 116

DUMP Routine 116
DUMP Operational, Labels 117
DUMP Operating Characteristics 117
Cailing DUMP 117
DUMP Control Command_ 117

DUMP 117
Object Module Editor Routine 117

Object Module Editor Operationa~ Labels __ 118
Obiect Module EdUor Operating

Characteristics 118
Calling Chject Module Editor 119

Object Module Editor Control Commands 119
LIST 119
MODIFY 119

MODIFY System 119
INSERT 120
DELETE 120

Record Editor Routine 120
Record Editor Operational Labels 120
Record Editor Operating Characteristics ___ 120
Call ing Record Editor 120
Record Editor Control Commands 121

LIST 121
MODIFY 121
DELETE 121
INSERT 121
CHANGE 121

Sequence Editor Routi ne 122
Sequence Editor Operational Labels 122
Sequence Editor Operating Characteristics __ 122
Calling Sequence Editor 122
Sequence Editor Generate Control Command_ 123

SEQUENCE 123
Sequence Editor Update Control Commands_ 123

INDENT 123
DELETE 123
SUPPRESS 123
SEQUENCE 124

Utility Error Messages 124

10. PREPARING THE PROGRAM DECK 125

Extended Symbol Examples 125
Assemb1e Source Program, Listing Output

and Binary Output 125
Assemble in Batch Mode, listing Output

and Binary Output with Symbol
Cross-Reference 125

Assemble, Load, and GO from User
Defined bv Fi Ie, Listing Output 125

Assemble Source Program, Listing Output,
LOAD and GO 126

Basic FORTRAN IV Examples 126
Compile Multiple Programs 126
Compile, Listing Output, LOAD and GO __ 1'26
Compile and Execute Foreground Program __ 127

Segmented Program Examples 127
Assemble Segmented Background Program,

LOAD and GO 127
Load and Execute Muhiple Object Modules_128

RAD Editor Examples 128
Build Public library 128
load Routines in User.Library 129

Utility Example 129
Create a Control Command File 129

11. SYSTEM STARTUP 130

System Save Tape 130
RBM Boo t P rocedu re 130

Public library Creation or Updating 131
Resident Foreground Creation orUpdating __ 131

System Patchi ng J 32

v

12. DEBUG 133 D. ERROR MESSAGES, WARNING MESSAGES,
AND ABORT CODES 156

Introduction 133
General Description 133 RBM Messages and Abort Codes 156
Foreground User's Capability 133 JC P Control Command Diagnostics 156
Overlay User Restrictions 133 RBM Abort Codes 156

RBM and Foreground User's Interface 133 Overlay Loader Messages and Abort Codes 158
Memory Requirement and Insertion Block I/O Error Message 158

Definition 133 Loader Error Messages 158
Debug Control 133 loader Abort Codes 159
Debug Commands 134 RAD Editor Messages and Abort Code 159

D 134 Utility Subsystem Messages and Abort Code ___ l64
I 135 Util ity Error Messages 164
S 135 Utility Subsystem Abort Code 164
X 136
R 136 E. USASClI-8 TO EBCDIC-8 CORRESPONDENCE 168
T 136
P 137 F. LINE PRJ NTER VFCs (WRITE BINARY) 169

C 137
K 137
M 137
B 137 FIGURES
E 137
Q 137 1. Operating System
G 138

Debug Error Messages 138 2. Job Stock Example 19
Debug Expansion of Instructions 138
Debug Insertion Structure 139 3. Use of GO and OV Files 21
Debug Snapshot Calling Sequence 139

4. RAD AI locati on 72

13. BASIC SPOOLING SYSTEM 141 5. Fomground Priority levels 78

Purpose 141 6. T ask Entrance Format 83
Implementation Philosophy 141
Loading BSS 141 7. General Overlay Structure Example 88
Allocating Spooling Files 142
In it iating BSS 142 8. Sample Overlay Cluster Configuration 89
BSS Operation and Control 144

Forms Control 144 9. Long (load) Map Format 90
Abort Codes 145
Assembly Options 145 10. Simplified Overview of Line Printer Spooler __ 141

INDEX 171 11. Detai fed Overview of line Printer Spooler 142

12. Variations of Basic Spoofing Systems 143

APPENDIXES

A. ADDITIONAL RBM PROCESSORS 147

Symbiont Plotting System 147 TABLES
Unsoficited Operator Key-ins for Pfot 147
Basic Plotter Controf Subroutines 147 1. RAD /D rsk Areas 3

INDUMP 148
INDUMP Loading Techniques 148 2. Standard Background Operattonol lobe ts 11
INDUMP Operations 148

COMPRESS 149 3. Standard Device Un it Numbers 12
EXPAND 149

4. RRM System Processors 18

B' • R'B'M Of>ERATfONAt LABEL USAGE T50
},,,'\on it or iV\essage!i- 22 ~

C. SYSTEM ZERO TABLE AND CONSTANTS 152 6. Transfer Vector for Mon it~r Services 31

vi

7. Return Status from M:IOEX 34 18. Task Control Block (TCB) 81

8. Return Status from M:READ, M:WRITE, 19. Foreground Load Blank COMMON Allocation __ 94
M:CTRL 38

20. Save-Tape Restore Error Messages 130
9. I/O Completion Codes 39

2l. Spooling Volume Requirements 144
10. M:DOW Argument Lists 63

C-l. Monitor Zero Table 152
11. Status Returns for M:COC 65

C-2. Standard Constants 153
12. Completion Codes 65

C-3. Mon itor Constants 154
13. Line Status 65

D-l. RBM Abort Codes 156
14. Line Mode 65

D-2. Loader Error Messages 158
15. Summary of Editing Operations 66

D-3. Overlay Loader Abort Codes 160
16. Standard Device Un it Numbers 69

D-4. RAD Editor Error and Warning Messages 161
17. Machine Fault Classification by Severity

Levels 75 D-5. Uti lity Error Messages 165

vii

GLOSSARY

active foreground program: a foreground program .is active
if H is resfdent inmemory~ connected to inte.rupls¥ 01"

in the process of beingentered inm the sys;tem via a
! XEQ control command.

area: a contiguous portion ofa random ·access device that
contains files ·of some reloted ntJture~

bac'k.gfoundarea:tbot area of core storage aUneated to
batch processing. Thisa.rea may be checkpointecl for
use by fO:t1egIDund progroms.

backg~ound program: any program executed under Monitor
contro.1in the hackgroundarea when no inteifrupts are
active. Trese p.rograms are entered through the batch
processing 'input stream~

batch processing: a computing techniqu!e in whkh 5~mrla'l"
pro'grams ar.egrouped together and processed or exe­
cuted in a single run so as to effect effki ent 'Uti liza­
tionof the computer.

channel status tabJe:a .table of eight words per SYSGEN­
defined I/O channel that reHects the hardware condi­
tio," of each 1/0 channel.

checkpointed job: a partially processed oockg.round job
that has been saved in secondary storage olong with
all registers and otherllenvironment" so that the fob
can be restarted at its interrupted point.

clock counter: a memory focation that records the progress
of real time or its approximation, by accumulating
counts produced by a (clock) count pulse interrupt.

close: terminating the use ·ofan item (such as a file) and
performing certain clean up operations to provide for
its future reuse or the reuse of its resources.

control command: any control message other than a key-in.
A control command may be input via any device to
which the system command input functi·on has been
ass~gned (normaHya oard reader).

control message: any mes.sage received by the Monitor that
is ,either a control command or a control key-in.

count zero interrupt: an inte..-rupt level that 15 tri.ggered
when an associaled (clock) count pulse interrupt has
produced a zero result in acloc:k counter.

critical task; a task whose hnpodonce is highel'lOugh that
no attempt should be made to run without it in fhe
event of a serious error.

dedi·cat'ed memory: -core memory locations reserved by the
Moniter for speCial purposes, such as interrupts and
real-time progrom5~

viii

dev:iee-fi!e number (DfN); a]:o.g'icai method of refening
both to a physical peripheral device and to ,a collec­
lion ,of informati.on about the device. The device Hie
number indi.cctes theorGer in which dewi cesare i:AitiaHy
defined at SYSGEN. Fore)fomple"fue first device
defined musT always be a keyboard pri nter (Df N l).

devJce 11,ame:Oll identifie.r u'ged at SYSGEN tjme for an
adua1 physical I/O device that is composed of two
e!ements: .Q dev'i'ce type which Iso two-enamcter code
for a particular doss of peripheral devices, and a de­
vke number which is a two-dig;it hexodedmo.I repre­
sent;aHonof the physical unit number ,associated W1th
a device~

devkeunlt number: an 7nteger value coded into -Q

fORTRAN IV progn::unto refel'ence per.i ph e.ra 1 dev1ces~
Standard devke unit numbers can be equated to device
fi~e numbers (see above) either ,at SYSGEN time or
through .!ASSIGN commands.

directMY: '0 tahle 'of names and addresses ·of fifes on ·a ran­
dom access device that enables the system to locate a
file when given only its nome and area.

disob1ed; the condition of an interrupt level wherein the
level may advance from fhearmed to the waiting state
when triggered by an -interrupt pu:ise, but the level
cannot cause a pr09ram interruption until it is enabled.;
it thus remains in the waiting state until it is allowed
to interrupt the program.

disarmed state: the stote of an interrupt level that cannot
accept an interrupt input signal.

disk pack: a secondary storage system of removable rotating
memory. For most RBM purposes, disk pack and RAD
are synonymous unless otherwise noted.

enabled: thecondifion of an interrupt level wherein
the level is not inhibited from advancing from the
waiting state to the active state except for priority
considerations.

end action: that action that takes piace at the completion
of an I/O operation. This usually inc1udesthe entry
of a special routine that was spec.ified when the re­
quest was made.

end record: the last record to be joaded in an obiect
module or load module.

error severity leve1code: a code indicating the seve·dty
of error noted by the processor. This code is con-
tained in the final byte of an obiect module.

execution location: a va~ue replacing the origin ofa
relocatable program that changes the address at which
program loading is to begin.

external interrupt: one of the class of interrupts that are
associated with special systems equipment. These
interrupts are lIexternal ll to the basic computer sys­
tem and are associated with functions that are de­
fined according to the requirements of a particular
insta Ilation.

external interrupt inhibit: the bit, in the program status
doubleword, that indicates whether (if 1) or not (if 0)
all external interrupts are inhibited.

external reference: a reference tp a declared symbolic
name that is not defined within the module in which
the reference occurs. An external reference can be
satisfied only if the referenced name is defined by an
external load item in another module.

file control table: contains information about all device
files in the RBM system and is indexed by device-file
number.

file name: a name for a permanent fi Ie that is defined
either at SYSG EN or later through the RAD Editor.

flawed track: a disk pack track that contains a flaw mark
in the header as well as the address of an alternate
track.

foreground area: that portion of memory dedicated speci­
fi cially for RBM, service routines, and foreground
programs.

foreground program: a program that executes in the fore­
ground area of core and can uti! ize all privileged
services.

foreground task: a body of procedural code that is associ­
ated with (connected to) a particular interrupt.

GO file: a RAD file of Relocatable Object Modules
(ROMs) formed by a processor. This is a default input
file when no file name is specified.

granule: a record beginning on a physical sector boundary,
used as a unit of allocation for random RAD or disk
pack files. A granule is usually synonymous with a
sector on a device, but may be defined (on a file basis)
to be equivalent to a partial sector, one sector, or
several sectors.

idle state: the state of the Monitor when it is first loaded
into core memory or after encountering a ! FIN control
command. The idle state is ended by means of an
S key-in.

inhibited interrupt: a condition of an interrupt that pro­
hibits it from entering the active state.

input/output interrupt: an interrupt triggered by the stan­
dard I/O system of the computer.

insta Itation input parameter: any input parameter used during
System Generation to direct the formation of an RBM
system.

internal interrupt: one of the class of interrupts that are
supplied with a standard computer system, or are op­
tional additions associated with dedicated functions
(such as power fail-safe). These interrupts are
II internal" to the basic computer system.

interrupt trigger signal: a signal that is generated, either
internal or external to the CPU, to interrupt the nor­
man sequence of events in the central processor.

I/O block: a contiguous amount of RAD or disk space that
contains records of blocked or compressed fi les. All
I/O blocks are the same size (K:BLOCK) and always
begin on a sector boundary. K:BLOCK also specifies
the size of core blocking buffers.

I/O control table: a table containing the device-specified
input/output control doublewords and other information
necessary for RBM I/O services. There is a one-to-one
correspondence between the I/O control table and file
control table.

I/O control subtable: same as I/o control table except
that the subtable is RAD specific.

library input: input from the device to which the LI (li­
brary input) operational label is assigned.

library load module: a load module that may be combined
(by the Overlay Loader) with relocatable object mod­
ules, or other I ibrary load modules, to form a new ex­
ecutable load module.

link editing: the process of combining separately compiled
or assembled program modules, relocating them, I ink­
ing them to defined library routines, and producing an
absolute executable load module.

loading: the process of reading an executable program (see
I ink editing above) from secondary' memory to absolute
locations in main memory.

load map: a listing of significant information pertaining to
the storage locations used by a program.

load module: an executable program formed by using
Relocatable. Object Modules and/or library object
modules as source information.

logical device: a peripheral device that is represented in
a program by an operatioool label (e. g., BI or BO)
rather than by a specific physical device name. Or,
a SYSGEN mechanism for reserving logical groups of
DFNls fora combinationofforeground and background
use to accompl ish information transmission between
tasks without the use- of any real peripheral device.

ix

1. INTRODUCTION

RBM CHARACTERISTICS

The Xerox 530 and Sigma 2/3 Real-Time Batch Monitor
(RBM) is the major control element in the operating system.
It supervises and services simultaneous foreground programs
and background batch programs without interfering with the
real-time response capability of the foreground.

RESIDENT SECTION

The resident portion of RBM consists of the following parts:

• Several independent tasks that are connected to the
hardware interrupts (e. g., the real-time tasks). The
tasks are not reentrant. They can communicate with
each other and may use some of the mon itor servi ce
routines.

• Several reentrant monitor service routines that can be
used by any task in the system. These are described
in Chapter 4.

• Standard system constants and tables (see Appendix C).

• Input/output tables for constants and status information.

Control Panel Interrupt

RBM Control Task r--- RBM Overlay
Subtasks

Monitor Service Routines

Resident Foreground

I
I
I
I
I
r-

I-

NONRESIDENT SECTION

The nonresident part of RBM consists of the system initiali­
zation portion that is loaded at the time the system is cre­
ated, monitor service routines, and device-dependent I/O
routines for which a response is not critical. The initiali­
zation portion selects the optional features of RBM and
initializes the input/output constants.

SYSTEM ENVIRONMENT

In addition to the Monitor itself, the hardware-software
environment of the operating system consists of the following
major elements:

• Xerox Model 530 or Sigma 2/3 computer system in­
cluding (a) the required system RAD, (b) the selected
number of hardware interrupts connected to various
foreground tasks in user-determined priority sequence,
(c) dedicated and commonly shared I/O devices.

• Partitioned core memory (see Figure 1) divided into

~

~

~

• A protected RBM area reserved for the RBM
monitor.

Job Control Processor

Background Processor

Nonresident Foreground
~

Resident Nonresident

Figure 1. Operating System

Introduction

logical record: a record that isa fixed measure of contiguous
data (on a file basis), distinctive as being meaningful
to the user. For blocked RAD files, logical records
are contiguous within blocks but need not be integral
to a block.

memory protection: the use of the optional protection
feature that keeps unprotected background memory
from altering protected foreground meaning.

memory write lock: a one-bit write-protect field option­
ally provided for each 256-word page of core memory
addresses.

Monitor: a program that supervises the processing, load­
i ng, and execution of other programs.

nonresident foreground program: a foreground program ex­
plicitly called from secondary memory that resides in
the nonresident foreground area of core memory duri ng
execution. The space thus occupied is considered
"active" and is protected by the Monitor from inter­
ference by other activities.

object deck: a card deck comprising one or more object
modules and control commands.

object language: the standard binary language in which
the output of a compiler or assembler is expressed.

object module: the series of records containing the load
information pertaining to a single program or sub­
program. Object modules serve as input to the Over­
lay Loader.

open: the preparing of an item (such as a file) for initial
use.

operational label: a symbol ic name used to identify a
logical system device.

operational label table: there are two tables: one for
foreground and one for background. The tables con­
tain the two-character operational labels that are used
for reference by the RBM service routines and connect
an operational label to a device file number.

option: on elective operand in a control command or pro­
cedure call.

Overlay Loader: a processor that links and absolutizes
elements of programs.

overlay program: a segmented program in which the
segment currently being executed may overlay the
core storage area occupied by a previousl y executed
segment.

OV file: a RAD file that contains an executable program
formed by the Overlay Loader if a program file nome
was not specified at load time. Used primarily to test
new programs or new versions of programs. This is a
default file when no output file is specified.

x

physical device: a pheripheral device that is referred to by
a "name" specifying the device type, I/o channel,
and device number {also see "logical device"}.

postmortem dump: an optional listing of the contents of a
specified area of core memory, usually following the
abortive execution of a background program.

primary reference: an external reference that must be
satisfied by a corresponding external definition (capa­
ble of causing loading from the system library).

priority level: priority level of a task is dependent on the
position of its associated hardware interrupt in the
priority chain.

RAD/disk areas: the allocation and definition of a RAD
into specific areas during SYSGEN, each of which is
labeled with a two-character mnemonic to expedite
file management.

Rapid Access Data (RAD) storage system: a secondary stor­
age system of rotati ng memory. For most RBM purposes,
RAD and disk pack are synonymous unless otherwise
noted.

real-time processing: data processing designed so that the
results of the operations are made available in time to
influence some process being monitored or controlled
by the computer system.

reentrant: that property of a program or subroutine that
enables it to be interrupted at any point, employed
by another user, and then resumed from the point of
interruption. Reentrant programs are often found
where there is a requirement for a common store of
publ ic routines that can be called by any user at
any time. The process is controlled by the Monitor
which preserves the routine's environment (registers,
working storage, control indicators, etc.) when it is
interrupted and restores that environment when the
routine is resumed for its initial user. A reentrant
routine never stores any intermediate values within
itself.

Relocatable Object Module: a program or subprogram that
may be relocated and link edited to operate anywhere
in corej that is, does not have absolute addressing.

resident foreground program: a foreground program that is
automatically loaded into a fixed area of foreground
core memory every time the system is booted in.

secondary reference: an external reference that 'may or
may not be satisfied by a corresponding external def­
inition (not capable of causing loading from the sys­
tem library).

secondary storage: any rapid access storage medium other
than core memory (e. g., RAD or disk pack).

segment loader: a Monitor routine that loads overlay seg..;.
ments from RAD storage at execution time.

semiresident foreground program: a foreground program
explicitly called from secondary memory that resides
in the resident portion of core memory during
execution.

service routines: Monitor-supplied services and opera­
tions that can be called by an executing foreground
program, or else by an executing background program
(except for certain privi leged function dedicated to
foreground use).

source deck: a card deck comprising a complete program
or subprogram in symbolic EBCDIC format.

source language: a language used to prepare a source
program (and therefrom a source deck) suitable for
processing by an assembler or compiler.

symbolic input: input from the device to which the SI
(symbol i c input) operationa I label is assigned.

symbolic name: an identifier that is associated with some
parti cular source program statement or item so that

symbol ic references may be made to it even though
its value may be subject to redefinition.

system I ibrary: a group of standard routines in relocatable
object language format, any of which may be included
ina program be i ng created.

Task Control Block (TCB): part of the load module that
contains the area required for context storage. The
TCB is task-associated.

temporary files: those files that exist only until the current
job step ends. They may, or may not, have existed
prior to the start of the job.

Temp Stack: an area of memory optionally created by
the Overlay Loader for a user program and used by the
Monitor and System library routines.

unsolicited key-in: information entered by the operator via
a keyboard in response to a Control Panel interrupt.

xi

• A protected resident foreground area reserved for
user foreground tasks.

• A protected nonresident foreground area reserved
for a single nonresident foreground program.

• A protected public library area reserved for public
library routines shared by foreground and back­
ground tasks.

• An unprotected background area used by back­
ground (non-real-time) processors, translators, and
batch users' programs, and occasional I y by fore­
ground programs requi ring temporary use of addi­
tianol memory. (In this case the foreground wH I
checkpoint the background.)

• The system RA,D, t allocatable into permanent and tem­
porary files. The permanent files contain all the back­
ground RBM processors such as Basic FORTRAN IV or
ANS FORTRAN IV, Extended Symbol, RAD Editor, etc.,
plus RBM itseff. They may also contain user data and
operational resident and nonresident foreground pro­
grams that can be catfed into protected memory for
processing. Temporary files are' normally used as in­
termediate scratch areas by processors or user programs.

• A number of oser foreground tasks that can be con­
nected to hardware interrupts. Examples of foreground
tasks are process control operations, real-time data ac­
quisition and control, and low-speed telemetryapplica­
tions. The RBMControl Task is connected to the lowest
priority hardware interrupt in the system so that no
background processing can delay foreground tasks.

• Oveday Loader for linking and absolutizing segmented
foreground and background programs that enables back­
ground processors and user programs to overlay them­
selves in core storage, and thus permitting programs of
virtually unlimited size to be executed.

FOREGROUND (High-lavel Priority Hespoase)

Within the framework of the user-determined hardware
interrupt priori ties, foreground programs or tasks operate as
independent entities, and the Monitor generally makes no
attempt to interject itself between these tasks and their real­
time functions. The Monitor services the foreground only
on request, such as a call to one of the monitor service rou-,
tines. The principal foreground services of the Monitor are to

• Respond to I/O interrupts.

• Respond to an operator's console request (such as
queuing).

• Supervise RAD file activity.

•. Optionally, supply a software version of multipfy/
divide functions for configurations without multiply/
divide hardware.

fFor RBM purposes, RAD and disk pock are synonymous
unless specifically stated otherwise.

2 RBM Characteristics

• Load a foreground program into memory from the RA D
on request.

• Provide the foreground wi th standard constants (see
Appendix C).

.Ntoke available a "mailbox" area of 32 memory loca­
tions for communication between two or more foreground
programs.

The interrupt priority sequence (described in detail in the
respective computer reference manual) is the basis for the
priority level of tasks in the RBM system. That is, the pri­
ority level of a task is dependent on the position of the as­
sociated hardware interrupt in the interrupt priority chain.
Background jobs in the system 01 t have the some priority
fevel. A background job is not connected to any interrupt
level in the system, i. e., its priority is below all hardware
interrupt levels and is processed serially.

BACKGROUND (law-level, No Priority)

The primary function of the Monitor is to supervise and con­
trol all those operations that toke place in the unprotected
background area by the following means:

1. Use only available foreground idle time for back­
ground processi ng .•

2. Interpret control functions from control command card
images via the Job Control Processor.

3. Supervise the loading and execution of all back­
ground jobs and activities in unprotected memory.

4. Provide simple background scheduling (first-in,
first-out).

5. Provide I/O services for the background job stock.

6. Inform the operator on the status of peripheral device
operati ons.

7. Test all background operations and processes for fore­
ground protection viofations and prevent the background
from altering or delaying foreground response or from
using dedicated I/O devices.

RBM processors and permanent user processors may be
loaded onto permanent RAD files and then executed by
control command. Programs may also be loaded onto tem­
porary RAD files for the duration of the present job.

All programs must exist on the RAD in absolute core image
form for execution. Relocatable programs, consisting of
a root and one or more overlay segments linked by ex­
ternal references, must be created by an Overlay Loader
to link all modules and create the proper overlay struc­
ture for execution.

It is possible to create programs consisting of a root and one
or more overlay segments through use of the Absolute Loader
if there are no external references (see the lABS command in
Chapter 2 for other restri cti ons).

Two levels of logical (rather than physical) device refer­
encing are provided, enabling system configurations to
change or expand without reprogramming. Further, through
many device-independent features and use of standard media
formats, input and output can be directed to card equipment,
paper tape equipment, or magnetic tape without changes in
the user's program.

For maximum flexibi lity and control of input/output, the
user can optionally specify his own I/O Control Double­
words and order bytes, perform independent error recovery,
and be informed by RBM when an I/O operation has term­
inated. Alternatively, for greater ease of programming and
device· independence, the RBM wi II create the 10CDs and
order bytes and perform standard error checki ng and recovery.

When multiprogramming with foreground tasks and back­
ground jobs, the foreground has access to all privileged in­
structions. The background is checked by both hardware
and software to provide complete protection of a foreground
program's use of core memory and peripheral operations.

SECONDARY STORAGE MANAGEMENT

The RBM operating system provides use of the RAD or disk
packs for

• Temporary and permanent fi les.

• User and system fi les.

• Sequential fi les (pseudo tape, where RBM performs all
fi Ie management).

• Random-access fi les (RBM performs I/O transfer and con­
trols fi Ie I imits, but user controls relative addressing).

RAD/DISK PACK AREAS

The concept of RAD/disk pack areas is a convention created
primarily to expedite file management. RAD and disk pack
areas are allocated during system initial ization. Disk pack
areas may also be allocated after system initial ization,
using the RAD Editor. The areas are labeled with two al­
phanumeric characters, from the following list:

SP

SD

Sl

BT

CP

FP

BP

UP

Ul

Xn

aa

where n is a decimal digit and a is any letter combination
except Xn. Note that the combination "SK" has a special
meaning (described in "SYSGEN" chapter of Reference
Manual 90 30 36) and is not an area mnemonic.

The labels have the special meaning given in Table 1.

Mnemonic

UP,FP,BP

aa

Xn

Table 1. RAD/Disk Areas

Meaning

System Processor area. Contains RBM and
user-selected processors from the I ist given
in Table 5 (the Overlay Loader is a man­
datory processor). This area is searched
whenever either a system processor or user
processor is requested.

System Data area. Contains files neces­
sary for the execution of RBM.

System Library and User Library areas.
These are the only areas from which the
Overlay Loaders will load I ibrary routines.

User, foreground, ba ckground processor
areas. Contains resident foreground pro­
grams, foreground tasks, nonresident
programs, semi-resident programs, and
background programs. Area FP may only
contain files of foreground or no-write
protect codes and area BP may only con­
tain files of background or no-write pro­
tect codes. The UP area may have its
area write protection specified during
System Generation or RAD Editing.
These areas and the SP area are searched
when a processor is requested. SP, UP,
and FP are searched (in the order given)
for resident foreground programs, when the
system is booted from the RAD.

Background Temp area. Used for all oca­
tion of temporary files.

Checkpoint area. Used to store the back­
ground environment when a background
program is checkpointed by a foreground
process.

User data areas which contain any data
the user desires, including program files.

Xn areas are similar to aa areas except
that the user has the opti on to perform hi s
own management of the entire area, thus
allowing access to data arranged in non­
standard formats. No disk pack verifi ca­
tion is performed for an M (Mount) key­
in (see "M Key-Ins" in Chapter 3).

tThese areas receive defaultallocationsduring SYSGEN.
Note that the SP and SD areas must be present in the
system

RBM Characteristics 3

PROCESSOR FILES

Processor files are stored either as a single segment or as on
overlay structure. Overlay loaders store the files on
the RAO in core image form, ready for loading, and abso­
tutized for the space they will occupy at execution. The
processor files are loaded for execution via a processor con­
tTOI command.

LIBRARY FILES

Library fif.es contain subprograms in a relocatable form.
The files have specified entry points and are in the form of
binary cord images in Standard Object language.

There is one library file for the system area mnemonic SL,
and one for the user area mnemonic UL. Overlay loaders
can foad selectively from one or both, in either order
or priority. Although records within a subprogram are
loaded sequentially, access to the individual subprogram
is on a random (direct access) basis.

DATA FILES

Permanent data files may contain any kind of data and may
be accessed sequentially or randomly, depending on how
they were created. The user is responsible for reading them
accordingly.

FILE NAME

Only permanent RAD files have a file name. Some names
are entered into the dictionary for the appropriate area at
System Generation; others are entered later by the RAD
Editor. After the name is in the dictionary, an !ASSIGN
control command or a call to M:ASSIGN can equate either
an operational label or a FORTRAN device unit number to
this file name.

DVE RLA YCAPABILITIES

Under RBM, Overlay Loaders can be used to create over­
lay programs for later execution in either the foreground or
background. t The overlay programs can be permanently
entered (as a file) into either the System or User Processor
areas, or into a temporary overJoy file (OV). Since they
are stored on the RAD in absolute core image format, they
can be quickly loaded into memory for execution.

Each segment is created by on Overlay Loader from one or
more object modules (assembly language, FORTRAN, or
library routines). The control commands required to create
the overlay segments are defined i!1 the discussion of the
Overlay Loaders. During execution, the Monitor service

tFor a complete description of the Overlay Loaders, see the
Overlay loaders chapter.

4 RBM Characteristics

routine M:SEGlD is used to control both the loading and
the transfer of control between various segments.

TASK DISMISSAL

The dismissal option allows foreground tasks to be auto­
matically dismissed by RBM when they would otherwise be
waiting at a high level for on-going I/o to complete. This
feature allows automatic overlap of high level (i. e. ,
foreground) I/O and low level CPU execution to the
enhancement of low level throughput. The feature is con­
trollable on a task basis or a system basis and requires very
I ittle core space.

CHECKPOI.T IRESTART

The checkpointing feature permits a partially processed
background job to be saved in secondary storage along with
all registers and other environment. The vacated back­
ground space is set to protected status and is then available
to the interrupting foreground task for either instructions or
temporary data storage.

Checkpointing ensures continuity to the partiaUy completed
background job by not repositioning any background periph­
eral devices, permitting all current background I/O activity
to complete, and writing aft of the background space onto a
prespecified RAD area.

Restart takes place when the previously checkpointed back­
ground program is reloaded from the RAD and continues
execution as though the interruption never took place.

PUBLIC UBRARY

Most of the support on FORTRAN and mathematic routines
are reentrant. t If an RBM system has several real-time fore­
ground tasks that use a number of the same subroutines, the
collectively-used set of subroutines con be loaded together
into what is termed a Publ ic Library • Thereafter, whenever
the Overlay Loader processes a foreground or background
program that references one of the "publ ic" routines, it sets
the appropriate branch to the Publ i c Library. The Publ ic
Library is loaded into core whenever RBM is rebooted from
the RAD.

When one of the Publ ic library routines needs temporary
scratch space, it requests space (via a call to M:RES) from
the temporary stack of the task that is cafling the Publ ic
library routine. When the library routine exits, the space
is released via a cafl to M:POP.

tSee the ANS FORTRAN IV library Technical Manual, Pub­
lication No. 90 18 35 for restrictions concerning library
routines in the Public Library.

REENTRANT ROUTINES

In RBM usage, "reentrant" means that a subprogram (never
a task) may be interrupted during execution, called again
by the interrupting task, and later reentered and continued
from the location of the former task. This is a last-in,
first-out kind of reentrancy in keeping with the computer's
priority interrupt system.

ACCOUNTING AND ELAPSED TIME

Background job accounti ng and provisions to I imit the exe­
cution time of a background job can be accomplished by
specifying the JOBACCT opti on at SYSGEN. To correctly
calculate the elapsed time for the background, the Moni­
tor M:SAVE routine changes the charge index to foreground
at the first interrupting foreground task. M:EXIT restores
the charge index when return to background is sensed.

JOBACCT is also used to limit the execution time of a back­
ground program. The user may limit this execution time by
using the !L1MIT control command, and Clock 1 will pro­
vide watchdog services on the background program.

When a ! JOB control command is read, an entry is created
in the accounting file (RBMAL,SD). The entry includes
the start time, user name, and account number. The
start time of the job is then logged on the LL device
as mm/dd/yr hrmn.

At the completion of each activity, the accumulated
elapsed time of background execution will be logged on
the LL device as

ET=mmm. mm (minutes)

At the completion of the job (i. e., a new !JOB or !FIN
command) the current date and time and a job recap are
logged on the LL device as

mm/dd/yr hrmn BK=mmm.mm,

FG=mmm.mm, ID=mmm.mm

where

BK represents the total job time. The total time
for a job is defined as the time available to the
background from the time the !JOB control com­
mand is read until the next ! JOB or ! FIN com­
mand is encountered.

FG represents the amount of time used by inter-
rupting foreground tasks during the job.

ID represents the accumulated idle time incurred
within the job. This could be a result of an
M:WAIT request, a W key-in, ! PAUSE command,
or an attended job being aborted.

The time for a background job is recorded in the accounting
file entry for that job. The IDLE account is updated to re­
flect total idle time charges. After the !FIN control com­
mand is read, all idle time is charged to the IDLE account.

The following rules govern the operations of the Accounting
Log:

• A call to M:SAVE switches from the background to
foreground time accumulation.

• A call to M:EXIT switches from foreground accumula­
tion to background accumulation if a background job
is executing.

• A W key-in, M:WAIT request, or ! PAUSE command
switches from foreground accumulation to idle time
accumulation. An abort from an attended job switches
the same way. An S key-in switches back to foreground
accumulation from the idle accumulation. The M:EXIT
to background switch charges to background.

• A !JOB or ! FIN command writes out total accumulated
ti mes and resets ti mes to zero.

• The ET (elapsed time) is printed on LL each time JCP is
read into the background and represents the total elapsed
background exec uti on ti me.

SYSTEM INITIALIZATION AND CREATION

The RBM system is created for a particular installation
through a nonpermanent system generation (SYSGEN) pro­
gram (see System Management Reference Manual 90 30 36).

The user defines RAD areas, optional routines, peripheral
devices, and operational labels. This is followed by a def­
inition of the exact bounds on the foreground, monitor, and
background memory areas, and the size of the RAD areas.

Once the system is completely defined, the required routines
are loaded and a rebootable version is written onto the
RAD.

If the system must be restarted later, the rebootabl e version
is loaded from the RAD. A completely new system initiali­
zation is necessary only if the above mentioned definitions
must be changed.

When the system is created, a version number is specified
that will be printed on LL at the beginning of each job for
reference.

Most of the Xerox disk devi ces have manual switches that
may be used to permanently protect certain areas.

RBM Characteristics 5

RBM SUBSYSTEMS AND PROCESSORS

RBM supports the subsystems,. processors, and foreground
faciHfies described below. The subsystems and processors
execute in the background area of core memory.

STAIIDARD SUBSYSTEMS

OVERLAY LOADERS

The Overlay Loaders form absolute binary ovedoy segments
for later execution in either foreground or background
areas. If a resident or nonresident program con tolerate
a loading delay of 20 lo 100 m5" foreground or background
programs of virtuaHy unlimited size can be constructed
witn the OverJay Loader despite limitations in avaHable
core stoTage~

RAD EDITOR

The RADEditor performs RAD allocation for permanent files
and generotesand maintains directories for the permanent
RAD areas: System Processor area, System Library area,
System Dota area, User .Processor area, User Library oreal
User Data area, and any all' areas and Xn areas. It allows
dumping of files and mapping ,of all RAO areas, including
checkpoint and temporary areas.

UTILITY SUBSYSTEM

The RBM Utility subsystem prDvides a universal media copy
routine, ,object module editor, dump rout.ine, and record
edit.ing by Hne or sequence number.

LANGUAGE AND SERVICE PROCESSORS

EXTENDED SYMBOL

The Extended Symbol assembly language processor (as­
sembler) prDvidesupword compatibility with bask Symbo.1
plus extended capabilities that indud,e using theRAD for
overlay to reduce core residence requirements .•

The processor accepts a.s input a source program coded in
either Symbo.1 or Extended Symbol, processes it, and out­
puts on oh;ect module, diagnostic messages, an optiDnal
assembly listing, and an optional cross .. reference listing.

6 RBM Subsystems and PrDcessors

BASIC fORTRANN

Basic FORTRAN JV 1S a one-pass compHer with capabifities
extended be~ond Basic FORTRAN. !tcan compHe farge
source programs by using the RAD for overloy to mintmtze
core residence requirements, and has two noating-p.oint
modes: standard precision and extended precision.

ANS fORTRAN

The Xerox .ANS FORTRAN IV compiler provides a fuU
fORTRAN N capability. AN'S fORTRAN IV is designed
for real-tjme r·eentrant usage ... as welt 'as for normal batch
processing. It is upwordscanpatibJe with the bie
FORTRAN .IV Janguoge compiler. It meet.s and exceeds the
specifications given in the ANSI fORTRAN X3. 9-1966~
This expanded version of the compHer adds fanguage syntax
sophistication that both ·simpHfies prob1emso1ving and
a110ws forgreatef' programming ffexibit ity than earl ier ver­
sions of FORTRAN N compHers.(Not available with
Sigma 2 systems.)

RPG

RPG anaws users to perform batch data prDcessingtosks
using simplified programming techniques. XerDx RPG is an
expanded version ,of conventionat RPGs that accepts and
processes IBM 1130, 1800, and 360/20 RPG specifications.
RPG is usefut for any installation with a need to

• Create reports. The fixed progi"am logic of RPG is
ideally suited for thoseinstallaHons that require one­
time reports, since ,elaborate coding is not required for
generating those reports.

• Process inventDry, payrOll, or other commeri·cof
appf ications.

Under Sigma 3, RPG requires the Extended Arithmetic
(8119) feature. (NDt available with Sigma 2 systems.)

SORT

The Xerox Sort prDce.ssor offers a generaHzed fHe sorting
capability. Xerox Sort is a disk-oriented mutHpoose pro­
gram that is overlayed to reduce memory requirements. The
sorting technique used is 0 replacement-selection tourna­
ment with 0 balanced merge ofinterrnediate strings. (Not
available with Sigma .2 systems.)

COBOL

Xerox 530 ANS COBOL ,offers a pDwerful ond convenient
prog.famming language for implementation ,of bu.siness Dr

commercial applications. Xerox 530 ANS COBOL is a
subset ·of the X3.23 - 1973 ANS COBOL Stondord and con­
tains the fDHowing modules implemented at the first level:

• Nucleus

• Table Handling

• Sequential I/O

• Relative I/O

• Indexed I/O

• Inter-Program Communi cation

• Library

• Debug

Additional features such as in-line diagnostics optional
data map, procedure map, object listing and cross reference
are included.

The Xerox 530 ANS COBOL compiler is a two-pass pro­
cessor using a segmented structure to minimize the core
required for operation. The compiler runs in the back­
ground under control of RBM.

Sequential, Relative and Indexed files produced by 530
COBOL are compatible with those produced by 530 RPG II
Version COO.

Under Sigma 3, COBOL requires the Extended Arithmetic
(8119) feature (not available with Sigma 2 systems).

OPTIONAL FOREGROUND FACILITIES

DEBUG

The RBM Debug package provides the user with a debug­
ging tool designed primarily for nonsegemented background
programs but with a limited capability for debugging fore­
ground programs. The Debug functions and commands are
described in Chapter 12.

coe HANDLER

The character-oriented communications (COC) handler pro­
vides communication between real-time programs and
various terminal devices. The COC hardware consists of
a controller and from one to eight transmission-line inter­
face units. RBM can accommodate one COC controller.
See Chapter 4, M:COC, for a more complete discussion
of the COC handler.

PLOTTER SYMBIONT

The plotter symbiont is a foreground program that drives a
Xerox 7530 or 7531 graph plotter via a symbiont file on
disk. The FORTRAN subroutine I ibrary provides background
program subroutine calls for building the plotter-symbiont
command fi Ie.

XSP

The Xerox Satellite Processor (SP) provides Xerox 530 or
Sigma 3 computer sites with a capability for high-speed
telecommunications with other host remote computer systems.
Operating under either a Xerox 530 or Sigma 3 operating
system, the Xerox Satellite Processor permits communication
with any host Xerox computer running under the Control
Program-Five (CP-V) operating system and non-Xerox host
computers in accordance with the HASP Multileaving
Protocal.

The basic function of the Satellite Processor is to move
streams of sequential data from source devices or files to
destination devices or files at the request of the operator,
which provides the Xerox 530 or Sigma 3 user a highly con­
venient means for utilizing the full resources of a larger
host system or exchanging data with another HASP compat­
ible workstation. Remote activities may toke place concur­
rently with local foreground and background processing,
subject to device and resource availability. Spooling of
remote data using magnetic tape is supported. (Alternately,
a sequential disk file may be substituted for magnetic tape.)

A Satellite Processor site can communicate with three gen­
eral classes of remote sites:

1. CP-V host.

2. IBM host.

3. Another Xerox workstation or IBM HASP compatible
workstation.

Support for up to four 7605 communications controllers is
provided. A single HASP host may regard the Xerox
Satellite Processor as one to four workstations. Or, one
to four HASP hosts or HASP compatible workstations may
each regard the Xerox Satellite Processor as a single work­
station. Any combination thereof concurrent with a single
spooled playback operation is also allowed.

The Xerox Satellite Processor will address a data set con­
troller exclusively in half-duplex mode in order to realize
the increased line-driving efficiency provided by software
command chaining. The 7605 controller is used by Xerox
Satell ite Processor in either two-wire or four-wire mode.
Line speeds supported are 2000 - 19,200 bits per second.

BSS

A low overhead Basic Spooling System is provided for RBM.
The Basic Spooling System is intended to provide minimum
core resident support for RBM users. Basic Spooling System
functions are as follows:

• Spools to circular direct access disk fi Ie.

• Unspools to a physical or logical device.

• Operator may start, stop, suspend, skip, or backspace.

R BM Subsystems and Processors 7

•

•

Overflow threshold alerts operator when critical low
avai lable space conditions occur.

Core resident control information is periodically check­
pointed to disk resident information table to prevent
foss of dota.

• If any record with the characters *FORMS in column
through 6 is detected, the *FORMS record is diverted
to the Operator's Console and an automatic STOP
occurs ..

IBM TERMS AND PROCESSES

The following items are either unique to the RBM system or
hove specific meaning within the RBM context, Other
terms and processes not defined below are explained in an
appropriate chapter.

TASK

A "task" is an entire set of foreground operations performed
independently of other tasks in the system. It must be
connected to one and only one hardware interrupt. A task
may use Monitor service routines but must never branch to
another task. One task may trigger the interrupt level of
another task by means of a Write Direct instruction. The
prescribed entrance and exit procedure for all real-time
tasks in the system is described in Chapter 65

A task 10gicaHy consists of three parts (that mayor may not
be contiguous in core storage):

1. A Task Control Block (TCB) that contains status infor­
mation and the contents of the registers from the inter­
rupted task (see Table 18). The TeB is normally the
first loadable item in the object module.

2. A task body, consisting of a sequence of instructions
executed in response to the task interrupt.

3. A task temporary storage area for use by the Monitor
servi ce routi nes (and other reentrant Ii brary routi nes)
to provide reentrancy for these routines.

Examples of foreground tasks are

• Real-time foreground tasks connected to external
interrupts.

• Monitor I/O interrupt routine •

8 RBM Terms and Processes

• Monitor Control Panel interrupt routine.

• Monitor machine fault and protection violation routines.

• RBM control routine (for rooding, abort, etc.).

A background program can also operate as a single task but
without foreground privileges.

PROGRAM

A uprogram" is one or more tasks (and optionally, some
data storage) that are roaded and controlled as a unit. Four
types of programs exist under RBM:

1. Resident foreground programs consisting of one or more
tasks, perhaps some special routines for receiving I/O
interrupt responses (see "End Action"), and any com­
mon storage that may be needed.

2. Semi resident foreground programs that are explicitly
called in fr:om secondary memory and reside in the
resident portion of core memory during execution.

3. Nonresident foreground programs.

4. Background programs, consisting of a single task.

FOREGROUND

"Foreground" refers to real-time or Monitor tasks executed
in protected memory on a real-time basis. Since the num­
ber of foreground tasks is limited by the number of in­
ternal and external interrupts available in the ~ystem, the
fundamental limitation is the amount of core space avail­
able. However, the use of overlays and nonresident fore­
ground. programs makes the amount of effective foreground
space virtually unl imited, depending only on the severity
level of required response times.

BACKGROUND

"Background II refers to a non -real-ti me program executed
in available nonprotected memory. The purpose of back­
ground programming is to achieve higher efficiency in the
system by using the CPU time not needed by real-time tasks
to maintain foreground programs, or to perform other data
processing functions.

Background operations may be assembl ies, compilations,
data processing, or util ity operations. The two fundamental
restrictions in using background programming are

1. A background program is never altowed to interfere
with real-time foreground tasks, it must operate in
nonprotected memory and use the Monitor service
routines for all I/o and other privileged operations.

2. Since a background program uses only the CPU time
available after the real-time foreground is satisfied, it

may not be guaranteed any CPU time when foreground
is very active. The background cannot inhibit inter­
rupts or do anything else that might interfere with real­
time foreground responsiveness.

JOB

A IIjob ll is defined as consisting of all background activities
or processes that take place between a !JOB command and
the next !JOB command or a !FIN command (whichever
is encoun tered fj rst) •

JOB STEP

A IIjob stepll is defined as the operations performed in setting
up and processing a single program within a job stack. A
job step is initiated by calling in a background processor
and ends when the processor exits.

MONITOR SERVICE ROUTINES

RBM service routines can be used by real-time foreground
tasks, a background task, or RBM tasks. All routines are
coded in a reentrant manner, and those that require tempo­
rary storage use the temporary stack space associated with
the task that calls the routine (see Chapter 4).

TEMPORARY STACK

The temporary stack (temp stack) is a block of core storage
associated with a particular task and is used by Monitor ser­
vice routines for temporary storage to achieve reentrancy.
An entry in the TCB for a task points to the temp stack
space. When a task is active and using either Monitor ser­
vice routines or the floating accumulator (defined below),
the beginn ing of the temp stack space for the active task
must be set into core memory location 6 (after the previous
contents of location 6 are saved). Monitor service routine
M: SAVE will set this pointer.

When Mon itor service routines or Publ ic Library routines
need temporary space, they can call M:RES to reserve space,
and M:POP must then be called to release the space when it
is no longer needed. Thus, the total temp stack is a func­
tion of the deepest nesting of calls to Public Library routines
and RBM service routines and of the space required for
these routines.

FLOATING ACCUMULATOR

This software convention is used extensively by mathematics
library routines and can a150 be used by any user's program.
The floating-point accumulator is assumed to occupy the
first six locations of the temporary stack space. It is used

like a hardware accumulator, i.e., to build up a cumulative
result from single-precision or double-precision real
(floating-point) cal culations.

As a convenience in referencing the floating accumulator,
core locations 1 through 5 are set with pointers to the actual
core locations. This is done when entry is made to the ac­
tive task (by M:SAVE when the routine is used). Therefore,
indirect addressing through locations 1 through 5 will result
in storing, loading, or modifying the actual floating accu­
mulator. The sixth cell of the floating accumulator is used
by the FORTRAN-formatted I/o routine.

RBM CONTROL TASK

The RBM Control Task encompasses a number of subtasks
that control the reading of control commands, loading back­
ground programs, interpreting unsol icited key-ins, and
aborting or terminating a background job. During system
initiolization, the RBM Control Tosk must be ossigned to the
lowest priority hardware interrupt.

The RBM Control Task uses the same entrance and exit pro­
cedure and the same type of TCB as a real-time foreground
task. Since its main function is to control background
activity, it has a lower priority than any rea I-time task.
It is necessary that this be a separate task (and not part of
the background priority level) so that effective and respon­
sive control can be made through key-ins. All RBM func­
tions associated with this level operate as subtasks to the
RBM Control Task and are non-reentrant.

NONRESIDENT FOREGROUND

Nonresident foreground programs ore real-time progroms
not needed in core on 0 continuous basis. They are created
like resident foreground programs and are then written on
the RAD in the user processor (UP) area. An operator or a
resident real-time program can later ca II one of these non­
resident programs, and it will be loaded and executed like
a permanently resident real-time foreground program with
all the protection and priority privilege characteristics of
the foreground.

COMPRESSED RAD FILES

EBCDIC character codes do not use all possible bit combi­
nations of an eight-bit byte, and some combinations (X'DC '
and X'EC') are therefore available for special coding bytes.
Since EBCDIC information often contains a large number
of IIblank II byte strings, a code and a word count are used
to replace an entire string of blanks. Thus, several 80-byte
source cards (usua II y about 12) can be compressed and
blocked into a 360-byte RAD sector. The RBM Read and
Write routines provide the compression or decompression
feature, and the user program can read or write as though
the file contained 80-byte card images. Compressed files
are always blocked; that is, several records are transferred
with one RAD access.

RBM Terms and Processes 9

2. CONTROL COMMANDS

The Monitor is controJled and directed by control commands
that initiate loading and execution of programs and provide
communication between a program and its environment.
The environment includes the Monitor, background proces­
sors, the operator, and peripheral equipment.

Control commands hove the general form:

(mnemoniC specification

where

is the first character of the record and identifies
the beginning of a control message.

mnemonic is the mnemonic code name of a control
function or the nome of a processor. It must
immediately follow the ! character without inter­
vening spaces.

specification is a listing of required or optional
specifications. This may include labels and nu­
meric values appropriate to the specific command.
In the specification field, hexadecimal values
must be shown as +Xxxx and EBCDIC values must
begin with a letter; any other values are assumed
to be decimal values. Specification fields are
separated by a comma or an equals sign.

In this manual the options that may be included in the
specification field of a given type of control command are
shown enclosed in brackets although brackets are not used
in actual control command format.

One or more blanks separate the mnemonic and specifica­
tion fields, but no blanks may be embedded within a field.
A control command is terminated by the first blank after
the specification field. Annotational comments detailing
the specifi c purpose of a command record may be written
following the specification terminator, but not beyond col­
umn 72. Only columns 1-4 are examined to determine con­
trol functions; only the first eight nonblank characters fol­
lowing the ! are used to locate processors.

The user may insert comment lines within a job stack at any
pointwhere a Monitor control command would be recognized.
A comment line contains an asterisk as the first character of
the line. The comment line is listed on the lL device.

Communication between the operator and the Monitor
is accomplished via control commands, key-ins, and
messages. Control commands are usually input to the
Monitor via punched cards; however, any input device{s)
may be designated for this function (see !ASSIGN com­
mand). Control key-ins are always input through the
keyboard/printer. All control commands and Monitor
messages are listed on the output device designated as

10 Contro} Commands

the listing log {normally a line printer} to provide a
hard-copy history of a job.

JOB CONTROL PROCESSOR (JeP)

Monitor control commands are read from the background
operational label CC unless the operator has requested a
keyboard/printer override through an un soH cited KP key-in.
All such commands are read by the Job Control Processor
(JCP), a special processor loaded into the background by the
RBM and reloaded into the background following each
job step within a job. When a control command is en-
countered by the JCP, the order of search is

1. Monitor control commands.

2. System processor names.

3. User processor names.

4. Foreground processor names.

5. Background processor names.

A !JOB command sets all background operational labels to
their standard assignments. All temporary RAD space is set
"unused II and is then avai lable for followi ng job steps.

As the JCP encounters! ASSIGN and ! DEFINE commands
between job steps, it makes appropriate entries in the oper­
ational label tables and continues to do so until it encoun­
ters a request for a processor. When the requested processor
is read into the background and attains control, this marks
the beginning of a job step.

At the end of each job step (i. e., when the JCP begins
reading control commands at the completion of the previous
job step), all background operational labels associated
with temporary RAD space are set to an undefi ned status
and all temporary background space is reset to an "unused"
status unless a !TEMP S control command is in effect, which
saves temporary files until a !TEMP R, !JOB, or !FIN com­
mand is encountered.

MONITOR CONTROL COMMANDS

ASS The !ABS control command causes the Absolute
loader to read absolute binary programs from the AI device
and write core image copies onto the OV file. The last
(or only) segment to be read must be followed by an ! EOD
command. The binary program(s) following the !ABS com­
mand must contain only those load items that are part of the
standard absolute object language. The program can be
a background program, a processor for the background, or
a real-time foreground program.

A subsequent! XEQ command causes the RBM subtask S:LOAD
to load the core image of the root segment (segment number 0)
from OV into core storage. Subsequent segments (1 - n)
are loaded by the root through the use of M:SEGLD.

When an !ABS control command is encountered, the
Absolute Loader reads the absolute deck that follows (ter-
mi noted by an ! E aD) from the AI devi ce and wri tes the core
image copy onto the file to which the OV operational label
is currently assigned. If OV has not been assigned, it wi II be
assigned by default to the RBMOV fi Ie on the RAD. The
program can be executed from a permanent SP (system pro­
cessor) or UP (user processor) fi Ie either by i nputti ng a
"!name" command (where "name" is the name of the fi Ie on
which the program was written), or an !XEQ command.

If a multisegment program is loaded, the Absol ute Loader
creates an OY:LOAD table at the end of the root. The root
must always be the first load module and each succeeding
load module is assigned a consecutive segment identifica­
tion number, with the first succeeding segment starting
at "1". In the OV:LOAD table, each segment's load ad­
dress will be at its origin location and its entry address will
be the transfer address generated by the E NDcard image.

The form of the ! ABS control command is

where

size is an optional parameter for background pro-
grams only. It specifies the temp stack size
required for the background program being
loaded. If size is omitted, a temp stack size
equal to the maximum size needed for all Monitor
service routines (80) wi II be used. The temp stack
will always be allocated at the start of back­
ground, and it is the user's responsibility to origin
his program above the temp stack. For foreground
programs, the size parameter is ignored and the
temp stack pointers must be assembled as part of
the program (i. e., in the TCB).

oplb 1,oplb2 .. . are operational labels used by the
program that requires blocking buffers (i .e. ,those
labels that may be assigned to blocked RAD files).
A maximum of 10 operational labels may be speci­
fied. When the program is loaded from the RAD
for execution, the Monitor wi II ensure that enough
blocking buffers are available for these specified
labels assigned to blocked fi les.

Programs loaded under the Absolute Loader are subject to
the following restrictions:

• No external references are permitted.

• The program must be in absolute form.

• Relocatable code may not be imbedded.

ASSIGN The !ASSIGN control command causes either a
new or standard operational label to be equated with a
specified (or temporary) file number. Since operational

labels for the background are reset to the standard values
at the beginning of a job by the Job Control Processor, an
operational label assignment is in effect only until the next
! JOB command is encountered or until it is again reassigned.

An operational label is a two-character name that is used
as a label in referring to a device-file number. The con­
vention of operational labels is used for the processors or
any other program to make them device-independent, and
also to give some mnemoni c value to the input/output opera­
tions associated with the processors.

Device-file numbers are a logical means of referring both
to a physical peripheral device and to a collection of in­
formation about that device; that is, the current fi Ie of
information. Device fi Ie numbers are defined sequentially
in the DEVICE FILE INFO parameter during SYSGEN.

Standard operational labels can be reassigned to different
device-file numbers during SYSGEN or through !ASSIGN
and! DEFINE control commands. Two tables of operational
labels are maintained by the system; one is used for back­
ground (see Table 2) and the other for foreground. Device
unit numbers (see Table 3) are also stored in the same two
tables in the form of binary integer values.

Table 2. Standard Background Operational Labels

Operational Explanation
Label of Reference I/O Device

AI ABS binary input CR, PT, MT , RD

BI Binary input CR,PT,MT,RD

BO Binary output CP,PT,MT,RD

CC Control command KP,CR,PT,MT,
input RD

DO Diagnostic output Same as LO

Got Execution input (GO) CR,MT,PT,RD

lOt Debug ident fi Ie RD

LI Library input Same as BI

II Listing log Same as LO

LO Listi ng output LP, KP, MT, RD

OC Operator's console KP

OV
t

Overlay (temporary) RD

PItt Processor input RD

Monitor Control Commands 11

Table 2. Standard Background Operational
labels (cont.)

Operoti onol Explanation
label of Reference I/O Device

51 Symbolic input KP,CR, PT,MT,
RD

sl Si gma 2/3 procedures RD

UI Update input CR,PT,MT,RD

UO Update output PT,MT,RD

Xlttt Overlay loader, MT,CR,RD
Extended Symbol

xltt Overlay loader, RD
Extended Symbol

X3
ttt

Extended Symbol RD

X4 Uti lify (verify) RD,MT,CR, PT

xsttt util ity (prestore) RD

tThese operational labels, if required by a processor,
are automaticarly assigned to permanent files in the
system data area by the Job Control Processor.

ttThe PI operational label is assigned to files in the
System Processor and User Processor areas by the Job
Control Processor.

fftThese operational labels are automatically assigned
to backgroufld temporary RAD files, with the file defi­
nition appropriate to the background processor being
executed. These definitions are made from a table in
the Job Control Processor that is selected by the first
three characters of the processor name.

Table 3. Standard Device Unit Numbers

Device Unit
Number Standard Assignment

101 Keyboard/printer input

102 Keyboard/printer output

103 Paper tape reader

104 Paper tape punch

105 Card reader

106 Card punch

108 line printer

12 Monitor Control Commands

The foreground operational labels reserved for use by RBM
are as follows:

label Usage Device

Al
CK
DP
EF
ML
RM

Account; ng log
Background checkpoint
Mount/remove key-ins
Error log
Program loading
Overlay input

RD

An assignment to file zero means that the operational label
is not effective, and all references to this operational label
result in a no-operation until it is reassigned. Note that some
background processors (e. g., Uti lity) do ~t allow use of
active operational labels assigned to fi Ie zero. See Appen­
dix B for a complete description of operational label usage.

!ASSIGN commands can appear anywhere within the con­
trol command stock (except within a iob step) and take ef­
fect immediately. That is, if the CC operational label is
reassigned, the very next control command is read from the
newly assigned device (unless the KP override has been im­
posed by an unsolicited key-in). The !ASSIGN command
is used for both foreground and background operational labels.
(The operator must key in FG before assigning a foreground
operational label.)

There are four forms of the !ASSIGN command. Form 1 is

!ASSIGN oplb=device-fi le-number(,F](, (opt 1 ~[, (opt2D

where

oplb is either a two-character alphanumeric name
in the foreground or background operational label
table (or is to be placed in the table), or a FOR­
TRAN device unit number, indicated by the pre­
fix F: preceding the device unit number (see
Table 3).

device-fi Ie-number
range 1 to 50.

is a decimal integer in the

F when present, declares that the assignment is to
be included in the foreground operational label
table. Otherwise, it is assumed to be in the back­
ground operational label table, and the file num­
ber must also be a background fi Ie number.

opt 1 and opt 2 are device specific options which
may be one to four characters. If more than four
characters are specified, only the first four will
be used. Note that the device specific options
are meaningful only for certai n devices. Use of
an unrecognized option for a device results in an
error return of INVALID OPTION.

The following options are recognized for
Model 3325/33 tape drives:

800 for 800BPI; NRZI recording

1600 for 1600BPI; phase encoded
recording

ASCI [I] for ASCII code conversion

EBCD[IC] EBCDIC data (ASCII code
version "OfPI)

con-

Form 2 of the !ASSIGN command is

!ASSIGN oplb=fi lename,area[,F][,S]

where

oplb is an operational label or a device unit num-
ber identified by the F: prefix.

fi lename is the name of an existing RAD fi Ie. The
RAD fi Ie is rewound if it is blocked or compressed.

Only permanent RAD files can have a filename.
Once the fi lename is entered in the dictionary
by SYSGEN or RAD Editor, an !ASSIGN control
command or call to M:ASSIGN can equate either
an operational label or FORTRAN device unit
number in this fi lename.

area specifies the area to search for the filename
from the areas listed in Table 1.

F indicates that the assignment is to be included
in the foreground operational label table.

S indicates that this file (if packed format) may
use the sharable blocking buffer if provided by
the Task Control Block.

F and S are not order dependent.

Form 3 of the !ASSIGN command is

!ASSIGN oplb=oplb[,F][, (opt 1)][, (opt2)]

where

oplb is as defined above.

F if present, indicates that both operational labels
are foreground; otherwise, both operational labels
must be background labels.

opt 1 and opt2 are as defined for form 1.

Form 4 of the !ASSIG N command is

!ASSIG N oplb = area, area[, F]

where

oplb is as defined above.

area identifies the disk area to which the oplb is
to be assigned (must be specified twice).

F if present, indicates that the operational label is
for the foreground; otherwise, it is assumed to be
a background labe I.

This form of the ASSIGN command allows access to an area
as if it were a file with the following characteristics:

Format: random

Logical record size: sector si ze in bytes

Write protection: area write-protect code

BOT: BOT of area

EOF: none

EaT: EaT of area

Examples:

Form 1: !ASSIG N 51 = 3

!ASSIGN F:105 = 3

Form 2: !ASSIGN OV = ROOT, UP

Form 3: !ASSIG N LI = BI

Form 4: !ASSIG N SI = CP, CP

ATTEND The !ATTEND control command indicates that
RBM is to go into a wait condition on any abort from the
background, and then read and process the next control com­
mand encountered when background processi n9 conti nues
after an unsolicited key-in. Its primary purpose is to offer
improved recovery procedures. If an abort occurs without
this control command being specified, JCP wi II reset the
CC operational label to the standard value, skip all con­
trol commands, binary records, or data unti I it finds a
new !JOB, !PURGE or !FIN command, and will not pause
for operator intervention. In this "skip" mode, all EBCDIC
records beginning with! will be listed on the Ll device,
with an indi cation (,>1 preceding the command) that they
are ignored. This is the normal mode for closed-shop batch
processing, without halts between jobs after aborts.

Monitor Control Commands 13

The form of the command is

(AITEND

It exists for one job only, and usually immediately follows
the ! JOB command.

C! The ! C: control command connects the des ignated
real-time foreground task to a specified interrupt location,
optionally armed and enabled as specified by the control
code. The task may also be triggered by means of this con­
nect operation if the code is equal to seven, providing that
the task has previously been armed (i. e., with a previous
!e: command, an !XEQ or "!name" command, or by a
Q key-in).

The form of the IC: control command is

tcb(, code]

where

teb is the address of the Task Control Block for
this task. If the value is hexadecimal, it must be
shown as +xxxx. If the Overlay Loader initializes
the TCB by means of the TCB parameters, it does
so completely, using load information and values
on the TeB and BLOCK cards. No partial initiali­
zation of a TCB is allowed with the exception of
the blocking buffer pool. If a user bui Ids his own
TCB, the TCB must begin at the execution location
plus the "templl value specified on the Overlay
Loader !$ROOT command.

code when present, is the interrupt operation code.
It overrides the initial TCB task code; a code of
7 triggers the task if it is armed.

Note: If "code ll is not specified, the code given
in the TCB will be used.

The !C: command does not change the contents of the TCB.

CC The! CC control command returns control to the cur-
rently assigned CC device and nullifies the effect of a
previous KP key-in. The control command is honored
regardless of whether or not the IIskipll mode is in effect.
The "skip" mode is cleared following this command. The
form of the command is

DEFINE The ! DEFINE control command atlocates a
portion of the background temporary RAD space for a spe­
cific operational label or device unit number by assigning

14 Monitor Control Commands

the operational label to an unused device-fi Ie number,
which in turn is linked to the specified portion of the RAD.
Since temporary RAD files are not maintained by the Moni­
tor, they have no name and are identifiable only by the
operational label for which each file was created. The
! DEFINE control command must precede the specific pro­
cessor or user program to which it applies, since this tem­
porary space is reset at the beginning of each job and at
the subsequent reloading of the JCP (unless a !TEMP S
control command is in effect). That is, the files are de­
stroyed and the RADspace and all device-file numbers
linked to it may be used by the next job.

The form of the ! DEFINE control command is

!DEFINE QPlb[: ~~:} srec [[~ II
PC,S]

where

oplb is an operational label or a FORTRAN device
unit number (with a prefix of F:).

nrec is the number of logical records in the file.

. per indicates the percentage of remaining back-
ground temporary space to be allocated for this
oplb.

srec is the logical record size, in bytes.

R defines the file as an unblocked random-access
file.

U defines the fi Ie as an unblocked fi Ie.

C defines the file as a compressed EBCDIC file.

B defines the file as a blocked sequential file.

P defines the file as a blocked random-access file.

S flags the desire to use a shared blocking buffer if
provided with the program task. It is meaningful
only for packed (blocked random) fi les.

If neither R, P, U, B, nor C is specified, the file is defined
as a blocked file (B). If R is input, srec is used as the
granule size.

EOO Sections of data may be defined in a user's deck
by inserting !EOD control commands at the end of each sec­
tion. When an !EOD command is encountered, the Monitor
returns an EOD status (when using the M:READ I/O routine).
This is similar to a tape-mark on magnetic tape. Any num­
ber of !EOD control commands may be used in a job wher­
ever required by the user or by a processor.

The form of the !EOD control command is

FIN The !FIN control command specifies the end of a
stack of jobs. When the !FIN control command is encoun­
tered, the Monitor writes it on the listing log to inform the
operator that all current jobs have been completed and also
writes!! BEGIN IDLE on the OC device. The Monitor then
enters the idle state.

The form of the !FIN control command is

FSKIP,FBACK,RSKIP,RBACK The file positioning con­
trol commands, !FSKIP and !FBACK, forward or backspace
the specified device (magnetic tape or RAD file) immedi­
ately past the next fi Ie mark, or past the nth fi Ie mark if
n files are specified (n = 1 for RAD files). !RSKIP and
!RBAC K perform simi lor functions but act on records rather
than files. !RBACK and !RSKIP do not apply to compressed
RAD fi les.

The forms of the control command are

{m;~K} device['numberJ['FJ

!RBACK

where

device specifies the device to be positioned and
is one of the following:

1. A device-file number, shown as a decimal
integer.

2. A FORTRA N devi ce uni t number, shown as

F:n

where n is a decimal integer equal to the de­
vice unit number.

3. An operational label, shown as two alpha­
numeric bytes, the firstofwhich isalphabetic.

number is the number of operations to be performed;
if absent, one operation is assumed.

F indicates a foreground device/file. This indica-
tion is not required if a device-file number (DFN)
is specified directly. Operations on a foreground
device or file require that an FG key-in be in
effect.

HEX The !HEX control command (SYSGEN optional)
may be used to patch either the Monitor itself or any fore­
ground program.

The form of the !HEX control command is

!HEX

The format of the patch record is described in Chapter 11
under II System Pa tch i ng II •

JOB The !JOB control command signals the beginning
of a new job. The background operational labels and
FORTRAN devi ce unit numbers are set to their default as­
signments. All RAD temp fj les are closed.

This command always causes a page to be ejected on the
LL device before the command is listed. The version of the
RBM being utilized will be inserted following the last field
on the !JOB command.

The form of the !JOB control command is

(!JOB [name,account]

where

name has a limit of 12 characters.

account has a limit of six characters.

JOBe The !JOBC control command indicates a con­
tinuation of the current job. !JOBC closes all RAD temp
fi les and resets all background operationa I labels to their
default assignments (with the exception of IICCII). The
!JOBC command does not clear the "attend ll flag or the
IIskipll mode, nor does it terminate the effect of an FG or
SY key-in. (A useful application of the !JOSC command
is given in the Utility job deck example in Chapter 10.)

The form of the !JOBC control command is

LIMIT The !L1MIT control command (SYSGEN optional)
is used to set a maximum on the execution time of a back­
ground program. This command is effective only if the job
accounting option has been selected at SYSGEN. If the
job exceeds the time limit, the job is aborted (TL) and is
terminated with a postmortem dump (if that option was
specified).

Monitor Control Commands 15

The form of the 'UMIT control command is

(LIMIT [N]

where N is the maxi.mum aHowable execution time in min­
utes (O < N < 600).

MESSAGE The !MESSAGE control command is used to
type a message ta the operator. It is usefuf for messages
conceming mounting tapes or setting certain device or
Contror Panel conditions. The command is listed on the
OC device. There is no response.

The farm of the f MESSAGE contror command is

(!MESSAGE message

where message is any comment to the operatar, up to the
full-cord ,mage size (fatal of 72 columns per cord).

PAUSE The ! PAUSE control command temporortly sus-
pends background operation to allow the operator time to
complete the job setup. Background operations resume when
the operator performs an unsolicited S key-in. The command
is listed on the OC device.

The form of the ! PAUSE control command is

(PAUSE message

where message is a comment to the operator, up to the fu"­
cord image (total of 72 columns per cord).

PMD The ! PMD (postmortem dump) command causes the
Monitor to dump the registers, plus selected areas of mem­
ory, at the end of a job step. The dumps are always onto
the background DO device in specified format. The JPMD
command is only effective for one job step.

The form of the ! PMD command is

IPMD [U][,All[.formatJ][,fwa,fwa(,format]] ~

L [] .. . Lfwa,twa. ,format]

where

U indicates thot PMD is to be entered regardless of
the manner of background termination. Otherwi se
PMD is entered onry if background terminates
abnormafJy.

16 Monitor ControJ Commands

All indicates that aff of background is to be
dumped. If All is not specified and no other
limits are specified, only the CPU registers ore
dumped.

fwa, two specifies the dump starting and ending
focations. These values are hexadecimal if pre­
ceded with a plus (+) character.

format specifies the dump format as for lows:

H

M

Hexadecimal (default, ifformat
unspecified)

Mnemonic

Integer

E EBCDIC

When a format of E is specified I each dump Ii ne
will consist of hexadecimal values foHowed by
EBCDIC translations, at the end of the I ine. Four
limit pairs (fwa t Iwa) may be specified. The
CPU registers are always dumped, regardless
of the limits.

An X (abort) key-in will terminate 01 f postmortem dumps if
performed whi Ie PMD is active.

PURGE The! PURG E control command (SYSG E N optional)
is used to output the contents of either the job accounting
file or error-log file, and optionalfy to reset (i.e., clear)
the respective file. By use of the reset option and on as­
signment of the appropriate background operational label
(see below) to a "hard copy" device (card punch, paper
tape, or magnetic tope) a periodic off-Hne copy of the
chosen file can be obtained and the corresponding RAD/
disk space freed for further entries. (Operator messages
wi II indicate the need for such oct jon; in the errorlog case,
a prompt response is necessary in order to prevent foss of
records in this fite.)

A !PURGE command will always be acknowledged whether
j n II ski p" or Uattend II mode.

The form of the lPURGE control command is

(!PURGEU~~ }JR]

where

At specifies the job accounting fHe (default) •

El specifies the error log.

R specifies thot the indicated file is to be reset
(i. e. I cleared).

If neither Al nor El is specified, Al is. assumed. If R is
specified, use of the command must be preceded by on
(unsolicited) SYoperator's key-in.

Accounti ng Fi Ie Output. The contents of the accounti ng
fi Ie are output, via background operational label LO, in
the following format:

mm/dd/yy hhmm name account mmmm. mm

where mmmm. mm indicates job execution time to the nearest
hundredth of a minute, e. g., 0003.85 minutes.

Error Log Output. The contents of the error log fi Ie are
output via background operational labels DO and LO. The
output via DO is an exact restorable copy of the error log,
record by record, followed by two IEOD records. The
output via LO is a readable representation of each record.
If DO and LO are both assigned to the same device, the
DO form of output is suppressed, i. e., LO predominates.
If DO output is to be assigned to a magnetic tape contain­
ing previous log output, the recommended procedure is

!JOB
IPAUSE KEVIN SV,S
IASSfG N DO = MT
IFSKIP DO
IFBACK DO
I PURGE EL, R
IUNLOAD DO
IFIN

REL Relocatable binary program modules to be loaded
onto the GO file are preceded by an IREL control command
The binary modules that follow must be in Xerox 16-bit
Standard Object Language (see RBM/System Technical Man­
ual 90 11 53). The modules may constitute a complete pro­
gram, a root, or segments of a program. Checksum and se­
quence checks will be performed.

The form of the! REL control command is

The modules are copied onto the file to which GO is cur­
rentlyassigned. If GO has not been assigned, it will be
assigned by defauh to the RBMGO file on the RAD, which
is rewound before the modules are copied. Several modules
may be copied through the use of one! REL control command
by stacking the modules. The final module must be fol-
lowed by an I EOD control command that wi II cause the
JCP to write an end-of-file (EOF) onto GO and then
backspace one file. In this manner the GO file is
positioned to accept additional input, but is always
terminated by an EOF. The relocatable binary decks are
loaded from operational label BI.

The !REL control command is a convenient method of
obtaining additional hard copies of object modules pro­
duced on GO by Extended Symbol or FORTRAN. By
assigning Bf to GO and then reassigning GO to BO, modules
wi II be copi ed from the ori gi na I GO onto B 0 up to and i n­
eluding the EOF. Bf should be rewound before each !REL
command.

REWIND The !REWIND control command rewinds a mag-
netic tape or a RAD file and has no effect on other devices.
The operation takes place immediately after the command
is interpreted.

The form of the !REWIND control command is

(REWIND device[,F]

where

device specifies (as in ! FSKIP) the device to be re-
wound, by oplabel, fdun (FORTRAN device uni t
number), or DFN •

F indicates a foreground device/file. This indica-
tion is not required if a device-fi Ie number (DFN)
is specified directly. Operations on a foreground
de vi ce or fi Ie require that an FG key-in be in
effect.

TEMP Normally, the temporary background space on
the RAD is reset at the completion of each step within a
job, so that a separate assembly and compi lotion can each
have full access to this temporary area for scratch space
as needed. The !TEMP control command is a means of
altering this standard procedure. When used with the
save (5) option, temporary files are not released after any
job step within a job stack until either a !TEMP command
is encountered with a reset (R) option or the ne~t ! JOB,
!JOBC, or !FIN command is encountered.

The form of the ! TEMP control command is

where either S or R is required

5 means to save RAD temporary fil es between job
steps within a job (e. g., between an assembly
and a concordance).

R means to reset the RAD temp files after each job
step.

T means truncate the previ ous fi I e so that it will

UNLOAD

only be as long as the end-of-file. If no EOF has
been wri tten the shortened fi I e wi II be one record
long. Space recovered in this fashion can be
reallocated by subsequent use of the !DEFINE
command.

The !UNLOAD control command causes a
specified magnetic tape or RAD fi Ie to be rewound in man­
ual mode. Operator intervention is required to use the de­
vice again. If the device is a RAD fae, the file is rewound
to BOT and released by a call to M:CLOSE.

Monitor Control Commands 17

The form of the !UNLOAD control command is

(UNLOAD device[,F]

where

device specifies (as in !FSKIP) the file to be re-
wound off-line.

F indjcates a foreground device/file. This indica-
tion is not required if a device-fi Ie number (DFN)
is specified directly. Operations on a foreground
device or fi Ie require that an FG key-in be in
effect.

WEOF The !WEOF command writes the appropriate end-
of-fj Ie mark on the output device. For magnetic tape, it
is a tape mark; for the card punch or paper tape punch, it
is an ! EOD command; and for RAD fi les, it is a logical fi Ie
mark.

The form of the !WEOF control command is

!WEOF device['number] [,F]

where

device specifies (as in !FSKIP) the device that is
to have an end-of-file written on it.

number is the number of end-of-fi les to be written.
If absent, one end-of-fi Ie is written.

F indicates a foreground device/file. This indica-
tion is not required if a device-fi Ie number (DFN)
is specified directly. Operations on a foreground
device or file require that an FG key-in be in
effect.

XEQ The !XEQ control command loads the root module
from whatever fi Ie the OVoperational label is currently as­
signed to. For foreground programs, the command must be
preceded by an FG key-in.

The form of the !XEQ command is

XED' The !XED control command performs the same
operations as the !XEQ control command except that !XED
transfers control to RBM Debug through the entry point
D: KEY when the root segment has been loaded. The mes­
sage! !DKEY-IN will appear on the keyboard/printer and
the user can then input Debug control commands. (See

18 Processor Contro I Commands

Chapter 12 for a discussion of RBM Debug.) The !XED con­
trol command causes the background operational label ID
to be default-assigned to the RBMID fi Ie on the RAD if it
is not already assigned.

The form of the !XED control command is

PROCESSOR CONTROL COMMANDS

Processors in the System Processor area and any user back­
ground or foreground program residing in the User Processor,
Foreground or Background Program areas can be ca I led by a
processor control command. The commands have the format

(' processor parameters

where

processor is the fi Ie name of a processor that must
be distinguishable in the first three characters from
system control commands (see Table 4). The order
of search (by area) is SP, UP, FP, BP.

parameters are optional parameters interpreted by
each parti cu lar processor.

Table 4. RBM System Processors

Namet Description

FORTRAN FORTRAN IV Compi ler

RPG Report Program Generator

OLOAD Overlay Loader Subsystem

UTILITY Utility Subsystem

XSYMBOL Extended Symbol Assembler

RADEDIT RAD Editor Subsystem

SORT Sort Processor

t .
The RBM System Processor names are entered Into

the System Processor area dictionary with the RAD
Editor !# ADD command. If the fj Ie name is less
than eight characters, the name on the processor
control command must exactly match the fi Ie name.
If the fi Ie name is eight characters (maximum), the
first eight characters of the name on the processor
control command must exactly match the fi Ie name.
T rai ling non blank characters beyond the eighth
character in the processor control command name
are ignored.

When a processor control command is read and interpreted
by the Job Control Processor, the root segment of thespeci­
fied subsystem is loaded from the RAD into memory. The
JCP will assign all permanent RAD files used by the speci­
fj ed processor before the processor is executed un less these
files were previously assigned via IASSIGN commands. The
JCP wi II also define all temporary operational labels used
by the processor (by defining them as background temp
fi les) unless they are previously defined via !DEFINE com­
mands. JCP then transfers control to the processor.

When a requested processor is read into the background and
attains control, this marks the beginning of job step. An
example of a job stack illustrating its breakdown by job
step is shown in Figure 2.

EXTENDED SYMBOL CONTROL COMMAND FORMAT

The Job Control Processor reads and interprets the
IXSYMBOL control command and loads the Extended Sym­
bol assembler from the RAD into background memory. The

Job Step

assembler continues to assemble programs until it encounters
an end-of-fi Ie. The Extended Symbol assembler is ca lied
into operation with the command

IXSYMBOL [option
1
,option

2
, ... ,option

n
]

where option can be

BA specifies batch assembly mode. XSYMBOL wi II
ignore single end-of-fi les and wi II terminate only
when two consecutive end-of-fi les are encountered.

BO specifies binary output.

CR specifies cross-reference listing.

DW specifies display warnings.

GO specifies output GO file.

Monitor enters
"Idle" state.

JCP is read into
background

Uti I ity is read
r-:-~~------.:II-.......IL....---!:~:::~----- into backgro und.

!JOB

Figure 2. Job Stack Example

JCP is read into
I~--- background.

Extended Symbol
I~ ______ is read into

background.

Processor Control Commands 19

LO specifies list assembly output.

LU specifies list update.

NP specifies no standard procedure input.

PP specifies punch standard procedure fi Ie.

SL specifies simple literals.

SO specifies source output.

S5 specifies symbol summaries.

UI specifies update input.

Any number of options may be speci fied and in any order.
If no options are specified, the following options are
assumed by defa·ult:

BO,GO, LO

The presence of any nondefault option requires that any
desired default options (except SIwhich is always defaulted)
must also be present.

FORTRAN IV CONTROL COMMAND FORMAT

The Job Control Processor reads and interprets the !FORTRAN
control command and loads the FORTRAN IV compi ler from
the RAD into background memory. The compi ler is called
into operation with the command

(FORTRAN '1"2'"" "n

where s. can be
I

LO specifies an object listing.

LL specifies an object listing with data chains.

XP specifies extended precision real data instead
of standard precision.

ALL specifies that multiple fi les are compiled.
FORTRAN wi" ignore single end-of-files and will
terminate compilation only when two consecutive
end-of-fi les are read.

(The processor that is loaded may be either the Basic or ANS
FORTRAN IV compi ler, at the instal lation1s option.)

Binary output is normally output on both the BO and GO
devices. To suppress the BO or GO output, the user must
assign the perti nen t operati ona I lobe Is to 0 (see !ASSIG N
and !DEFINE control commands in this chapted.

If no specifications are present, binary output on the BO
and GO devices, a source listing, and standard precision
mode are assumed by defau It.

20 RBM/Processor Interface

RBM/PROCESSORINTERFACE
Ground rules common to all system processors are:

• All processors operate in the background.

• With the exception of the UTILITY program, processors
must use standard background operational label table
assignments for their I/O requests. (See Table 2 for
the standard background operational labels.)

• The first character of each line of the listed output
from the processors is always interpreted as a vertical
format character (carriage control) and is never printed.
The RBM I/O routines treat the vertical format properly
for the keyboard/printer, line printer, and magnetic
tape.

• When the RBM transfers control to a background pro­
cessor, the X register contains the address of the con­
trol card image, providing access to any parameters.

• At the completion of an assembly or compilation, the
processor writes two end-of-files on the LO device,
and then backspaces the LO device one file. The
M:CTRL routine wi II treat these operations for the
devices as described in the I/O section. This permits
file processing of output on magnetic tape, if LO is
assigned to magnetic tape. The processor writes an
EOF on BO and GO at completion and then back­
spaces one fi Ie (GO and BO are separate options).

• The processor generally returns control to RBM by
means of a call to M:TERM. RBM will immediately
read from CC and if there is another control command
for the current processor, it wi" re load the processor
from the RAD.

• If overlay loading is required, the processor uses
M:SEGLD. The overlay operational label for the
background is PI.

• If an irrecoverable error occurs, the processor exits
to RBM with a cal I to M:ABORT and displays the abort
code in the X register and the abort location in the
A register.

• Since all standard RAD fi les are defined by the Job
Control Processor, the processors need not co /I
M:DEFINE, but must call M:ClOSE to release blocking
buffers in those cases where several RAD files are used
but are not all open at one time.

• The first output line to LO from an assembly or com­
pi lation should contain a top-of-form format code.

GO AND OV FILES

Figure 3 shows how the JCP and Extended Symbol or Basic
FORTRAN IV use the operational labels GO and OV. The

Relocatable binary decks - 8 copied directly from BI to :-
GO by JCP with an! REL

,..

control command.

8"-~--- Assembler or compiler out-
put to both GO and BO.

Overlay Loader takes -

~
~ .

input from GO to form --~
executable OV.

JCP forms executable pro- Executable program; called
gram directly from AI to

by ! XEQ command; loaded OV with an !ABS control
command. by RBM subtask M:LOAD.

Figure 3. Use of GO and OV Files

GO and OV files are the files to which these operational
labels are assigned by the JCP and are standard default
files when no operational labels are specified. The GO
file is a blocked, sequential file that contains relocat­
able binary decks read from the job stack, and binary
ouput produced as a result of an assembly or compi la­
tion. After each module is loaded onto the file, an
end-of-file mark is written and a backspace file is per-
formed. Thus, at any point within a job stack the

GO file contains all modules that have been loaded and is
in position to accept others.

The Overlay Loader may now use the contents of the GO
file to create an executable core image program and save
this program on the random-access OV file. Absolute bin­
ary decks produced by an assembly may also be written {in
executable core image form} onto the OV file by JCP
through use of the! ABS command.

RBM/Processor Interface 21

3. OPERATOR COMMUNICATION

SYSTEM COMMUNICATION 110 RECOVERY PROCEDURE

When events take place in the system that require operator
interventi on, or when one job is comp leted and another job
begins, RBM informs the operator of these conditions by
messages on the keyboard/printer. All such messages from
the Monitor begin with two exclamation marks (I !}and are
described in Table 5.

If a message concerns an I/O error condition, the Mon­
itor I/O routines that generated the message will be wait­
ing to sense a change of state in the device. (A change of
state is defined as a change from manual to automatic, or
from automatic to manual and back to automatic, depend­
ing on the initial condition.) When the change of state is
sensed, the operation is retried. Thus, if the device is
EMPTY, it need only be placed in the automatic mode. Generally, these messages require no operator response on

the keyboard/printer but may indicate that some peripheral
device needs attention. In some cases, the operator must
interrupt and key in a response after correcting the speci­
fied problem.

If there is a PUNCHES error or a FAULT on the card
reader, the reader is unloaded, the bad card is corrected
and replaced, and the reader is returned to the automatic
mode.

Message

1 IAl 10 ERRORt

1 IBEGIN WAIT

! IAl OVERFLOW
t

1 !BEGIN WAIT

! IA TTEN D ERROR xx

1 IBEGIN IDLE

! !BEGIN WAIT

! !BKG CKPT

Table 5. Monitor Messages

Meaning

An irrecoverable I/O error has occurred whi Ie accessing the accounting fi Ie,
normally because of a hardware failure or unavai labi Iity of operational labe I
AL. The correct assignment of this operational label is to RBMAL, SD. An
attempt should be made to recover the contents of the accounting fi Ie as
stated above. If this recovery fai Is, the operator may gain control through
a KP key-in and then an FG key-in to allow foreground modifications; the
foreground operational label AL may then be reassigned (e.g., !ASSIGN AL
= RBMAL, SD, For !ASSIGN Al = O,F).

Note: Assignment of the foreground operational label AL to zerowill inhibit
the logging of job stack entries into the accounting fi Ie.

The accounting fi Ie (RBMAL) cannot accept another entry. The accounting
fi Ie is allocated at SYSGEN and accommodates 74 entries. (The user may
increase or decrease this capacity via the RAD Editor.) At this point, normal
error recovery wi II be a key-in of KP to gain keyboard/printer control.
Next, a key-in of SY will permit access to the accounting file. The oper­
ator should now assign the background operational labe I LO to a hardcopy
device (e.g., paper tape, card punch). Input of a IPURGE control com­
mand specifying the clear option (i.e., IPURGE AL,R) causes the contents
of the accounting file to be copied onto that device and clears the account­
ing fi Ie. The job stack causing the overflow can now be reentered.

JCP has read an erroneous control command while operating in theATTEND
mode, in which case RBM goes into a wait state after typing this message.
After a subsequent S key-in, RBM will process the next control command.

JCP has just read a !FIN card {which completes a job stack)and background
has gone into an idle state. Processing wi II resume on a new job stack fol­
lowing an unsolicited S key-in.

The background has executed a WAIT request. An unsolicited S key-in wi II
conti nue background processing.

Background has been checkpointed as a resuftof a foreground program request.

tThis alarm occurs only if the RBM job accounting option has been exercised at SYSGEN.

22 Operator Communication

Message

!! RELEASE, dtnn

! !BKG RESTART

! !BKGD xx ABORT, LOC yyyy

! !JCP

! ICC NOT ASSIGNED

! !SYSERR xx

! !dtnn EMPTY

! !dtnn ERROR [, TRK xxxx]

Table 5. Monitor Messages (cont.)

Meaning

The specified device has been released for background use.

Background has been restarted from its point of interruption.

The background job has aborted at location yyyy for the reason specified by
abort code xx. If the Job Control Processor initiated the abort, a detai led
explanation will be written on the background DO device.

If the system is operating in the lIattend" mode (see !ATTEND), RBM will
perform any required postmortem dumps and then go into a wait state after
an abort. After a subsequent S key-in, RBM wi II attempt to process the
next control command from the CC device.

If the system is not operating in the "attend" mode, RBM will not go into
the wait state but wi II perform any required postmortem dumps and immed­
iately begin reading from the CC device. All data cards and control com­
mands will be skipped until a !JOB, !PAUSE, or !FIN card is found. Only
a !JOB card will clear the IIskip" mode. All control commands are listed
on the LL device with an indication (> character) preceding the command
to show that they are being ignored.

JCP has begun to read control commands. This message occurs at the be­
ginning of a job and between steps within a job (e.g., when an assembly is
completed). If CC is assigned to the keyboard/printer (as a standard as­
signment, or after a KP key-in), the input light on the keyboard/printer
will indicate that RBM is ready for input of a control command.

JCP is unable to read a control command because theCC oplabel either is
assigned to DFN 0 or was not assigned during SYSGEN.

The Monitor has encountered some condition that will not permit further
operation or a foreground task has generated an abort condition (see "Machine
Fault Task" subheading in Chapter 6 and the 'e" bit in Table 19). xx may
be anyone of the fo Ilowi n9:

OP Operator-ini tiated system halt.

SP The RAD device containing RBM cannot be recognized.

ET An EIOP timeout has occurred. A system reset is necessary
to continue.

PE A task has generated a memory parity error.

MF A task has generated a machine fault (probably the result of
incorrect Direct I/O).

PF A power fai lure has occurred at a time when RBM cannot
recover.

The device specified is in the manual mode and may be out of paper,
cards, or tape.

There has been a parity or transmission error on the device. If any auto­
matic retries were specified, they will have been performed before this
message is output. A CR device will indicate that an error card is in the
output stacker. Recovery procedure is described above under 111/0 Re­
covery Procedure ". If dt is RD, xxxx wi II be the errored track number,
which is determined from the remaining byte count.

System Communication 23

Message

! !dtnn FAULT

! !dtnn PUNCHES

! !dtnn DATA RATE

! !dtnn UNRECOG

! !dtnn WRT PROT

! !dil REQUEST,dtnn

! !dil RESE RVE, dtnn

! !FRGD xx ABORT, lOC yyyy TCB zzzz

! ! KEY ERROR [, comments]

24 System Commun ication

Table 5. Monitor Messages (cont.)

Meaning

Some condition on device type dt with physical device number nn (hexa­
decimal) has caused this device to become nonoperational. The recovery
procedure is described above (in the discussion under change of state). The
operation is automatically retried when the device goes into the automatic
mode; it is neither necessary nor possible for the operator to type in a
response.

An invalid punch combination has been sensed on an EBCDIC image. The
card wi II be stacked in the alternate stacker (if there is one).

A data rate overrun has occurred. If any automatic retries were specified,
they will be performed after this message is output.

Device type dt with device number nn (hexadecimal) is not recognized by
the VO routines. If the device is a magnetic tape unit, the requested
drive may not be dialed in properly or power may be off in either the unit
or the controller.

The RAD or magnetic tape is physically write-protected. If a RAD file is
logically write-protected, this message will not appear but appropriate
status witl be returned.

A request has been made to reserve the specified device. The operator
should prepare the device and then reserve it through use of the FR key-in.
dil refers to the dedicated interrupt location of the requesting task.

The specified device has been reserved for foreground use for the task whose
dedicated interrupt location is dil.

The foreground task with a TCB at location zzzz has aborted at location
yyyy for the reason specified by abort code xx. The corresponding interrupt
level will be disabled and if the task occupied nonresident foreground, an
unload operation will be initiated. Background processing will continue.
Because this message is written at the monitor priority level, only the abort
message for one foreground task (the lower priority level task) will appear
if two foreground tasks abort consecutively.

The monitor could not process an unsolicited key-in response. The message
usually indicates a format error on the key-in, where comments may be one
of the following:

NOAR

DEVICE

NO BTL

2 10 ERR

The wrong disk pack was mounted for an M key-in
and the area cou Id not be found.

One of the following conditions was detected:

1. This device was not defined,

2. The device does not have removable areas.

Applies to M and R key-ins.

There is no bad track fist for the device specified.

The device specified in the IMI key-in cannot be
correctly accessed.

Message

! ! KEY ERROR [, comments)
(cont.)

! ! MESSAGE comments

!! PAUSE comments

Table 5. Monitor Messages (cont.)

Meaning

2 ERR n

IN USE

OVFLOW

DFN/OP

10 ERR

TEMP STACK

The following error codes are defined in the 'M'
key-in processing:

n = 1

=2

The expected devi ce number parameter is
not two characters.

The key-in exceeds the 20 characters
maximum.

= 3 The field exceeds the maximum length of
eight characters.

= 4 During the 'all' option, an area is defined
on another device.

= 5 The area specified is not found on the
device.

= 6 The area name specified is found on an­
other device.

= 7 An expected area name is not two
characters.

= 8 Sector 2 does not contain a bad track list.

= 9 No bad track list for this device is found
in the system tab I es.

= 10 An option other than the 'all' or area
option is specified.

= 11 There is no room avai lable in the Master
Directory for the specified area.

If the key-in was an M (mount), the area must be
removed. If the key-in was R (remove), files must be
closed in the area (perhaps by an abort or unload).

The Master Directory table length will not allow this
key-i n to be processed.

The Device File table or Operational Label table has
overflowed.

The device specified in the IMI key-in cannot be
correctly accessed.

The RBM Temp Stack has overflowed.

A !MESSAGE control command has been read. The comments field may
contain tape mounting or other instructions. RBMcontinues to read from
the CC device after the message is typed out.

A ! PAUSE control card has been read. The comments fie Id may contain
tape mounting information or other instructions. A control panel interrupt
followed by an S key-in will cause RBM to continue reading from the job
stack.

System Commun ication 25

Table 5. Monitor Messages (cont.)

Message Meaning

! !NO 'RBMPMD' FILE OR DFN A portion of background could not be saved. The first part of background
wi II be dumped as zeros.

llPOWER ON The system has experienced a power fai lure and the power-fai I-safe option
has been implemented. If the computer is a Sigma 2 or is a Sigma 3 with no
external interrupt and no critical foreground tasks, or if the background or
RBM Control Task was active, execution will continue; otherwise it will
crash. If the latter case, the op~rator should reboot RBM from the RAD
and restart the background.

l !dtnn NOISE REC A noi se record has been de tected on magneti c tape and ignored. (A noise
record is one that contains less than eight bytes and an irrecoverable parity
error).

l !dtnn BAD TAPE The magnetic tape mounted on device dtnn contains a bad spot that cannot
be skipped when writing. The operator should mount a new tape and (if
possible) rerun the job.

l lENTER DATE AS MM/DD;YY A program request was made via M:DATIME for the date specifying that
the operator be unconditionally solicited for the date.

l !ENTER TIME AS HR,MN A program request was made via M:DATIME for the time specifying that
the operator be unconditionally solicited for the time of day.

l !ERRFllE OVERFLOW IMMINENT The Error Log is about to overflow. Log entries wi II soon be lost un less the
operator performs a !PURGE EL,R operation (see the !PURGE control
command).

! !ERRFllE OVERFLOW, PURGE The Error Log has overflowed and log entries are be ing lost. The operator
must perform a !PURGE El,R as soon as possible (see the lPURGE control
command).

OPERATOR CONTROL

Operator control of RBM is achieved by one of two methods:
so fj ci ted or unsol i ci ted.

The active foreground task will be disabled and a call will
be made to M:EXIT if all of the following conditions are
true; otherwise, a key-in response will be requested:

SOLICITED CONTROL

Solicited control will normally be in the form of a specific
request from a foreground or background program and should
always be directed to the operational label OC - Operator
Console. There is no standard format for the response to a
solicited control.

UNSOLICITED CONTROL

AJI forms of unsolicited control are initiated when the
operator activates the INTERRUPT switch on the Processor
Control Panel. Unsolicited control may take one of two
forms:

1. An unsoficited key-in request.

2. A forced foreground disable.

26 Operator Control

1. The value in the data switches has changed since the
last activation of the Control Panel Interrupt (or since
boot).

2. The value in the data switches matches the address of
the dedicated interrupt location of the current task, as
specified in word 2 of the standard Task Control Block.
See Table 19. Note that this implies that the active
task must call M:SAVE.

Conditions 1 and 2, when taken together, simply mean
that the operator must intentionatly enter the appro­
priate value in the data switches; an accidental disable
cannot normally occur.

3. The active foreground task (that is, the one to be
terminated) must have a hardware priority lower than
the Controt Panel Interrupt lever.

If a forced foreground disable is specified, a foreground
abort message will be written; otherwise the Control Panel
Interrupt Task sets a flag in the RBM Control Task status
word and triggers RBM. The Control Panel Interrupt Task
then exits.

When the RBM Control Task becomes the highest priority
task in the system (that is, when all real-time foreground
tasks are nonactive), it issues an output message

! !KEY-IN

and requests input (up to 20 characters) from the operator.
Because of possible delays associated with messages to and
from the operator, no devices used for time critical oper­
ations should time-share an I/O channel used for operator
communications. Each key-in must be terminated with the
New Li ne e code. The backspace (¢ or control-X) and .
delete (EOM or control-H) codes may be used before the
New Line is typed to correct a mistyped key-in. The anal­
ysis and subsequent action from the unsolicited key-in is
performed at the RBM Control Task priority level. Each
key-in mnemonic must be followed by a space before its
argument list.

Specific key-in responses under RBM are:

* comment Insert a comment. Useful for remote assist
dialog. Note that a blank must follow the asterisk.

BL OPlb=dfn[,p] Permits change of operational label
assignments during running of background programs.

where

oplb is an assigned operational label or FORTRAN
device unit number.

dfn is a decimal number specifying a legitimate
device fi Ie number.

P is an optional permanent change of the default
assignment until system reboot.

BL oplb = oplb[,P] Alternate version of BL (Background
Labe I) key- i n above.

BR[dijnn Release the specified device for the next wait­
ing task. The characters representing the device type are
optional but, if input, will be used to validate the request.

C: tcbGcode] Connect the specified real-time fore-
ground task to the dedicated interrupt location.

where

tcb is the address of the task control block for this
task. (If the value is hexadecimal, it must be
shown as +xxxx.) If the Overlay Loader initializes

the TCB by means of the tcb parameters, it does
so completely, using load .information and values
on the TCB and BLOCK cards. No partial initiali­
zation of a TCB is allowed with the exception of
the blocking buffer pool. Ifa user builds his own
TCB, the TCB must begin at the execution loca­
tion plus the "temp" value specified on the
Loader !$ROOT command.

code if present, overrides the initial code in the
TCB for the task; a code of seven would cause the
level to be triggered. If code is not present, it
will be derived from the task control block.

CC Remove the keyboard/printer override of the CC de-
vi ceo The next control command wi" be read from the
background operational Iqbel CC. This operator key-in is
identical to the CC control command.

DA nn Make avai lable a device that was previously de­
clared unavai lable (i.e., "down "), where nn is the address
of the devi ce.

DBt XXXX,YYYY Dump locations xxxx to yyyy if re-
quested; otherwise, immediately dump all of background
memory on background device DO. This key-in can be in­
put at any time for debugging purposes. The dump wi II be
in hexadecimal.

[

CHAN'Cban 1 t DEV,dev
DC DFN,dfn

OPLB, {:=: }~:J
Display the I/O-error and
I/O-access counters for
either one or all channels,
as specified by the form of
key-in.

where

chan is a one- or two-digit hexadecimal channel
number. The limits on chan are 0 ~chan ~ lB.

dev is a two-digit hexadecimal device address.

dfn is a one- or two-digitdevice file number (DFN),
in hexadecimal.

fdun is a FORTRAN device unit number. If the

oplb

second parameter begins with "F: II or a numeral,
an fdun is assumed.

is a two-character operational label.

if present, i ndi cates that the specified oper­
ational labe I or FORTRAN devi ce unit number

is for the foreground (F) or background (B). If not
specified, background is assumed;

If no parameter is specified, all channel error and access
counters are displayed. (All channel and device numbers
specified must have been declared at SYSGEN time.)

tSYSGEN optional.

Operator Control 27

The format of the disp lay message output in response to a
DC key-in is as follows:

CHAN cc ERRORS eeee ACCESSES 00000000

All values are displayed in hexadecimal and reflect the
number of errors and accesses since the last counter reset
(see the RC key-in) or since system boot, whichever is
more recent.

OEt Causes Debug (if Debug is part of the system) to
request the input from the keyboard/printer.

OFt xxxx,yyyy Dump locations xxxx to yyyy if re-
quested; otherwise, dump all of foreground on background
devi ce DO. The dump wi II be in hexadecimal.

OM t xxxx,YYYY Dump locations xxxx to yyyy if re-
quested; otherwise, immediately dump all of RBM on back­
ground device DO. The dump will be in hexadecimal.

o [r] tnn/dd [iyyG hrmn]] Reset the calendar date within
RBM and continue processing if the Monitor is in an idle
or wai t state.

o [rimm,dd[,yyGhr ,mn]] Alternate version of D[T](Date)
key-in above.

ORt [dn] XXXX,YYYY Perform a selective dump of the RAD
devi ce dn to background devi ce DO, where xxxx and yyyy
are the fi rst and last sectors of the block of sectors to be
dumped. If dn is omitted, the RAD containing the SP area
wi" be dumped. If dn refers to an undefined or non-RAD
device, an error message wi" be written. If a consecutive
series of sectors are all zeros, they will be skipped unless
the last sector of this zero series is yyyy, in which case it
wi II be dumped. For example, if "DR 100,200" is keyed in,
and sectorsX'lBO' through 'X'215' contain zeros, X'lOO'
through X'lAF' and sector X'200' will be dumped. This
key-in applies only to the 7202,7203, and 7204 RADs.

The RAD dump routine performs RAD input with interrupts
inhibited, and therefore shou Id not be used when response
time is critical.

OSnn,nun~dfnJ Substitute one device for another, i.e.,
change the devi ce address associated wi th one or more
device/fi Ie numbers (DFNs). This key-in is used mainly
for reassigning Model 7332/33 (1600 BPI) magnetic-tape
device address when one of these units has been declared
unavai fable. In the key-in syntax, nn is the hexadecimal
device address to be replaced by mm, and dfn (optiona.l) is
the single DFN for which the substitution is to be made.

tSYSGEN optional.

28 Operator Control

(The dfn is checked to ensure correspondence to nn prior
to change.) If dfn is not specified, all DFNs that currently
point to device nn will be so modified. The message

! !CHANGED DFN dfn

wi" be issued for each DFN so modified, so that one or more
can later be changed back to its original assignment. The
specified devices (nn and/or mm) may be either available or
unavai lable when the key-in is made. The avai labi lity status
of the mm device is applied to all DFNs reassigned to it.

This key-in does not apply to disk/RAD devices, nor may
it be used to substitute one device type for another (e.g.,
Model 7322/23 for Model 7332/33, or tape for printer).

OU nn Declare a peripheral device unavai lable (i. e.,
"down "), where nn is the. device address. This key-in is
not valid for the system RAD or disk, nor for the operator's
console. Subsequent M:READ, M:WRITE, M:CTRl, or
M :IOEX references to the "down II devi ce wi II return a
devi ce-unavai lable status.

10PlbGF]] fdunGFJ Dump the information described below for
dfn the specified fi Ie, or dump the operational

label table only.

where

oplb is an operational label that indirectly speci-
fies the desired DFN. F indicates a foreground
operational label.

fdun is a FORTRAN Device Unit Number (e.g.,
F: 101) that indirectly specifies the desired DFN.
F indicates a foreground fdun.

dfn is a Device Fi Ie Number (DFN).

If no parameter is specified, only the operational label table
will be displayed.

When a parameter is specified, the following information
wi" be output on background DO devi ce for the desi red
DFN in addition to the operational label table.

• Contents of the specified Device Channel Status Tables.

• Contents of the specified Fife Control Tables.

• Contents of the specified I/O Control Tables.

If the fj Ie is a RAD fi Ie, the following additional infor­
mation wi" be output:

• Contents of the specified I/O Control Sub-table.

• Contents of the blocking buffer assigned to the speci­
fied fi Ie, if one exists.

FGGS] Must precede any job stack operation affecting
the foreground or the operation wi II be aborted. This
key-in is effective unti I the next !FIN or !JOB command
is encountered. Since the key-in is normally input in
response to a !PAUSE command, the optional S key-in will
clear the wait state.

FL oplb= dfnGP] Permits foreground operational label
assignment changes during system operation. The changes
will be reset to SYSGEN values upon system reboot.

where

oplb is an assigned operational label or FORTRAN
device unit number.

dfn is a decimal number specifying a legal device
fi Ie number.

P is an optional permanent change until system
reboot.

FL oplb = oplbG p] Alternate version of FL op Ib =dfn['P]

FR [dt]nn Reserve the specified devi ce for foreground
use. The characters representing the device type are op­
tional but, if input, will be used to validate the request.
The device type wi" be required to distinguish PT40 from
KP40, etc.

Ht Input hexadecimal patch cards from background de-
vi ce CC. (See Chapter 11 for the format of the patch
cards.) Patches to RBM or foreground must be preceded by
an SYor FG key-in.

KP Begin reading control commands from the keyboard/
printer. The key-in goes into effect immediately and stays
in effect until a CC key-in or ICC control command is
encountered.

L message Enter a message into the system's error log.
The message may consist of up to 18 characters; it wi II be
truncated to that length if necessary. If error logging was
not specified at SYSGEN, this key-in will result in a KEY
ERROR message.

M dnG[vsn]Garl,ar21'oo,arnJ it Mount areas liar II on
device "dn II. The operator must mount the disk pack con­
taining areas "aq II on device "dn ll before making this

tSYSGEN optional.

tt Recognized only if a disk pack unit has been declared at
system generation.

key-in. Unless the area specified is Xn, the disk pack
wi" be read to ensure that it contains the specified
areas. If no areas are specified, then all areas on the
disk pack wil I be added to the Master Directory in core,
otherwise, only the areas specified will be added to the
Master Directory. If the Master Directory already con­
ta ins an en try for an area, an error message !! KEY
ERROR, IN USE will be output. The currently mounted
area must be removed with an R (remove) key-in and the
M (mount) key-in reissued. Other error messages are
listed in Table 6. The optional vsn parameter is a
three- to eight-character volume serial number.

For cartridge disks which contain a bad track list (Models
7251/52 and 3231/32/33), the M keyin will read the bad
track list into the system tables.

Twenty characters, including e, is the maximum that can
be input for anyone key-in. If an M key-in exceeds 20 char­
acters, it can be divided into two parts. For example

M dn, 67890123, a 1, a2, a3 e

is 23 characters long. It may be divided up as

M dn, 67890123, a 1 e followed by

M dn,a2,a3 e
M dn,XnGwp] Iv\ount area Xn on device "dn ".

where

wp specifies the write-protection level for the area
as denoted by one of the following codes:

Codes Write-Protection level

NO (or N) No write-protection; background or
foreground programs may write on the
file.

BG (or B) Write permitted by background pro­
grams only.

FG (or F)

SY (or S)

Write permitted by foreground pro­
grams only.

Background programs may write on
the file if an SY keyin is in effect.

Write permitted by RBM only. Fore­
ground or background programs may
write on the file if an SY keyin is in
effect.

If the wp parameter is omitted, the default write­
protection level is NO.

M dn,BTL Input the bad track list from device "dn" and
move it into the system tables. No areas will be added to
the Master Directory in core.

Operator Control 29

Q name Queue specified program for subsequent
execution in nonresident foreground. As soon as th is space
is free, the requested program is loaded. If the queue
stack is full or if the specified program is not found in the
di rectory, an error message is output on the assigned fore­
ground oplb, DO.

. tt
R dnGarl,ar2' ..• 'Cln] Remove areas from the Master Di-
rectory. If no areas "aqll are listed, all areas on the device
will be removed from the Master Directory. For the cart­
ridge disks which contain a bad track list (tvbdels 7251/52
and 3231/32/33), the bad track list is removed from the
system tables. If any files are in use with in the areas, re­
moval does not occur and a !! KEY ERROR, IN USE message
is output. An X (abort)keyin to abort a background program
or an Ul (force unload) keyin to unload a foreground pro­
gram may overcome an IN USE situation for removal.

RAnn Xerox 530 systems only. Allow connection
by dial-in of a remote-assistance terminal to the specified
device number (that must be assigned to a Xerox Model 4194
or equivalent device). Following execution of this key-in,
the remote-assistance capability is automatically involved
upon detection of a ring indication on the data set for a
specified device. This key-in is appl icable only to data
sets with an automatic answering feature; e. g., a Bell
Series 103A or equivalent.

A foreground receiver (XI 183 1
) may be executed following

completion of the remote connection.

RE dn Model 530 systems only. Allow connection of a
remote assistance terminal to the specified device number
(which must be assigned to a Xerox Model 4191, 4192, 4193,
or 4194 terminal). Following execution of this key-in,
the remote assistance terminal capability is invoked by com­
pleting a telephone connection with the data-set for the
associated device.

where

Reset the II 0 error and I/O access
counters for either one or all chan­
nels, as specified by the form of the

chan is a one- or two-digit hexadecimal channel
number. The limits on chan are 0 :Schan $lB.

dev is a two-digit hexadecimal device address.

dfn is a one- or two-digit device fi Ie number (DFN)
in hexadecimal.

fdun is a FORTRAN device unit number. If the
second parameter begins with IIF: II or a numeral,
an fdun is assumed.

tt Recognized only if a disk pack unit has been decfared at
system generation.

30 Operator Control

oplb is a two-character operational label.

if present, indicates that the specified oper­
ational label or FORTRAN device unit number is
for the foreground (F) or background (B). If not
specified, background is assumed.

If no parameter is specified, all channel error and access
counters are reset. (All channel and device numbers speci­
fied must have been declared at SYSGEN time.)

RD dn Model 530 systems only. Disconnect the remote
assistance terminal from the specified device number (which
must be assigned to a Xerox Model 4191, 4192, 4193, or
4194 terminal).

S Continue processing if Monitor is in an idle or wait
state. If there is a waiting background program, continue
processing that program. If there is no background program,
begin reading control cards from the CC device. (Monitor
can get into the wait state from a W key-in or !PAUSE com­
mand or into idle from a !FIN command.)

svGS] Permi t modifi cati on of system fi les on the RAD
to take place until the next !JOB or !FIN command is en­
countered. This key-in is a double check (simi lar to the
FG key-in) to prevent accidental destruction of the RAD
fi les. Since this key-in is normally input in response to a
!PAUSE command, the optional S wi II clear the wait state.

T hrmn Reset the RBM system time, hour and minutes.

T hr,mn Alternate version of T hrmn.

TC nn Cause an I/O timeout to occur on the channel
associated with hexadecimal device address nne This keyin
will initiate a retry of an I/O operation for a device which
was formerly in need of operator intervention. In systems
with Clockl the retry will be automatic after 30 seconds
but if Clockl is excluded, the operator must perform this
key-in. This key-in is not required if the device is in the
IImanual" condition, merely return the lIautomatic" condi­
tion' and the I/O operation will complete.

U L Force an unload of the program occupying the non­
resident foreground area. Note that operator key-ins can
interrupt the background program at any time. Operator
intervention cannot take place while there are active fore­
ground programs, and witJ be delayed until they terminate.

w Background goes into a wait state.

X Abort the background job with any dumps requested,
and output error code OPand a printed message showing
the location of last background instruction executed. If
the Postmortem Dump program is already active, it will be
terminated.

Z Terminate the current background job including the
Postmortem Dump program without performing postmortem
dumps (abort code E R is output).

4. MONITOR SERVICE ROUTINES

BRANCHING TO SERVICE ROUTINES method is to declare the service routine name as an ex­
ternal reference and have the Overlay Loader satisfy the
reference at load time. (In this case, the address literal Under RBM, foreground and background programs may make

calls on the Monitor to perform various services or privi­
leged ·operations. (See Table 6.) For -background requests,
a branch to protected memory wi II trigger the protection
routine which examines the branch for validity. If the pro­
tection violation is one of a permissible set of "controlled"
violations, the branch is permitted; otherwise, the back­
ground job is aborted- with a suitable error message giving
the location to which the branch was attempted. If the
branch is valid, the protection routine will permit the
branch to the appropriate Monitor service routine.

will be in the user's program, and will be filled in by the
Overlay Loader.) The other method is to branch indirectly
through the address literal in the zero table (see Appen-
dix A) using the absolute address given in Table 6. This is
a useful technique for an absolute foreground program as­
sembly, or for a processor or other programs that are self­
relocating. It also requires less program space and may
make it unnecessary to reload a permanent program following
an update SYSGEN.

All service routines are completely reentrant. Hence, they
can be used by multiple tasks on a completely independent
basis. Table 6 shows the routines requiring temporary space
in the user's temp stack.

The B register is always saved and restored since it is used
to point to temporary space. All other registers are vola­
tile. The return address (specified by the L, T, or A regis­
ter) must point to the background area if the routine is
called (branched to) from the background. Otherwise, a
protection violation abort occurs.

There are two different methods of executing a branch to
one of these Monitor service routines: the conventional

Table 6. Transfer Vector for Monitor Services

Address Ft ;...----

J-
Purpose of this Routine Dec. Hex. Routine 0

199 C7 M:FSAVE F M:SAVE Function if all registers previously Saved

200 C8 M:IOEX 0 Device-Dependent I/O Driver

201 C9 M:READ Device-Independent Read Routine

202 CA M:WRITE Device-Independent Write Routine

203 CB M:CTRL
tt

Device-Independent Control Routine

204 CC M:OATIME
tt

Calendar Oate and Time of Oay

205 CO M:TERM Normal Termination of Background

206 CE M:ABORT Abnormal Termination of Background

207 CF M:SAVE F Save Registers on Real-Time Interrupt

208 00 M:EXIT F Restore Registers on Foreground Exit

209 01 M:HEXIN Hexadecima I to Integer Conversion

210 D2 M:INHEX Integer to Hexadecimal Conversion

211 D3 M:CKREST F Checkpoi nt/Restart Background

212 04 M:LOAO
tt

Load Nonresident Foreground or transfer control to
another background task

213 05 M:OPEN
tt

Open Blocking Buffer for RAD File

214 06 M:CLOSE
tt

Close Blocking Buffer for RAD File

215 07 M:DKEYS Read Data Keys

216 08 M:WAITtt B Execute Wait Loop from Background

217 09 M:SEGLO Load Overlay Segment

218 OA M:OEFINE
tt

B Define RAO Files in Background Temp Area

Words of Temp Required

Min. Max.

0 0

16 16

19 51

19 51

50 62

37 37

0 0

0 0

0 0

0 0

0 0

0 0

0 65

32 32

32 32

33 33

0 0

34 66

29 61

32 32

Monitor Service Routines 31

Table 6. Transfer Vector for Monitor Services (cont.)

Address J!-- Words of Temp Required

Dec. Hex. Routine
y
0 Purpose of th i s Rout i ne Min. Max.

219 DB M:ASSIGN
tt

Assign Operational labels 37 51

220 DC M:POP Release Dynamic Temp Space 0 0

221 DD M:RES Reserve Dynamic Temp Space 0 0

222 DE M:OPFIlE Convert Operational label to Device-Fi Ie Number 0 0

223 DF M:RSVptt FlO Reserve or Release Peripherals 39 71

224 EO M:DOW
tt

FlO Diagnostic Output Routine and Error logger 32 64

225 E1 M:COC
tt

FlO Communications Handler 44 44

t ' .
F = foreground only; B = background only; 0 = SYSGEN option.

ttThese routines are nonresident RBM overlays. All nonresident RBM overlays require a minimum of 32 temp memory
locations to load the routine.

Notes: 1. To branch to one of these routines, branch indirectly through the specified address above after RCPYI P, L
(except M:RES which is called following an RCPYI P, T).

2. The minimum temp space required is the number used by the routine itself. The maximum temp space is the
number required by this routine and those it calis, plus 19 if any of the routines are nonresident RBM over­
lays. For example, M:READ (19) may call Q:ROC to load M:OPEN (13) and Q:ROC may reenter M:READ
(19) to load the overlay. A total of 51 temp memory locations may be used.

3. Normally, M:SEGlD requires 29 temp memory locations. However, 61 are required to output the message
! !BEGIN SEG xx. This is an RBM assembly option (i. e., #SEGXX = yes).

4. M:CKREST requires 65 temp memory locations if the checkpoint is performed at the priority level of the
calling task and the message! !BKG CKPT is to be typed out. This message can be suppressed if bit 8
of R:SYFG is set, in which case M:CKREST requires 33 temp memory locations.

5. Use of any device that has a nonresident device dependent I/O edit or error recovery routine associated with
it requires 51 temp memory locations by M:READ/M:WRITE. These include KP, PT, lP, B7, CR, and CP.
However, if one of these devices is not ready, 83 temp memory locations may be required.

Certain Monitor service routines are nonresident overlay
routines. The Monitor subroutine Q:ROC controls the load­
ing of the RBM overlay area. The following Monitor ser­
vice routines are nonresident overlay routines:

M:ASSIGN
M:CLOSE
M:COC
M:CTRl

M:DATIME
M:DEFINE
M:DOW
M:LOAD

M:OPEN
M:RSVP
M:WAIT

Actually, portions of the above routines are resident. The
resident portion of M:CLOSE, for example, is as follows:

M:CLOSE

where

RCPYI
B
DATA

P, T
Q:ROC
lid nnl

id represents the segment identifier of the non-
resident overlay section of M:CLOSE.

nn is the temp stack requirement.

32 Service Routines

Q :ROC wi II call M:RES to reserve the appropriate amount
of temp space, will read in the required segment, and will
transfer control to the overlay routine which runs and re­
turns to Q:ROC. Q:ROC will reload the overlay area if
appropriatet and will then release the temp space and re­
turn to the co II er by a ca II to the Mon i tor servi ce routi ne
M:POP. Particular attention should be given to the maxi­
mum temporary stack requirements of these routines.

SERVICE ROUTINES

M:IOEX (General I/O Driver - SYSGEN optional)

M:IOEX provides direct control by background programs,
the Monitor, or foreground real-time programs over all I/O

tIf the overlay area was originally occupied by an active
Monitor service routine, the routine must be reloaded. If
the requested routine is the one occupying the overlay area,
no loading will be required.

operations on the buffered I/O channels for centralization
of I/O interrupts. All M:IOEX control functions are ex­
empt from channel time limits. The calling sequence is

LDX adrlst

RCPYI

B M:IOEX

where adrlst is a pointer to the argument list, which is a
set of two, three, four, or five consecutive words in the
user's program or in a temporary stack. This argument list
appears as follows:

word 0

lIFIAIZICIO-OIDIO--OIOP

o 2 3 4 6 7 8 12 13 15

where

F = 0 if word 1 is an operational label or device
unit number.

= 1 if word 1 is a device file number.

A = 1 if AIO Receiver is specified in word 3 (fore-
ground option only).

= 0 if no AIO Receiver is specified.

Z = 1 if AIO Receiver is acknowledged on zero-
byte-count interrupt.

= 0 if acknowledged on channel-end only.

C = 1 if a user-written command chaining receiver
is specified (foreground option only).

= 0 if no command chaining receiver is specified
(default command chaining to be used).

D = 1 indicates that the device has been marked
. "down " by a DU key-in.

= 0 indicates that the device is not down.

I/O may not be performed on a down device
unless bit 7 of the request order word isa one;
otherwise, device-unavai lable status is re­
turned. Similarly, I/O may not be performed
on an "up" device unless bit 7 of the request
order word is a zero.

The D bit is intended for the use of RBM
diagnostic programs to allow testing of fail­
ing devices. User programs should code with
the D bit reset (D = 0).

OP is the code for the operation to be performed:

o for SIO

1 for TIO

2 for TDV

3 for HIO

4 for II check previ ous data transferll

word 1

Operational label or file number

0 15

word 2

Address of first IOCD (for SIO only)

0 15

word 3

Address of AIO or CC Receiver (for SIO only)

0 15

If bit A = 1 (word 0), then word 3 is a pointer to the AIO
receiver. If A = 0 and bit C = 1, then word 3 is a pointer
to the command chaining (CC) receiver. If both A = 1 and
C = 1, however, an additional word is required as a CC­
receiver pointer:

word 4

Address of CC Receiver (for SIO only)

o 15

Return to the user's program is to the location in register L
on entry to M:IOEX. Register B is always saved.

The Overflow (Ol) and Carry (CI) Indicators, the A regis­
ter, E regi ster, and (in some cases) X register are used to
return status information on the required operation. The
complete list of status codes is given in Table 7.

I'

If a device has been declared IIdown" through the operator's
use of a DU key-in, only M:IOEX calls having bit D = 1
(in word 0) are permitted access to the device. This is in­
tended to allow RBM diagnostic programs to test failing
devices. Otherwise, (D = 0), a device-unavailable status
is returned (rE = -1, rA = 9, rX = 0). Conversely, if a de­
vice has not been declared down, 10EX calls with D = 1
are not permitted; a device-unavai lable status is returned
to the diagnostic program.

Note that no I/O error recovery is attempted. DSBs and
OSBs are just as received from the I/O system hardware.
These status returns are organized so that a quick and simple
test wi II show the nature of the return. If the user wishes
to keep trying to initiate the I/O operation or keep check­
ing for completion, it is possible to loop back to the call
to M:IOEX.

Service Routines 33

Table 7. Return Status from M:IOEX

E Register A Register X Register
Operation Major Status 01 CI

0 1 - 7 8 - 15 0-7 8 - 15 0- 15

SIO, TIO, Device numQer
1 1 0 Recognition Code 0 TDV, HIO not recognized --

Invalid cart or oplb 0 0 1 -- 4 or 8 0

All Opl b set to zero 0 0 0 -- 2 0

Device unavai lable 0 0 1 -- 9 0

SIO cannot be
0 1 0 Current DFN

TIO
Dev. No. 0 acceptedt DSB

SIO Channel bus/ 0 0 0 Active DFN
TIO

Dev. No. -1
DSB

Successful
0 0 0 Current DFN

SIO
Dev. No. 0

initiation DSB

SIO cannot be
0 1 0

TIO
accepted

Current DFN
TIO

Dev. No.
DSB --

Other 0 0 0

Device abnormal 0 1 0
condition

TDV
TDV Current DFN

DSB
Dev. No. --

Device norma I
0 0 0 condition

Devi ce operati ng
when HIO 0 1 0
received

HIO
HIO Current DFN

DSB
Dev. No. --

Device not oper-
ating when HIO 0 0 0
received

I/O operation
1 0 0 Current DFN

SIO
Dev. No.

in progress DSB --

I/O check
I/O completed Byte Count
unusual end 0 1 0 E AIO

Residue {from
Flag OSB \

DSB
Dev. No. even I/O

I/O completed 0 0 0
(Bit 7) channel reg-

normal end ister at chan-
nel end)

Legend:

tUse BXNC to test both conditions simultaneously. DSB = Device Status Byte

Dev. No. = Device number of current device

OSB = Operational Status Byte

34 Servi ce Routines

If an Ala and/or a CC receiver is specified, it must be a
closed subroutine, is executed at the I/o interrupt level,
and must return to the I/O Interrupt Task. The same gen­
eral usage rules govern both: no monitor services may be
called, all registers are considered volati Ie, and processing
must be brief so as not to interfere with other on-going I/O.
On entry to the CC receiver, register L contains the return
location and register X contains the DFN; on exit, if reg­
ister A is negative, software command chaining will not be
performed; if zero or positive, such chaining will take
place. (See "M:IOEX Functionsll

, below, for functional
descriptions of Ala and CC receiver operation. See also
II End Actionll in Chapter 5 and "Ala Receivers ll in Chap­
ter 6.)

The user can use M:IOEX to read/write on the RAD or any
peripheral device that uses standard Xerox peripheral re­
sponses. For input/output operations to the RAD, the user
must first give a seek order and then the appropriate data­
transfer request. The user must a I so perform h is own fi Ie
management. If multiple tasks use the RAD, they must
cooperate in some way so that the seek address is not modi­
fied by some higher-level task before the data operation
is initiated. Note that a user must always issue a "Check"
(op code of 4) after each read or write request.

The following special rules govern the use of M:IOEX for
GRAD:

1. A device-fi Ie name of the form XXdn must be included
in the set of SYSGEN input parameters following the
heading DEVICE FILE INFO, where XX indicates that
this is a special-purpose device for use with M:IOEX,
and dn is the hardware device number of the RAD. The
M:IOEX calling sequence must contain the device­
file number corresponding to this device-fi Ie name,
or must contain an operational label that is assigned
to the device-file number.

2. The set of SYSGEN input parameters following the
heading RAD ALLOCA nON must include provisions
for reserved tracks that are not to be included in the
areas allocated for RBM fi Ie management. This can be
accomp I i shed by

a. Assigning the system RAD toa device number other
than XXdn. This method requires two RADs, one
containing the RBM area assignments, and the
other available for use with M:IOEX.

b. Allocating only part ofa RAD for RBM area assign­
ments, leaving the remainder available for use
with M:IOEX.

c. Allocating part of a RAD for M:IOEX use by speci­
fying that a number of tracks be skipped between
RBM areas with an allocation parameter of SK = n,
where n is the number of tracks.

d. Any meaningful combination of the above.

M:IOEX FUNCTIONS

TID, TOY, HID In these operations, the request is per­
formed immediately and the device status bytes are returned
if the device is recognized. The AIO Receiver is ineffec­
tive for these operati ons.

SID The SIO operation is initiated if there is device
recognition and the channel is free (which may not be the
same as "device free" or IIdevice controller free" for chan­
nels with several devices).

The SIO is issued even if the device is in the manual mode.
It is therefore the responsibility of the user's program to test
for the manua I mode both before and after the S I 0 request,
and to inform the operator by a suitable message.

An HIO can be used to abort an I/O operation. This results
in setting the channel end device ready for a new activity.
Since status is returned, an I/O check operation is not
required.

Protection checks are performed only for background I/O
requests. Background is not permitted an Ala Receiver,
and a receiver is ignored if requested from the back­
ground. Background operations specifying data chaining
are not allowed. This is due to the structure of the lOCOs,
I/o Data Tables, and the requirements for the absolute
protection of foreground programs (see "End Action" in
Chapter 5).

The user of M:IOEX must be thoroughly familiar with
machine-level I/o operations in general, and in particular
with the execution of the SIO instruction as described in
the appropriate Xerox computer reference manual. M:IOEX
does not modify the user's 10CDs or device-order bytes in
any way.

When using foreground data chaining it is very important
to set the interrupt flags on all lOCOs, since an unusual
end condition in one of the 10CDs without the interrupt
flag being set will cause the I/O to terminate without an
interrupt, and the channel may then II hang Upll waiting for
the interrupt because the RBM tables indicate that the chan­
ne I is sti II busy.

In addition to hardware-executed data chaining, RBM pro­
vides a software conventi on for command chaining. Its
operation and control is analogous to data chaining and
involves an extension of the normal, hardware-determined
10CD and I/O-control-table formats. The use of command
chaining is fully described in the RBM/System Technical
Manual, 90 11 53 (see also the RBM I/O control tables
illustrated therei n for usage exampt es). If a command
chaining (CC) receiver is specified in the M:IOEX argu­
ment list, it is entered at I/o completion time prior to
the execution of software command chaining, at the I/O
interrupt level. The purpose of the CC receiver is to allow
the user to make a real-time decision as to whether or not

Service Routines 35

a command-chained operation is to be continued. The
content of register A on return from the CC receiver over-
rides standard RBM command chaining control (see below):
if the A register is negative, chaining is to be terminated;
if zero or positive, continued. (The receiver is entered only
if there is another operation to be performed in the user's
I/o table.) If no CC receiver is specified, a default RBM
receiver is entered and default command-chaining control
is exercised: the operational status byte (bits 0-7 of the
even channel register) is tested for transmission error, chain­
ing modifier, or unusual end. If any of these conditions is
true, command chaining is terminated. Since neither data
chaining nor software command chaining operations are per­
mitted for background programs, the specification of a CC
receiver from the background is ignored.

The Monitor does not alter the user's data in any way. If
an I/o interrupt is received and there is no AIO Receiver
specified (and the device is still busy), the I/o interrupt
is ignored and the channel remains active.

The user's program must determine whether there wasa chan­
nel end or an unusual end condition. If the return is for a
busy device or channel, the program can loop on this re­
quest unti I the operation is successful.

Since only higher priority tasks can take control from the
task issuing the request, the routine issuing the request
gains control of the desired device and/or channel as soon
as the current operation is complete. The M:IOEX routine
inhibits interrupts for a period of less than 100 microseconds
during the loading of the I/O channel registers and the set­
ting of the activity status for the device and channel. Thus
a higher priority task can always interrupt up to the point
when the I/O channels are loaded during the initiation of
an I/O request.

liD CHECK This operation tests for channel end on the
previously requested I/O operation by testing certain flags
within the RBM I/O tables. The flag is set by the I/O
interrupt task when the device interrupt occurs. Thus,
no nos are required to determine when the operation is
complete. Since the 1I0s do consume some I/O time
(particularly if executed repeatedly in a test loop), the
method of checking for I/O completion described herein
is desirable. The Monitor saves the operational status
byte and the byte count residue from the completion of
the I/O operation, even though another device may have
used the channel before the end-action check is made by
the requesting task.

The following restrictions are pertinent in using M:IOEX:

1. RBM will not necessarily recover automatically from
the results of an HIO for most devices. Operator
intervention may be necessary.

2. Background programs cannot specify data chaining or
command chaining.

3. Background programs must specify an interrupt in all
10CDs.

36 Service Routines

M:READ (General Read Routine)

M:READ provides device-independent input with standard
editing and checking. Standard error detecti on and cor­
rection is optional on each call. The calling sequence is

LDX

RCPYI

B

adrlst

P, L

M:READ

where adrlst is a pointer to the argument list, a set of two
to si x words in the user I s program or ina temporary stack.
This argument I ist appears as:

word 0

<h-,l
\j \0

. where

2 3 4
i r
!

Order

5 6 7 8 15

F = 1 if a device-file number is specified.

= 0 if an operational label or device unit number
is specified.

A = 1 if an AIO Receiver address is specified (speci-
fiable by foreground only).

= 0 if no AIO Receiver is specified.

w = 1 if wait for completion is unconditional.

= 0 if wait is for II initiate and return ll only; return
is immediate if operation cannot be started
at once. (The minimum-seek algorithm does
not apply to RAD II no wait ll operations.)

E = 1 if standard error recovery is to be performed

R

at channel end.

= 0 if no error recovery is to be attempted.

For RAD or disk pack, five attempts for error re­
covery will be made if E is specified; 10 attempts
will be ll1ade for magnetic tapes. If I/o without
a WAIT is specified, error recovery will not be
performed until a IICheck" is issued by the user.
See RAD and Disk Pack Error Recovery.

1 direct access: a RAD record displacement is
specified (granule or logical record number,
applicable only to random files). If the file
is not random, calling sequence error is
returned.

= 0 sequential access: a RAD record displacement
is not specified and implies sequential access
of random files or sequential files.

If the order is "Check previous output for completion (04)",
the I R' is used as follows:

word

o

R == 0 do not retry the operation if operator inter-
vention is required; instead, return II Operator
Intervention Required".

= 1 retry the operation, notifying the operator jf
intervention is required.

o == 1 indicates that the device has been marked
II down" by a DU key-i n.

= 0 indicates that the device is not down.

I/O may not be performed on a down device
unless bit 7 of the request order word is a one;
otherwise, device-unavailable status is returned.
Similarly, I/O may not be performed on an "Up"
device unless biy 7 of the request order word is a
zero.

The D bit is intended for the use of RBM diagnos­
tic programs to allow testing of failing devices.
User programs should code with the D bit reset
(D = 0).

Order is one of the following permissible pseudo
input orders:

Order

X1001

X '02 1

X '061

X10CI

X'lO'

Operation

Return information about this device
and file. See Return Registers.

Read binary.

Check previous input for completion
(after a II no wait" initiation).

Read automatic.

Read backward (9-track magnetic
tape only).

Return information on FORTRAN
associated fi les.

Operational label or fi Ie number

15

word 2

Address of buffer to buffer to receive data

o 15

Buffer must be in background if called by a background
program. Also, buffer must not overlap active temporary
storage or unavailable memory.

word 3

Number of bytes to transmit

o 15

Byte count must be an even number when readi ng from RA D
files and cannot exceed 65,534~ For all other devices the
byte count may be either even or odd but cannot exceed
8192. If the byte count is even, input data stored in the
user's buffer starts in the left-hand byte; if odd, data starts
in the right-hand byte.

word 4

AIO Receiver or RAD record displacement

o 15

If A == 1 (in word 0), this is the address of the closed AIO
Receiver subroutine called by the I/O interrupt task at
channel end. If A == 0, this is the RAD record displace­
ment (granule or logical record).

word 5

RAD record displacement (optional)

o 15

If an AIO address is specified (A == 1 in word 0), word 5
indicates the displacement from the start of the file (start­
ing with a displacement of zero). Transfer starts at the
beginning of the indicated file unit. Word 4 is RAD file
unit displacement if A = O.

While blocked and unblocked random fi les may be ac­
cessed directly or sequentially, the usage modes should not
be freely mixed. Note that if the R bit is not set for ran­
dom files, the file is processed sequentially.

RETURN REGISTERS

Return is always to the location specified in the L register.
The B register is always saved.

TheE, A, and X registers all contain status information on
the return, as shown in Table 8. I/O completion codes
are I isted in Table 9. Return is always immediate if there
is a calling sequence error, in which case the E register is
negative upon return. For the case where a wait is speci­
fied, the I/O is initiated and the M:READ routine loops
until. the operation is complete. When II initiate and no­
wait" is specified, an SIO is issued before the return if the
device is recognized, is currently free, can accept an SIO,
and is not in the IImanual ll mode. If anyone of these con­
ditions is false, the M:READ routine returns immediately
wi th the appropriate indicators set. ' If the channel or de­
vice is busy, the caller can either loop back to the cal I to
M:READ or switch to another device. The IIwait" flag has
meaning whether this is an initiate or a check order. Error
recovery is attempted if specified before the final return is
made.

Service Routines 37

Table 8. Return Status from M:READ, M:WRlTE, M:CTRL

Operation Major Status Action E Reg. A Reg. X Reg.

All operations Operational labels not valid. Return immediately. -1 8 tt

Calling sequence error. Return immediately. -1 4 tt

Operational label is set to zero. Return immediately. 0 2 t

RAD or magnetic tape file positioned Return immediately. 0 4 t
at EOT.

Irrecoverable I/O error. Return after error recovery -1 1 t
attempt, if any.

Device has been declared unavailable. Return immediately. 0 9 t

Initiate Blocking buffer not available. Return immediately. 0 10 t

Initiate I/O Channel and device are free and in Initiate I/O and return. 0 0 o or -1
and no wait automatic. Status in X register only

meaningful if A = 1 in the
call and the A register is
zero upon return. X =-1
if the AIO Receiver will not
be acknowledged; other-
wise X = O.

Channel and/or device are busy. Return immediately. 0 -1 t

Manual intervention is required Return immediately. -1 -1 t
(manual mode or device not recognized).

Completion available without I/O Return immediately. o or -1 See t
being initiated. Table 9

Check and I/o still in progress. Return immediately. 0 -1 t
no wait

I/o complete. Return after end-action, o or -1 Comple- Byte
if any. tion code count

(Table 9)

Initiate and Channel and device are free and Initiate I/o and wait for o or -1 See Byte
wait automatic. completion. Table 9 count

Channel or device are busy. Wait and keep trying.

Device number is not recognized or is Type out the proper mes-
write protected. sage to operator and retry.

Device is in manual mode. Type out EMPTY message
to operator and retry.

Initiate and I/o still in progress. Wait, and keep checking.
wait or check
and wait I/O complete. Perform any end-action o or -1 Comple- Byte

and return. tion code count
trans-
mitted

tUnspecified.

ttSector size (in bytes) of the device containing the BT area.

38 Service Routines

Table 9. I/o Completion Codes

E Reg ..

o

-1

-1

o

o

o

o

0

0

0

0

0

A Reg. Mea n.i ng

o Operation successful.

-1 Operator intervention is required.
Normally ,'this error is equivalent
to an I/O error.

1 Irrecoverable I/O.

2t Operation not meani ngful for this
device.

3t , End-of-fi Ie encountered.

4t End-of-tape encountered.

5 Incorrect record length.

6 No I/O pending for this check
operation.

7t Device is write-protected.

8 Beginning-of-tape encountered.

9
t

Device unavailable.

lOt Blocking buffer unavailable.

tStatus also meaningful under initiate I/O and no wait.

On a check operation, the byte count returned in the X
register may not be meaningful if the calling sequence does
not specify the same count as the initial read.

If the order code is X'OO', the following device status in­
formation is returned.

Register

A

Status Information

Device name (EBCDIC):

RD == RAD/disk file

KP == keyboard/printer

PT = paper tape

Comment

X register contains the number of data bytes transmitted.

The operator was appraised during the error recovery pro­
cedure that intervention is required.

If error recovery was specified, the maximum number of
retries have been unsuccessfully attempted.

Either an operational label was assigned to file zero or I/O
operation is not meaningful for the device.

Significant only for magnetic tape and sequential RAD
files (except in automatic mode when significant also for
cards, paper tape, and keyboard/printer).

Significant only for magnetic tape or sequential and
random-access RAD files.

For read opera tions, the requested byte count does not
equal the device's physical or logical record size. For
write operations, the requested byte count is greater than
the device's physical or logical record size. For either
read or write, the actual byte count transmitted is returned
in the X register.

Error in I/O buffering. An initial no-wait I/O req.uest
either was not issued or was rejected.

Significant only for writing on magnetic tapes and RAD
files.

Significant only for reading backward and for positioning
magnetic tapes and sequential RAD files via M:CTRL.

Device was declared "down" through use of DU operator's
key-in.

Significant only for blocked RAD files.

Register Status Information

CR == card reader

CP == card punch

MT == magnetic tape

LP == line printer

.PL == plotter

LD = logical device. (E) not
meaningful

Service Routines 39

Register

E

Status Information

TDV device status byte (bits 0-7) and
physical device number (bits 8-15).

X Physical standard record size (bytes) for
non-RAD files or granule size for RAD
files.

If the code is X'lO', the following status information is re­
turned for random or packed files:

Register

A

E

x

Status Information

Address of the FORTRAN associated vari­
able (PTR).

File units per FORTRAN logical record.

File unit in bytes (granule or logical rec­
ord size).

If a read is attempted to a flawed track in disk pack files,
the header of the flawed track is read to determine its
01 ternate. The alternate track is then read as if it were
the original.

M:READ FUNCTIONS

M:READ is designed to read one logical record from the
specified device regardless of device type and whether the
record is EBCDIC or binary. Therefore, M:READ wi" set
up the proper order bytes for the actual device, using the
II pseudo order by te" given in the ca" to M: REA D on I y as
a guide. The user may request fewer bytes than are in the
record and only this number wi II be returned in his buffer.
However, if more bytes are requested than are in the
record, only the bytes in the record will be read. In
any case, the actual number of bytes read will be re­
turned in the X register when the completion code is re­
turned, and if this is not the same as the number of bytes
requested, an lIincorrect length ll code will be returned.
While it is not always necessary for the user to check all
possible return codes, it may be useful to print them out to
aid in debugging.

If an attempt to read a record from magnetic tape results in
the detection of an irrecoverable transmission error and
incorrect length condition, and if fewer than eight bytes
were read from tape, it will be skipped and the next record
on tape will be read.

Using M:READ, a user can read 80 EBCDIC bytes regardless
of whether they come from cords, paper tape, magnetic
tape, keyboard/printer, or RAD. M:READ will perform
standard editing from paper tape to give a record a format
identical to card image output.

By using a "read and no wait" followed later by a "check
for input complete ll the user can effectively overlap input
a nd compute.

40 Service Routines

The order code X100' is used to request information about
an unknown device, and may be helpful in determining the
optimum blocking sizes to use.

When using M:READ to make requests on a Logical Device
(refer to Chapter 5 - I/O Operations for a description of
Logical Devices), where Logical Device is used in the
sense of a mechanism to foci I itate information transfer be­
tween tasks independently of real devices, the foJ lowing
observations should be made:

1. Channel timeout does not apply.

2. Read backward is not meaningful.

3. Read Binary and Read Automatic are not differentiated.
Only one record, as specified by buffer address and
byte count, is transferred per request.

REAL-TIME PRIORITY

All of the I/O routi nes are reentrant, and any input can be
interrupted for a higher-priority task up to the "point of no
return ll of setting Monitor status flags and loading channel
registers. External and internal interrupts are inhibited for
up to 100 microseconds of CPU time during the actual SIO
sequence. Keeping a high priority task active and looping
on an input request to a busy device enables the task to
seize control of the channel or device as soon as the cur­
rent I/O operation completes.

SPECIAL EDITING FOR CARD READER

Read Automati c. Any cards with a 11111 and "211 punch in
column 1 are automatically read as binary; all other cards
are read as EBCDIC or BCD. (For nonstandard bi nary cards,
the user must use IIread binaryll.) It is possible to specify
that all cards from a certain file are to be read as BCD and
converted by the M:READ routine to EBCDIC before being
returned to the user. Since this would apply only to one
file, it is possible to read some cards in EBCDIC and some
in BC D from the ca rei reader. (BC D card codes are pro­
duced by an IBM 026 keypunch, and EBCDIC card codes
are produced by an IBM 029 keypunch.) The EBCDIC
record size is 80, and the binary record size is 120 bytes.

An incorrect length status is returned if the requested byte
count does not exactly match. An lI end-of-file ll status is
returned when an EBCDIC card that begins with ! EOD is
input into the user's buffer. An "end-of-tape" status is
never returned.

Read Binary. An "incorrect length ll status is returned if
the requested byte count does not equal the maximum num­
ber of bytes requested in the calling sequence. The num­
ber of bytes requested, up to a maximum of 120, are input
in the user's buffer. IIEnd-of-file ll and "end-of-tape ll status
codes are never returned.

SPECIAL eDITING FOR PAPER TAPE OR KEYBOARD/
PRINTER

Read Automatic. All input from paper tape or keyboard/
pri nter is initiated ina one-byte-at-a-time mode. From
paper tape, the read order is always "read ignori ng leader".
If the first byte is a code of X' 1C ' , X'3C', X'FF ' , X' 9F ' ,
X'BF ' , X'DF', or X' 78 1 (which can only happen with paper
tape), the M:READroutine switches to a binary mode and
reads up to 119 more bytes (for a total of 120 in the record).
The code byte will be the first byte in the user's buffer.

Code bytes are all invalid EBCDIC codes in the sense that
they are not printable graphics or control codes. Since
they are all supersets of the card reader "1 and 2 punch"
rule for column one, the same codes for "read automatic"
can be used for the card reader as for paper tape and, in
both cases, the code is part of the user's data buffer. If
the first byte from the paper tape or keyboard/printer is not
one of the bi nary codes M:READ conti nues to read one byte
at a time until a NEW LINE code is encountered.

When a NEW LINE code is encountered, input transmission
is terminated and the line image is filled out with blanks
to the requested byte count. The NEW LINE code is not
transmitted to the user's buffer. (If a NEW LINE code is
the first code in the input line, it is ignored.)

Thus, all EBCDIC records are of variable length, up to the
maximum requested or until a NEW LINE is encountered.
Further, EOM and cent (¢) have special meani ngs withi n
the user's data line. An EOM causes the entire line up to
the present position (includi ng the EOM byte) to be dis­
carded. A ¢ sign acts like a backspace. For each ¢ sign
received, this byte and the byte preceding it are thrown
away.

When reading binary records in the automatic mode, 120 bytes
are read regardless of the number of bytes requested. For
EBCDIC records, the paper tape is read up to and including
the NEW LINE code. For either EBCDIC or bi nary records,
not more than the maximum number of bytes requested is
transmitted to the user's buffer. The requested byte count
must be 80 for EBCDIC records and 120 for binary records.
Any other byte counts result in an "incorrect length"
status return.

An "end-of-Hlell status is returned when an EBCDIC record
that begins with lEaD is input into the user's buffer.

Read Automatic from Model 4191 or 4193 Keyboard/Printer.
A Read Automatic order for a Model 4191 or 4193 keyboard/
pri nter (Model 530 systems only) causes a prompt char­
acter (/) to be printed immediately prior to reading from
the keyboard - there is no INPUT light to indicate II read"
state. Otherwise, the operation is the same as described
above except that a-control-H combination causes the en­
tire line to be cancetled (discarded) and control-X is used
for the backspace (character-erase) function.

Read" Bi nary from Paper Tope. The Read Bi nary order for
paper tape is "read immediate" unless it is changed to Il read

ignoring leader" by a PATCH. The physical record size
is the number of bytes requested by the user's input. The
next record starts immediately following the last byte of
the previous record and the requested byte count deter­
mines the end-of-record. "Incorrect length" and "end­
or-file" status codes are never returned. "End-of-tape"
status is not returned, even when the paper tape runs off
the reader.

,Read Bi nary from Keyboard/Pri nter. A read bi nary order
causes the keyboard/pri nter to read the exact number of
bytes specified. RBM performs no editing, and no bytes
(including NEWLINE codes) are considered control bytes.
"Incorrect length", "end-of-tape", and "end-of-fi Ie"
status codes are never returned.

SPECIAL EDITING FOR MAGNETIC TAPE

Read Automatic or Binary. Automatic and binary modes
are identical on 9-track tape, and M:READ supports only
the BCD and packed-binary modest for 7-track tapes. Only
the number of bytes requested is transferred to the user's
buffer regardless of the physical record. "Incorrect length"
status is returned when there are either too few or too many
bytes in the input record, and the tape is positioned at the
start of the next physical record. "Incorrect length" will
not be reported for too many bytes in the input record for
7-track, packed binary tapes.

If the tape is positioned past the end-of-tape marker and
error checking is specified, the device is not started and
"end-of-tape" status is returned. If error checking is not
specified, the device is started, and the status returned at
completion is as in Table 10 except that "end-of-tape"
status (A=4) is returned if a file mark is sensed. Read back­
ward operations on 9-track tapes are always permitted past
end-of-ta pe .

The Read Backward order produces a buffer with data in an
inverted condition. If the tape is at the load point when
the Read Backward order is given, no data is transmitted
and II BOTII status is returned. Read Backward wi II be
ignored for devices other than 9-track magnetic tape.

SPECIAL EDITING FOR SEQUENTIAL RAD FILES

Read Automatic or Binary. On a RAD, automatic and
binary modes are identica1. When reading from blocked
files, a blocking buffer must be supplied. If the calHng
program has not specified a blocking buffer, M:READ wi II
call M:OPEN to reserve a buffer from the calling task's
buffer poot. If no buffer is available, M:READ exits with
aUblocking buffer unavailable lJ status.

t The user should be thorough Iy famil i ar wi th the BCD and
packed-binary mode 1f 7-track magnetic tape is used. See
the Sigma 7-Track Magnetic Tope System/Reference Man­
ual, 90 09 78.

Servi ce Routines 41

Compressed records are decompressed by M:READ so that
only the expanded record, ,without compression codes, is
input into the user I s buffer.

A byte count can be requested that is less than, equal
to, or greater than the file's logical record size. The
number of bytes requested, up to a maximum of the logical
record size, is always transferred. If the byte count does
not equal the logical record size, "incorrect length" status
is returned. In any case, the file is positioned to the next
logical record, regardless of the byte count transferred.
For compressed files, the requested byte count is compared
to the byte count of the expanded record instead of the
logical record size. "End-of-file" status is returned when
the file is positioned at the logical EOF. II End-of-tapell
status is returned when the file is positioned at the logi­
cal EaT. This is true whether or not error recovery is
specified.

A Read Backward order wi II be interpreted as a Read
order.

SPECIAL EDITING FOR RANDOM-ACCESS RAD FILES

Read Automatic or Binary. Automatic and binary modes
are again identical. For unblocked random fi les, the
exact number of bytes requested will be put into the user's
buffer and lIincorrect length ll status will not be returned.
One or more granules wi II be read to satisfy the byte count.
RAD space between granules is lost. Unused parts of gran­
ules are ignored.

For blocked random files, no more than one record will be
transferred. A greater byte count request results in incor­
rect length. The file will always be positioned at the next
record after a successful transfer.

If the Read begins or extends beyond the file's ending
boundary, no data is transmitted and lI end-of-tape ll status
is returned. For blocked random files, an end-of-file may
also occur. This is true whether error recovery is specified
or not.

Note: For all disk files, no transfer will be initiated that
crosses a track boundary. Instead, it wi II be broken
into two transfers: one to transfer to the end of the
track, and a second to complete the transfer. There­
fore, in a "no-wait ll operation, a check must be
requested to complete the transfer. If an Ala Re­
ceiver is specified, it will be entered each time
channel end occurs, but it also must be specified in
each Check operation call.

M:WRITE .. (General Write Routine)

M:WRITE provides device-independent output with stan­
dard editing and standard error detection and correction.

42 Service Routines

The error hand ling procedure is opti ona I on each ca II to
M:WRITE. The calling sequence is

LDX adrlst

RCPYI P, L

B M:WRITE

where adrlst is a pointer to the argument list, which is a
set of two to six words in the user's program or in a temp­
orary stack. The argument list consists of six words:

word 0

Order

o 2345678 15

where

F

A

= 1 if a device-file number is specified.

= 0 if an operational label or device unit is
specified.

= 1 if an Ala Receiver address is specified.

= 0 if no Ala Receiver address is specified.

Note: only a foreground operation can specify
this.

W = 1 if wait for completion is unconditional.

= 0 if wait is only for lIinitiate and return ll ; re­
turn is immediate if the operation cannot be
started immediately.

E = 1 if standard error recovery is to be performed
at channel end for this operation. Five at­
tempts at error recovery wi II be made for ro­
tating memory devices and ten attempts wi II
be made for magnetic tapes if E is specified.
If I/o without a WAIT is specified, error re­
covery wi II not be performed unti I a "Check ll

is issued by the user.

= 0 if no error recovery is to be attempted.

R = 1 if a RAD record displacement is specified (can
only be specified for random-access RAD files).

= 0 if a RAD record displacement is not specified.

If the Order is II Check previous output for completion (04)",
the'R' is used as follows:

R == 0 'do not retry the operation if operator interven­
tion is required; instead, return 1I0perator
Intervention Required".

= 1 retry the operation, notifying the operator if
intervention is required.

SR if the user is doing his own blocking to an
RBM blocked or unblocked sequential RAD
fi Ie and an indication of a possible short
last record is to be retained in the file di­
rectory. If the record being written is ac­
tuallya short record, a flag will be set in
the IOCT for later transfer to the file direc­
tory when the file is closed. The actual byte
count of the record wi II be stored into the
effective last word of the record. If the
record is not a short record, the IOCT flag
is cleared; thus this specification is only
meaningful for the last record. Upon reading
the fi Ie, a Read request for the last record
(assuming a short record) would result in an
incorrect record length status (E = 0, A = 5,
X == actual byte count).

= 0 if short record logic is not to be invoked.

The following rules govern the usage of the
short record flag:

1. The record must be written from a loca­
tion that guarantees that the location
where the effective last word of the
record (as defined by the actual record
size) would lie within the domain of the
task. This should not be a problem since
the record is normally written from the
application programs block reserve. Fai l­
ure to do so from a background program
will result in a calling sequence error
(E = -1, A = 4). Since the boundaries
of a foreground program cannot always
be determined, interference with another
task can occur.

2. It is assumed that on Read operations
the user program is requesti ng a byte
count equal to or greater than the actual
record size. A Read request for less
than the actual record size would re­
turn an incorrect record length for each
read and a transfer of the request bytes
for each record, including the last rec­
ord, and may return more data than was
actually written into that record, since
RBM has no way of determining the writ­
ten byte count without reading the en­
tire record.

3. The 11 short record" specification is mean­
ingfut only for unblocked sequential and
blocked sequentia1 files and is ignored
for other devices or files. Only the last
record in the file retains the short record
indication.

4. The 11 short record l1 operati-an results in a
modification to the users buffer if the
record is a short record.

D = 1 indicates that the device has been marked
"down" by a DU key-in.

= 0 indicates that the device is not down.

I/O may not be performed on a "down II devi ce un­
less bit 7 of the request order word isa one; other­
wise, device-unavailable status is returned. Si­
milarly, I/O may not be performed on an "up"
device unless bit 7 of the request order word is a
zero.

The D bit is intended for the use of RBM diagnos­
tic programs to allow testing of failing devices.
User programs should code with the D bit reset
(D == 0).

Order is one of the following pseudo order bytes:

Order Operation

X'OO' Return information aboutthis devi ceo

X'Ol' Write binary.

X'03' Write file mark or !EOD.

X'04' Check previous output for comple­
tion (after a "no wait" initiation).

word 1

0

word 2

0

word 3

0

X'05' Write EBCDIC.

X'07' Check write (RAD only).

X'lO' Return information on FORTRAN
associated fi les.

Operational label or fi Ie number

15

Address of buffer containing data

15

Number of bytes to transmit

15

The byte count must be an even number when writing on
RAD fi les and may not exceed 65,534. It may be either
even or odd for all other devices, but cannot exceed
8192 bytes. If an odd byte count is requested, the first
byte is written from the right half of the word and the left
half is ignored. If an even byte count is requested, the
byte is written from the left half of the first word.

I

I

I

Service Routines 43

Output to the card punch assumes an even byte count. An
extra byte at the start of the buffer is sent if the count is
odd.

word 4

AIO Receiver or RAD record displacement

o 15

This is the address of the closed AIO Receiver subroutine
called by the I/O interrupt task at the channel end, if
A = 1 (word 0). If A = 0, this is the RAD granule displace­
ment (granule or record)

word 5

RAD record displacement (optional)

o 15

If an AIO address is specified (A = 1 in word 0), word 5
indicates the displacement from the start of the file (starting
with a displacement of zero). Transfer starts at the begin­
ning of the indicated file unit. Word 4 is the RAD file unit
displocement if A = O.

Packed and unblocked random files may be accessed randomly
or sequentially. Note that if the R-bit is not set for random
files, the file is processed sequentially.

RETURN REGISTERS

The 'return is to the location in the L register. The B regis­
ter is a Iways saved.

The status is returned in the E, A, and X registers. Status
and method of returning status are the same as for M:READ.

If the code is X'lO', the following status information is
returned for random or packed fi I es:

Register

A

E

X

Status Information

Address of the FORTRAN associated vari­
able (PTR).

File units per FORTRAN logical record.

File record size in bytes (granule size if
random fj Ie, logical record size if packed
random file).

If a write is attempted to a flawed track in disk pack files,
the header of the flawed track is read to determine its a Iter­
nate. The alternate track is then written as if it were the
original.

44 Servi ce Routi nes

M:WRITE FUNCTIONS

M:WRITE is designed to write one physical record on the
device specified, regardless of the device type. Because
of differences in Write orders for the card punch, it is
necessary to specify whether the output record is bi nary or
EBCDIC. (For most other devices, the difference is not
meani ngful.)

Not more than one physical record will be written for a
si ngle Write order. For devices like the card punch, if
fewer than a standard number of bytes are specified (80 for
EBCDIC and 120 for binary), the remainder of the record
is padded with blanks (EBCDIC) or zeros (binary). Most of
the general comments which apply to M:READ also apply
to M:WRITE.

Write End-of-File. Order code X'03' produces the fol­
lowing results:

Device Result

Li ne Pri nte r No effect

Keyboard/Pri nter No effect

Card Punch !EOD card

Paper Tape Punch IEOD Nl

Magneti c Tape EOF tape mark

RAD Logi ca I fi I e mark

For devices where the Write End-of-File order has no
meaning, a status of "operati on not meaningful for this
device" wi II be returned. If a magnetic tape or RAD fi Ie
is positioned at the end-of-tape, the end-of-fi Ie wi" be
output. (This is the only writing allowed past the end-of­
tape when error checking is specified.) For RAD fi les, the
end-of-file is set to the current record position within the
file as determined by the most recent access through
M:READ, M:WRlTE, or M:CTRl.

Write EBCDIC to Keyboard/Printer. The first byte is as­
sumed to be a carriage control byte and is never printed.
If the byte is a zero or a one, double spacing is used; other­
wise, single spacing is used. In any case, this first byte
is not sent to the keyboard/printer. Trailing blanks are
removed and a NEW LINE code is command chained to the
last nonblank byte of the user's buffer. If there are more
than 85 printable characters, those beyond 85 are ignored.

Write Binary to Keyboard/Printer. The exact number of
bytes specified is written. No format byte is assumed, no
editing is performed, and no line format is imposed. It is
the user's responsibi lity to insert NEW LINE codes if more
than 85 bytes are output. A maximum of 256 bytes may be
output with one operation.

Write EBCDIC to Paper Tape. Trailing blanks are removed
and a NEW LINE code is inserted as the last byte (if not
already present). The entire record, specified by the byte

count, is edited and output and an "incorrect length" status
is never returned.

Write EBCDIC to Line Printer. The first byte per record
is always assumed to be a carriage control (format) byte,
and is never printed. With any odd byte count (as in all
of the I/O), the first byte transmitted is from the right
half of the first word, and the left half of the first word is
ignored.

The print routine changes the logical format byte (as shown
below) to the proper physical format code for the printer.
If more than 133 bytes are specified, the remainder beyond
133 bytes is ignored and an lIincorrect length" status re­
turned. If fewer than 133 bytes are specified, the right
(trailing) portion of the printed image will contain blanks.
However I the user's buffer is not modified. The print rou­
tine will first data chain on the order byte and format byte
in the Monitor area and then on the user's print image.

If it is desired to force single spacing, there may be a word
appended to the begi nni ng of the user buffer with a bl ank
in the right half; the byte count is then increased to an odd
value, and up to 132 bytes from the original buffer will be
pri nted with the extra IIblank ll used as the format byte to
force single spacing. The format codes (in EBCDIC) are

Format Byte

blank

o

Effect

No space before printing, single
space after pri nti ng.

Page eject before pri nting, single
space after pri nti ng.

Single space before printing, single
space after printing.

No space before printing, no space
after printing.

Any other format code wi II be treated I ike a blank but wi II
not be printed. These are standard FORTRAN format char­
acters with the exception of the minus sign (-) which is sub­
stituted for the standard FORTRAN plus sign (+) to allow
overprinting. The user can use M:IOEX (General I/O
Driver) to send the standard format code or any other format
code for Xerox pri nters.

Write Binary to Line Printer. Writing binary to the line
printer isidentical to writing EBCDIC to the line printer
except that the first byte from the user buffer is treated as
a pseudo VFC and is interpreted by the line printer handler
(see Append i x F) ~

Write EBCDIC to Card Punch. Regardless of the byte count
requested, 80 bytes are always output. If fewer than 80
bytes are requested, the punch image is filled out with
blonks. The image is moved to a Monitor buffer; the user's
buffer is never modjfied. If more than 80 bytes are re­
quested, only the first 80 are output and the surplus is

ignored. In this case, lIincorrect length" status is returned.
If the file has been declared BCD at system initialization,
all EBCDIC output records are converted to BCD before
being punched. (The operation is performed in the Moni­
tor's buffer.)

Write Binary to Card Punch. Regardless of the byte count
requested 120 bytes are a Iways output. If less than 120
bytes are requested, the punch image is padded with
trailing zeros. (The image is moved to 0 Monitor buffer;
the user's buffer is never modified.) If more than 120 bytes
are requested, only the first 120 will be output and the
remainder ignored. In this case, an "incorrect length"
status is returned.

Write EBCDIC or Binary on Magnetic Tape. Variable­
length records are possible; no check is made of the data
and no editing is performed. The exact byte count (up to
the allowable maximum) is always written, however for
rei iabi I ity reasons, it is recommended that byte counts less
than twelve or greater than 8190 not be used. For 7 -track
magnetic tape, the data is recorded in either BCD or
packed-binary format, which may cause an lIincorrect
length ll status if the record is not read with the same byte
count used to write the record (see the 7-Track Magnetic
Tape System Reference Manual, Publ ication 90 09 78). No
lIincorrect length ll status is ever returned.

If the tape is positioned past the end-of-tape marker and
error checking is specified, the data is not transmitted and
lIend-of-tape" status is returned. If error checking is not
specified, the data is transmitted and the "end-of-tape ll

status is not returned.

If the tape is physically write-protected and an "initiate
no-wait" order is requested, the "write-protected" status
is returned. If an "initiate and wait ll order is requested,
the Monitor puts out an alarm and waits for operator action
(see the pseudo order bytes under the definition for ORDER
under word 0 of the argument list).

Write EBCDIC or Binary on Sequential RAD Files. When
writing on blocked files, a blocking buffer must be sup­
plied. If the calling program has not specified a blocking
buffer, M:WRITE will call M:OPEN to reserve space in the
task's buffer pool. If no buffer is avai lable, M:WRITE exits
with a IIblocking buffer unovailable" status.

Records to be written on compressed files are edited with
compression codes inserted ina Moni tor buffer. The data
in the user's buffer remains unchanged.

For compressed files only, the logical record size has no
meaning and the requested number of bytes is compressed
and output. For all other fHes, a byte count less than,
equal to, or greater than the logical record size can be re­
quested and the requested number of bytes, up to the maxi­
mum of the logical record size, is always output. If the
byte count is greater than thelogica1 record size, an "in­
correct length II status is returned. In any case, the file is
positioned to the next logical record regardless of the byte
coun t transferred.

Service Routines 45

An lIend-of-tape II status is returned when the fi Ie is
positioned at the logical EOT (whether error checking is
specified or not or if the current operation wi /I cross
the logical EOT). Data cannot be output past a logical
EOT.

If a Write is attempted on a file that is either logically
write-protected or on a RAD track that is physically write­
protected, a "write-protected II status is returned and no
data is output.

Since the RAD has no read-after-write capability as do
magnetic tapes, a separate Check-Write operation is essen­
tial to ensure absolute validity of the data output. How­
ever, since a separate Check-Write operation requires as
much time as the original write operation, and the RAD has
a high degree of reliability, the capability should only be
used when the data is sensitive or cannot be regenerated.
Backspacing operations must be performed before the Check­
Write operation, since no repositioning is performed at this
time. For compressed or blocked files, no Check-Write is
allowed and a status of "operation not meaningful II will be
returned.

Write EBCDIC or Binary On Unblocked Random-Access RAD
Files. Although a granule size may be specified when a
random file is defined, the size does not retrict the maxi­
mum number of bytes that may be written. However, each
Write operation begins at the start of a granule, and
uncompleted granules are fi lied out with zeros. The exact
number of bytes requested is output; never with "incorrect
length" status return. If the Write begins or extends beyond
the file'S ending boundary, no data is transmitted and an
"end-of-tape" status is returned, whether or not error
recovery is speci fi ed.

If Q Write is attempted on a file that is either logically
write-protected or on a RAD track that is physically write­
protected, a write-protected status is returned and no data
is output.

Write EBCDIC or Binary on Blocked Random-Access RAD
Files. Any access is restricted to the record size regardless
of whether the access is random or sequential. Incorrect
I ength and end-of-tape may occur. Write protection con­
siderations are the same as for unblocked random files.

Note: For alf disk files, no transfer will be initiated
that will cross a track boundary. Instead, it will
be broken into two transfers: one to write to the
end of the track, and a second to complete the
transfer. Therefore, in a "no-wait" operation, a
check must be requested to complete the transfer.
If an AIO Receiver is specified, it will be entered
each time channel end occurs, but it also must be
specified in each check operation call which may
be different from the AIO Receiver given in the
Write call •

When. using M:WRITE to make requests on a Logical Device
(refer to chapter 5 - I/O Operations for description of

46 Service Routines

Logical Devices), where Logical Device is used in the sense
of a mechanism to faci litate information transfer between
tasks independently of real devices, the following observa­
tions should be made:

1. Channel timeout does not apply.

2. Check Write is not meaningful.

3. Write Binary and Write EBCDIC are not differentiated.

M:CTRL (General Control Routine)

M:CTRL provides device-independent positioning capabili­
ties for magnetic tapes (both 7-track and 9-track) and for
RAD files. All M:CTRL control functions are exempt from
channel time limih. The calling sequence is

LDX

RCPYI

B

adrfst

P, L

M:CTRL

where adrlst is the pointer to the argument list which is
a set of two or five consecutive words either in the user's
program or in a temporary stack. This argument list appears
as follows.

word 0

o 2 34 5 6 7 8
L

Order

15

where
1\ C/

F = 1 if a device-file number is specified.
= 0 if an operational label or dev.ice unit number
is specified.

A = 1 if an AIO Receiver is specified in word 4
(specifiable by foreground only). 'AI is
ignored if 'W' = 1.

= 0 if no AIO Receiver is specified.

W = 1 if wait for completion is unconditional.

= 0 if wait is only for; "initiate and return",
return is immediate if the operation can­
not be started immediately.

If the Order is "Check previous output for comp letion (04)",
the 'R' is used as follows:

R = 0 do not retry the operation if Operator Inter-
vention is required; instead, return" Opera­
tor Intervention Required".

= 1 retry the operation, notifying the operator if
intervention i~ required.

o I indicates that the device has been marked
"down ll by a DU key-in.

= 0 indicates that the device is not down.

I/O may not be performed on a "down u de­
vice unless bit 7 of the request order word is
a one; otherwise, device-unavailable status
is returned. Simi larly, I/O may not be per­
formed on an II Up " devi ce unless bit 7 of the
request order word is a zero.

The 0 bit is intended for the use of RBM di­
agnostic programs to allow testing of fai ling
devices. User programs should code with the
D bit reset (0 = O).

ORDER is one of the following pseudo order bytes:

Order Operation

X'04' Check previous operation for com-
pletion (after a "no wait ll initiation)

X'EB' Space Record Backward

X'EF' Space Record Forward

X'FB' Space Fi Ie Backward

X'FF' Space Fi Ie Forward

X'2B' Rewind Off Line

X'3B' Rewind On Line

word

Operational label or file number

o 15

Words 2 and 3 are currently unused and should be coded
as zeroes.

word 4

AIO Recei veT Address

If A = 1 (in word 0) and 'WI 11, this is the address of the
closed AIO Receiver subroutine entered by the I/O interrupt
task when the associated tape motion is complete.

Note: In certain cases, an I/O interrupt will not occur
and the AIO Receiver will not be entered. When
such a situation exists, M:CTRl wi J I return with
the '.X' register set to -1, as for M:READ/M:WRITE
functions.

Return is to the location in the L register. The B register is
always saved. Status is returned in the E, A, and X regis­
ters, as in M:READ. No wait initiate requests must be
followed by a check operation. Otherwise, subsequent
requests on this file will result in a calling sequence error.

Note: For compressed RAD files, where these operations
--- are not meaningful, an "operation not meaningful ll

status wi II be returned.

M:CTRL FUNCTIONS

If the device is a magnetic tape or a RAD file, it is posi­
tioned as indicated. The record spacing commands are uti­
I ized for physical records and are not meaningful for
FORTRAN logical records.

Space Record Backward. The Space Record Backward order
positions a magnetic tape to the start of the previous physi­
cal record. If the tape is already at load point, the order
is ignored and a BOT status is returned. If the previous
record was an end-of-file, EOF status is returned.

For compressed RAD files, this order. is illegal and a
status of "operation not meaningful for this device" will
be returned.

For all other RAD fi les, the file is positioned to the start
of the previous logical record. If the fife is positioned at
the logical BOT, the order is ignored and a BOT status is
returned. If the file is positioned immediately beyond
the logical EOF, EOF status is returned and the fife is
repositioned to the point immediately before the logical
EOF. If the file is blocked and there is output data in
the blocking buffer, it is written on the RAD before the
fi I e is repositioned.

Space Record Forward. The Space Record Forward order
positions a magnetic tape ot the start of the next physical
record. If the record skipped was an end-of-file, EOF
status is returned.

For compressed RAD files, this order is if/egal and a
status of "operation not meaningful for this device" will be
returned.

. For all other RAD files, the file is positioned to the start
of the next logical record. If the record skipped was the
logical EOF, an "end-of-file ll status is returned. If the
file is positioned at the logical EOT I the record is not
skipped and an "end-of-tapel! status is returned.

Space File Backward. The Space Fife Backward order posi­
tions a magnetic tape to either the start of the previous file
mark (and EOF status is returned) or load point (if there is
no fi Ie mark). If the t1lpe is already at the load poi nt I the
order is ignored and BOT status is returned.

For RAD files, the file is positioned to either the start
of the logical EOF or to the logicoJ BOT. If the file
is positioned immediately beyond or.at the logical EOF,
it is repositioned to the point immediately before the

Servi ce Routines 47

logical end-of-file, and EOF status is returned. If the
file is positioned before the logical EOF, it is repositioned
to the beginning-of-tape and BOT status is returned. If the
file is already positioned at the logical beginning-of-tape,
the order is ignored and BOT status is returned. If the file
is blocked and there is output data in the blocking buffer,
it is written on the RAD before the file is repositioned.

Space File Forward. The Space Fife Forward order positions
a magneti c tape to the start of the next fi Ie. A status of
EOF is returned.

For RAD files, the file is positioned immediately at the
logical EOF and "EOP' status is returned. If the file
is already positioned beyond the logical EOF or no logi­
cal EOF has been written, the order is ignored and an
lIillegal RAD sequence" status is returned. If the fife is
blocked and data has been written in the blocking buffer,
it witt be written out before the file is repositioned.

Rewind On-line. The Rewind On-line order rewinds mag­
netic tape to the load point. If the tape is already at the
toad po int, no error status is returned.

For RAD files, the fife is positioned to the logical BOT.
H the file is already at the food point, no error status
is returned. If the file is blocked and there is output
data in the blocki ng buffer, i.t is written on the RAD before
the order is executed.

Rewind Off-line. For magnetic tape, the tape is rewound
and unloaded. The Rewind Off-Line operation is useful
for a "save" tape or for a tape at the end-of-reel when a
new tape must be mounted. The user must control and check
this condition.

For RAD files, the file is closed by a call to M:CLOSE.
If the file is blocked and there is output data in the
blocking buffer, the data is written on the RAD before
the order is executed. In addition, the file directory
is updated on the RAD to reflect the current position of the
logical file mark.

M:DATIME (Calendar Date and Time of Day)

M:DA TIME provides the calendar date or time of day I or
both, to either foreground or background programs in
EBCDIC format. The calling sequence is

LDX adrlst

RCPYI P,L

B M:DATIME

where adrlst is the pointer to the argument list, which is a
set of two consecutive words either in the user's program

48 Service Routines

or in a temporary stack.
follows:

This argument list appears as

word 0

o 2 3 15

where

D = 1 if return calendar date is specified.

= 0 if calendar date is not required.

T = 1 if return time of day is spe~ified.

= 0 if time of day is not required.

S

a

word 1

o

= 1 if date and time are supplied by the user (in
Address and Address + 1).

= 0 if current date or time of day, or both, are
to be used.

= 1 if date and time are to be unconditionally
solicited from the operator.

= 0 if current date or time of day or both are to
be used.

Address

15

where Address is the location where the date and time of
day are stored.

Return is to the location in the L register. The B register is
always saved.

M:DATIME FUNCTIONS

K:CLOCK in the communication region is a pointer to the
accounting table that contains the dote and time. The date
and time are set at system initialization and can be reset
by the operator through unsolicited key-ins. The date is
automatically advanced (if Clock 1 or JOBACCT is indi­
cated) and provisions are included for year changes includ­
ing leap-year adjustment. Thus, under continuous opera­
tion, only adjustments to accommodate daylight savings
time changes are required. The date or time of day, or
both, are stored in the following format in the area of core
specified by word 1 of the argument list:

Date: M

~
D

Y

~

Time: H

M

M

D

~
Y

~

R

N
{

2 bl anks are sup­
plied when both
date and time are
requested

Note: Time of day is given in military time (0000-2359).

If the date and the time are suppl ied by the user (S = 1),
the ti mes suppl i ed in Address and Address + 1 wi II be over­
laid by the calendar date or time, or both. This option is
used by the Job Control Processor! PURGE command.

If 0 is specified, the date and/or time will be solicited
from the opera tor.

M:TERM , (Normal Exit from User Programs)

M: TERM provides an entrance back to the Monitor on a nor­
mal termination of a user program. The calling sequence is

RCPYI P,L

B M:TERM

M: TERM FUNCTIONS

For an unload request, M:TERM triggers the RBM Control
Task routine S:LOAD for the next load if any other entry
is in the queue stack. If no additional requests are present
and S:LOAD has checkpointed the background, S:LOAD
triggers RBM Control Task S:REST for a restart. Foreground
blocking buffers are not closed. A call to M:CLOSE is
required before calling M:TERM to guarantee that blocking
buffers are correctly merged with RAD files. If the call is
from a real-time foreground program, the task is disabled
and M:EXIT is called to perform the exit functions. If the
calling task occupies nonresident foreground, an unload
operation is performed.

On calls from the background the L register must be set to
a background address or the background ca 11 wi II be aborted
with a protection violation. All I/o is allowed to run
down. All files util izing blocking buffers wi II have their
blocking buffers closed out. If an unconditional post­
mortem dump was specified, it wi II be performed at this
time. The Control Command Interpreter will then be read
into the background and will read the next control command.

M:ABORT (Abort Routine)

When a background program fai Is for any reason, a call to
M:ABORT provides a method of clearing the background
program out of core memory and for terminating all active
I/O for the background program. The calling sequence is

LDA loc

LDX code

RCPYI P,l

B M:ABORT

where code is a word of EBCDIC information and loc is a
word of hexadecimal information that is printed on the DO
and OC devices to show why the job was aborted.

Return is never to the location in the L register. If the
call is from a real-time foreground program, the task is
disabled and M:EXIT is called to perform the exit functions.
If the calling task occupies the nonresident foreground area,
an unload operation will be performed. On calls from the
background; the L register must be set to the background
or the background call wi II be aborted with a protection
violation. All I/O in progress is allowed to complete and
a postmortem dump will be performed at this time if pre­
viously requested.

M:SAVE (Interrupt Save Routine)

M:SAVE routine performs the full context switching when
a foreground interrupt occurs. It is avai lable only for fore­
ground programs that are connected directly to an interrupt.
The calling sequence is

RCPYI P, L

B M:SAYE

ADRL tcb

where teb is the address of the Task Control Block for the
task.

Return is to the va lue in the L register + 1. The contents
of all registers except A and L are transferred to the TCB.

M:SA VE FUNCTIO NS

The contents of A and L must be saved in the proper place
in the TCB before the task calls M:SAVE. M:SAVE then
saves the original value of X, T, B, and E in the TCB. The
interrupting task has its own floating accumulator set into
locations 0001-0005 and the previous task IS floating ac­
cumulator pointers are saved. The M:SAVE routine stores
the temporary stack and TCB pointers in locations 0006 and
0007 for this current task and saves the old values in the
interrupting task's TCB.

If the flag in the TCB is set for II no temporary storage"
M:SAVE saves only the hardware registers and the TCB
pointers, and not the full context.

If JOBACCT has been specified, M:SAVE will switch
charges to foreground at the firs.t interrupting foreground
task.

An additional entry point, M:FSAVE, is available for users
of the Store Multiple instructiont• This entry point, with
an address literal in cell X'C7 I

, assumes that all registers

tStore Multiple is a standard feature on Xerox Model 530
and is an optional feature·on Xerox Sigma 3 computers.

Service Routines 49

have been saved, but performs the remainder of the functions
of M: SA VE as I isted above. The ca 11 i ng sequence is

RCPYI P, L

B

ADRL tcb

where tcb is the address of the Task Control Block for the
task.

M:EXI1 (Interrupt Restore Routine)

M:EXIT restores the contents of all registers prior to exit
from a foreground task, switches the full context back to
the previous task, and performs the actual exit sequence.
The calling sequence is

RCPYI P, L

B M:EXIT

Return is to the interrupted task at the address saved in the
PSD. All registers are restored to the same value they had
at the time of the interruption.

M:EXIT FUNCTIONS

The operations performed by M:EXIT are essentially the re­
verse of those in M:SAVE. It is necessary to inhibit inter­
rupts for about 11 microseconds for the actual exit sequence,
but it is not necessary to call M:EXIT to perform the exit
sequence if it can be performed by the user's program.

The TCB contains a flag to indicate whether any temporary
storage is used. If the task does not use any Monitor I/O
routines or the floating accumulator, no temporary storage
is needed. In this case, only the hardware registers are
restored. M:EXIT wi II restore charges to background if
JOBACCT has been specified and return is to background.

M:HEXIN (Hexadecimal to Integer Conversion)

The M:HEXIN routine converts a hexadecimal number (rep­
resented in EBCDIC) to a binary integer. The calling
sequence is

LOA left

RCPY A,E

LOA right

RCPYI P, L

B M:HEXIN

where I eft and right contain the EBCDIC codes for the hexa­
decimal number (the left and right part of a possible four­
byte field).

50 Service Routines

Return is to the location in the L register. The resul t is in
the A register, the X register is changed, and the B register
is unchanged.

M:HEXIN FUNCTION

Blanks and zeros are treated as hexadecimal zeros. No tem­
porary storage is used and no error checking is performed.

M:INHEX (Integer to Hexadecimal Conversion)

The M:INHEX routine c;:onverts a binary integer to a hexa­
decimal representation in EBCDIC code. The calling se­
quence is

LOA integer

RCPYI P, L

B M:INHEX

where integer is the value to be converted.

Return is to the location in the l register. On return, the
E register contains the leftmost two bytes, and the A regis­
ter contains the rightmost two bytes. The X register is
changed, but the B register is unchanged.

M:INHEX FUNCTION

Four fields of four-bit hexadecimal codes are converted to
four fi elds of eight-bit EBCDIC equivalents. No temporary
storage is used.

M:CKREST (Checkpoi nt/Restart Background)

M:CKREST checkpoints the ~ckground (i. e., writes it out
into a predefined area on the RAD), turns the background
space over to the foreground program, and then restarts the
background when requested. The call ing sequence is

LDX adr/st

RCPYI P, L

B M:CKREST

where adrist is a pointer to an argument list, as follows:

word 0

o 2 3 15

where

c = 1 if request is to "checkpoint" the background.

= 0 if request is to "restart" the background.

word

o

R - 1 if a Checkpoint Complete Receiver is to be
informed when the checkpoint is complete.
(Valid only if C = 1 and P = 0.)

= 0 if no Checkpoint Complete Receiver is used.

P = 1 if checkpoi nt is to be performed at the level
of the calling task (meaningful only if C = 1).

= 0 if checkpoint is to be performed at the level
of the RBM Control Task (meaningful only if
C = 1).

Checkpoint Complete Receiver

15

The Checkpoint Complete Receiver should be used like
an AIO Receiver. That is, after requesting a checkpoint,
the foreground program should release control by a call
to M:EXIT and regain control through the specified re­
ceiver address when the checkpoint operation is com­
pleted~ Only a foreground program can checkpoint the
background; a background program cannot checkpoint the
background area.

Return is always to the location contained in the L register.
The B register is always saved. The A register contains the
status (1 if operation is impossible; 0 if successful).

M:CKREST FUNCTIONS

Checkpoint. All active I/O for the background is allowed
to complete but no error recovery is performed for this I/O
unti I the background is restarted. Peripheral devices dedi­
cated to the background should not be repositioned.

When all I/O has terminated, the entire background space
is wri tten out onto a prespeci fi ed area of the RAD and the
background is set "protected". If the background is truly
.. empty" t when the request is made, the checkpoi nt is per­
formed immediateiy, and no RAD is required for the check­
pointing procedure. If a Checkpoint Complete Receiver
was specified, it wi II be entered with the L register set to
the return address and wi II he run at the RBM Control Task
level.

A checkpoint operation will be automatically performed
whi Ie loading a nonresident foreground program that ex­
tends into the background. When the active nonresident
program unloads (see Monitor service routine M:LOAD),
the background will be automatically restarted. When the
checkpoint operation is completed, the message! ! BKG
CKPT is output to inform the operator.

tThis would occur after a !FIN command was encountered
or when the Monitor was in an idle state after an abort of
an attended job.

Restart. A restart is always performed at the priority level
of the RBM Control Task. It is assumed that no peripherals
have been repositioned. The core allocation table is re­
stored to the previous value before the checkpoint took
place, and the background is then loaded in from the RAD
and continues as before.

If no background program was in progress when the check­
point was called for, the background is set to an unprotec­
ted status but no attempt is made to reload a program from
the RAD when the foreground terminates.

The message!! BKG RESTART is output to inform the opera­
tor that the background has been released by the foreground.
See Chapter 6 for more detai Is.

M:lOAD (Absol ute Core Image Loader)

M:LOAD initiates the loading of the root segment of a resi­
dent or nonresident foreground program by entering the re­
quested program name into the queue stack. It also initiates
the loading of the root segment of a resident or nonresident
foreground program or background processor upon request
from the Job Control Processor, or from a background pro­
gram that desires to load and transfer control to another
background program. M:LOAD is also used to release (un­
load) the nonresident foreground space for use by the next
program in the queue.

The calling sequence is

LDX adrlst

RCPYI P,L

B M:LOAD

where adrlst is a pointer to an argument list, as follows:

word 0

Ip\QjuJo--------ol
o

where

2 3 15

P = 1 indicates a request to read from the specified
device-file number (word 1). The device­
file number must currently be assigned to a
RAD file. (This option is restricted for use
by the Job Control Processor.)

= 0 indicates a request to read the specified pro­
gram from the user1s processor (UP) RAD area.
The program name is given in Cl-C8.

Q = 1 indicates the request is to be queued if it can­
not be satisfied now (meaningful only for fore­
ground loads).

= 0 indicates the:'request is to be ignored if it can­
not be satisfied now.

Service Routines 51

U = 1 indicates an unload operation, in which case
P and Q are not meaningful.

= 0 indicates a load operation.

word 1

DFN or C1 and C2

o 15

word n

C7 C8

o 7 8 15

where

DFN is the device-file number.

C 1-C8 is the program name (must be 8 characters,
including trailing blanks; program must reside in
the UP area).

For foreground loads, return is always to the location in
the L register. The contents of the B register are always
saved and the A register contains status codes, as follows:

A Register Meaning

o Operation is successful.

Request cannot be honored at this time
(this could occur if Q = 0 and a non­
resident foreground area was already
committed; or if Q = 1 and the queue
stack was full).

M:LOAD FUNCTION

After saving the nonresident program name or device-file
number request, M:LOAD triggers the RBM Control Subtask
S: LOAD and then exits to the location in the L register.

The actual loading of the program is accomplished at the pri­
ority level of the RBM Control Task. S:LOAD will ensure
that sufficient blocking buffers are available for those oper­
ational labels contained in the header record 'of the proces­
sor. If the request was for a nonresi dent foreground program
that extends into area reserved for the background, S: LOAD
automatically causes the background to be checkpoi nted.

If the request is from a background program, a load and
transfer control operation is assumed. Blocking buffers
from the current blocking buffer pool will be closed. All
operational labels except PI will retain their current assign­
ments. The contents of COMMON and CCBUF wi II be
retained. The X register, upon transfer to the new back­
ground program, will point to CCBUF; all other registers
are volati Ie. Operational label PI will be assigned to the
new task for SEGLOAD operati ons.

52 Service Routines

It is essential that each nonresident program executed in
the nonresident foreground area terminate itself by a call
to M:TERM to unload, disable itself, and then exit via
the normal interrupt exit routine (M:EXIT). This will re­
lease the nonres.ident foreground area for subsequent loo·ds.
An unload request is an implied call to M:TERM and is an
alternate way of terminating a nonresident foreground task.
M:LOAD will return an error if the calling task is not the
nonresident foreground task.

For an unload request, M:TERM triggers the RBM Control
Task routine S:LOAD for the next load if any other entry is
in the queue stack. If no additional requests are present
and S:LOAD has checkpointed the background, S:LOAD
triggers RBM Control Task S:REST for a restart.

Note that M:LOAD inhibits interrupts for a short period
while manipulating the queue stack (less than 100 I-Isec if no
more than eight entries are waiting in the queue).

M:OPEN (RAD Fi Ie Open)

M:OPEN reserves a blocking buffer from a buffer pool or a
specified location, for a blocked, compressed, or packed
RAD file to which an operational label or device unit num­
ber had previously been assigned.

The calling sequence is

LDX adrlst

RCPYI P, L

B M:OPEN

where adrlst is a pointer to the three-word argument list
shown below.

word 0

o 2 15

where

word

F = 1 if a device-file number (DFN) is specified (in-
ternal Monitor calls only).

= 0 if an operational label or device unit number
is specified.

B = 1 if a blocking buffer location is included in
this call.

= 0 if no blocking buffer location is included, in
which case M:OPEN attempts to find space
in the task1s buffer pool (see .. Blocking Buf­
fers", Chapter 5).

Operational label, device unit number, or DFN

o 15

word 2

Address of blocking buffer (optional)

o 15

Return is to the location in the L register. The B register
is restored. The following status information is contained
in the A register on return.

A Register Meaning

o Operation successful.

2

3

4

5

6

Blocking buffer already defined.

No space available in buffer pooL

Illegal operational label or operational
label unassigned.

Not RAD file, or not a blocked RAD file.

Blocking buffer outside of background for
afile assigned to the background.

Illegal DFN.

M:OPEN FUNCTION

The address of the blocking buffer (either the one specified
or one located from the task's buffer pool established by an
ABS or $BLOCKcommand) is stored in the RAD I/O Con­
trol Table. If no open request has been performed for a
blocked, compressed, or packed file by the user's program,
M:READ, M:WRITE, or M:CTRL wi \I call M:OPEN to allo­
cate a buffer from the blocking buffer pool on the first data
transfer operati on.

M:CLOSE (RAD File Release)

M:CLOSE releases a RAD file (including the blocking buf­
fer if any) or releases the blocking buffer for a blocked file,
but retains the file assignment. In either case, partially
filled blocking buffers are written onto the RAD. The call­
ing sequence is

LDX adrlst

RCPYI P, L

B M:CLOSE

where adrlst is a pointer to the argument list, os follows:

word 0

o 2 3 15

where

F = 1 if a device-file number is specified.

= Oif an operational label or device unit number
is specified.

R == 1 if the device-fi Ie number is to be released.

== 0 if the device-fi Ie number and operational
label remain assigned but the blocking buf­
fer is to be released (the file is not to be
reposi ti oned).

B == 1 if a buffer is specified.

== 0 if no buffer is specified.

word 1

Operational label, device unit number, or DFN

o 15

word 2

Buffer location (optional)

o 15

Return is always to the location in the L register. The B reg­
ister is always restored to its former value. The A register
contains one of the following completion status codes.

A Register Meaning

o Successful.

Illegal DFN.

2 The operational label is not assigned
to a RAD fite.

3 Illegal operational label.

4

5

I/O error writing blocking buffer or
EOF onto RAD.

No buffer avoi lable to complete the
cI ose operati on.

M:CLOSE FUNCTIONS

If the file is blocked and data has been written on it,
the contents of the blocking buffer are written onto the
RAD.

If the blocking buffer was allocated from the task's buf­
fer pool, the buffer is released. The EOF is written on
the RAD.

If R = 1, F = 0, and the operational label has a permanent
assignment, the labe~ is set to that value. If the label has
no permanent assi.9nment, the label is deleted from the
table of operational labels.

If an EOF has been written on the file it must also be
written onto the RAD. To accomplish this, M:CLOSE

Service Routines 53

requires a buffer into which the file directory is read. If
no buffer is specified, M:CLOSE attempts to allocate a
buffer from the task's buffer pool (or will use the one al­
ready opened for this file if it is blocked). If no buffer is
available and an EOF is tobe written, the file is not
closed and an error completion code is returned.

If a file to be released happens to be last allocated in the
Background Temp area (BT), its space will be recovered.
Therefore, if BT files are closed in the reverse order from
which they are allocated, Background Temp space may be
recovered.

M:DKEYS (Read Data Keys Routine)

M:DKEYS provides a means for background programs to read
the data keys on the processor Control Panel. The calling
sequence is

RCPYI P, L

B M:DKEYS

Return is to the location in the L register. The contents of
the B register are always saved. The contents of the data
keys are in the A register on return.

M:WAJT (Simulated Wait Instruction)

M:WAIT provides a means for background programs to
execute a W.ait instruction from nonprotected memory. The
call ing sequence is

RCPYI P, L

B M:WAIT

The return is to the location in the L register. The B reg­
ister is always saved. The return does not take place until
the operator performs an unsolicited S key-in.

The Monitor types out the message

! !BEGIN WAIT

and goes into a wait loop.

Only a background program may use M:WAIT; a call from
a foreground program results in a no-operation.

M:SEGLD (Load Overlay Segments)

M:SEGLD loads and/or executes an overlay segment, for
either the foreground or background, from a fi Ie previously
prepared and saved on the RAD by the Overlay Loader or
the Absolute Loader.

54 Service Routines

The calli ng sequence is

LDX adrlst

RCPYI P,L

B M:SEGLD

where adrlst is a pointer to the argument list.

word 0

Segment ID

o 2 3 7 8 15

where

w = 1 if an unconditional wait for completion is
specified.

= 0 if loadil19 is to be initiated only; control will
be returned to the caUing program.

L = 1 control is to be transferred to the transfer
address (if one exists) of the segment just
loaded, in which case the L register is not
meaningful when the transfer occurs (valid
only if W =1).

= 0 control is to be returned to the calling
program.

R = 1 there is a nloadingcomplete" receiver (mean-
ingful only if W = 0).

= 0 no II loading complete ll receiver.

word 1

Operational label

o 15

The operational label is used to control the loading of the
segment. The file must previously have been defined as a
RAD fi Ie and set to the proper overlay program on the RAD.
Background programs should use operational label PI.

For the benefit of segmented foreground programs, the ini­
tialize code (entered by M:LOAD) can 'assign an internal
operational label to the foreground ML operational label.
This internal operational label may then subsequently be
used in calls to M:SEGLD. The foreground program 'TIay
not use the ML operational label in calls to M:SEGLD.

word 2

ADRL of OV:LOAD

o 15

The symbol OV:LOAD must be declared as an external ref­
erence and is set by the Overlay Loader to the value of the
Overlay Loader Control Table address in core.

If the program is assembled in absolute form, the Absolute
Loader will create the OY: LOAD table at the end of the
root. Therefore the last item in the root would normally be
an OY:LOAD EQU $.

word 3

Loading Complete Receiver

o 15

The Loading Complete Receiver is permissible only for fore­
ground programs and should be used in the same way as an
AIO Receiver. That is, after loading is initiated the fore­
ground program should release control by a call to M:EXIT
and regain control through the specified receiver address
when the overlay operation is completed.

On all calls specifying an II initiate onlyll, a check operation
must be performed on the operational label designated to
determine the status of the load and to release the associ­
ated device-fi Ie number for subsequent use.

On entry, return is to the location in the L register if the
L parameter in word 0 of the calling sequence is 11011

; other­
wise, control is returned to the newly loaded segment. The
B register is always saved. On the return, the A register
contains status showing the completion code, as follows:

A Register

o
-1

2

Meaning

Operation complete and successful.

Irrecoverable I/O error (if W = 1), or
device containing overJay is busy (if
W = 0).

Invalid call.

M:SEGLD FUNCTIONS

A core table of 5n + 1 words is maintained at the end of the
user l s root segment that defi nes the actua I RA D addresses
for the overJay segments. (OY:LOAD points to this table;
n is the number of segments in the program.) The segments
may be loaded in any order because of the random-access
capabil ity of the RAD. Using the Loadi ng Complete Re­
ceiver and associated procedures can achieve greater effi­
ciency in foreground loading.

M:DEFINE (RAD File Definition)

M:DEFINE allocates a portion of the background temporary
file area on the RAD for temporary use by the designated
operational labef or device unit number. This call is ap­
plicable to foreground operations only if the oplabel or
fdun has been previ ously assigned to a permanent RAD fi Ie.
The calling sequence is

LOA favaa (FORTRAN programs only)

LOX adrlst

RCPYI P, L

B M:DEFINE

where

favaa signifies the FORTRAN associated variable
absolute address. It is meaningful only if K = 1.

adrlst is a poi nter to a four-word argument list.

word 0

F WP T I p 10 I K G I S I o
0 2 3 4 5 6 7 8 9 10 11 15
\. .., I

Fi I e Format Byte

where

F specifies the file format as follows:

000 Blocked

001 Compressed

010 Unblocked

100 Random, blocked

110 Random, unblocked

WP = 11 if RBM write protection is specified.

= 10 if foreground write protection is specified.

= 01 if background write protection is specified.

= 00 if write protection is not desired.

T = 1 if the last temporary fi Ie allocated is to be
truncated so that it will be only as long as
its EOF. If no EOF has been written on this
file, it will be truncated so that it will be
only one record long. Space recovered in
this fashion can be reused in the current
M:DEFINE call.

= 0 if no truncate is to occur.

P = 1 if word 2 contains a number between 0 and
101 that specifies the percentage of remain­
ing background temporary area to be allo­
cated for this file.

= 0 if word 2 is the number of logical records to
allocate.

K = 1 if the A register contains the FAYAA.

= Oif fAVAA is not specified.

G = 1 if a granule size for random files is specified;
otherwise, the granule size is determined by

Servi ce Routi nes 55

the sector size of the reference device
(meaningful only if F = 110).

S = 1 indicates the file (if packed format) may use
the sharable blocking buffer if provided by
the Task Control Block (see "Blocking Buf­
fersfl

, Chapter 5).

= 0 indicates sharing is not desired.

word 1

Operational label or device unit number

o 15

where

operational labels are EBCDIC

device uni t numbers are binary

word 2

Number of logical records or percent

o 15

word 3

Logical record size, or granule size if G=1 (bytes)

o 15

The number of logical records in the file and the logical
record size are used to calculate the actual temp space
required. For compressed EBCDIC fi les, the logical record
size must be less than 2047 bytes. For compressed EBCDIC
files, n card images can normally be accommodated by n/3
80-byte records. Thus, 12,000 card images would require
4000 80-byte records (about 83 tracks on a 360-byte per
sector RAD). For blocked, uncompressed files, the total
area in sectors equals the number of records requested, di­
vided by the number of logical records per sector. Thus,
120-byte binary card images can be placed three per sector
on a 360-byte-per-sector RAD. A 300-card deck wou Id
therefore require 100 RAD sectors (seven tracks). If G = 1
and F = 110, the file size is computed using the granule
size in word 3.

If this is a random file and G = 0, then the logical record
size is actually the FORTRAN random I/O logical record
size and the granule size is equal to either the physical
sector size for temporary files, or to the granule size
defined at file ADD time for permanent files.

For unblocked records, the total area in sectors equals the
number of records requested multiplied by the number of
sectors required for each record.

56 Service Routines

Return is to the location in the L register. The B register is
restored. The A register contains status information on the
return, as follows:

A Register

o

2

3

Meaning

Operation successful. E register con­
tains number of records in file; X reg­
ister contains record size in bytes.

Calling sequence error. Logical record
size is not an even number or 0 records
requested.

Operational label invalid (foreground)
or no spare entry in operational label
table.

No more device-fi Ie numbers for the
RAD.

4 RAD overflow (files too large).

5 K = 1 and attempted to define pre­
viously defined file with a different
FAVAA. E register contains number
of records in file; X register contains
record size in bytes.

M:DEFINE FUNCTIONS

For the specified temporary file, the appropriate size is
allocated from the pool of temporary file space if such space
is available. An unused device-fi Ie number is then initial­
ized with the boundary points of this RAD fi Ie. All subse­
quent references to this fj Ie (unti I closed by a call to
M:TERM, M:ABORT, or M:CLOSE) will refer to the allo­
cated area. The file is set to the" rewound" condition, if
it is a sequential file.

If the operational label is already assigned, no error status
is returned if it is assigned to a background RAD file. If
K = 1, the address of the FORTRAN Associated Variable
from the call must be the same as the one for the fj Ie.

Note: M:DEFINE uses locations 1-3 (of the call ing pro­
gram's floating accumulator) for temporary storage.

M:ASSIGN (Assign Operational Label)

M:ASSIGN performs equivalence between an operational
lobel or FORTRAN device unit number I and

1. A RAD area.

2. A file name within a RAD area.

3. A device-fj Ie number.

4. Another operational label or device unit number.

The calling sequence is

lDX adrlst

RCPYI P, L

B M:ASSIGN

where adrlst is a pointer to an argument list of two to eight
words, as follows:

word 0

o 2 3 4 5 6 7 12 13 15

where

TV = 00 if the label or device unit number is to be as­
signed to another label or device unit number.

= 01 if the label or device unit number is to be
assigned to a device-file number.

= 10 if the label or device unit number is to be
assigned to a RAD area.

= 11 if the label or device unit number is to be
assigned to a file within a RAD area.

F = 0 if the label is a background operational label.

== 1 if the label is a foreground operational label.

A == 1 if the two-letter area mnemonic is contained
in word 3; otherwise, D wi II specify the
area. If A is set, D will be ignored. A must
always be set for areas other than SP, SD,
SL, UP, UD, UL, BT, and CPo

5 = 1 indicates the file (if packed format) may use
the sharable blocking buffer if provided by
the Task Control Block (see" Blocking Buffers"
Chapter 5).

= 0 indicates sharing not desired.

opt == 1 indicates that device specific options are
present in words 3-N (meaningful only if
TY = 00 or 01).

= a indicates th~t device specific options are not
present.

If TY == 00 or 01 and opt = 1, then 0 == num­
ber of device specific options that are pres­
ent in word 3 to word N. Device options are
one- to four-character EBCDIC fields, two
words per specification, which are left­
justified and blank filled. 0 must be in the
range 0 5 0 ~ 7.

If TY = 10 or 11 then D has the meaning
given below.

D = directory to be used:

000 Checkpoint area (area only)

001

010

011

100

101

System Processor area

System Library area

System Data area

Background Temp area (area only)

User Processor area

110 User Library area

111 User Data area (UD only)

No named files may exist in either the Checkpoint or Back­
grou nd Temp areas.

word 1

oplb (1) or device unit number (1)

o 15

where oplb (1) is the operational label or device unit to be
assigned.

word 2

oplb (2), device unit number (2), DFN, or buffer address

o 15

where

oplb (2) if present, indicates thatoplb (1) will be
assigned to the device-file number that oplb (2) is
currently assigned to.

DFN if present, is the device-file number that
oplb (1) will be assigned to.

buffer address is the first word address of a buffer
(equal to one blocking buffer in length) that will
be used by M:ASSIGN as temporary storage for the
appropriate RAD area dictionary. This is mean­
ingful only for TY = 11.

If TY = 00 or Oland opt = 1

words 3 and 4

Option 1, C1 Option 1, C2

Option 1, C3 Option 1, C4

(if D = 1 or 2)

words 5 and 6

Option 2, C1 Option 2, C2

Option 2, C3 Option 2, C4

(if D =2)

Service Routj nes 57

Device specific options are represented as a one- to
four-character E~CDIC field, left justified and blank fi lied.
Note that the device specific options are meani ngful only
for certain devices. Use of an unrecognized option for a
device resul ts in an error return of II INVALID OPTION".

If TV = 10 or 11, the followi ng options are recognized for
Model 3325/35 tape drives:

800 For 800BPI, NRZI recoding

1600 For 1600 BPI, phase encoded recording

ASCI For ASCII code conversion

EBCD For EBCDIC (ASCII code conversion 'off')

word 3

C1 or A 1 C2 or A2

o 7 8 15

If A (of first word of argument list) = 1, word 3 contains
the two-letter area mnemonic, Aland A2; otherwise,
word 3 contai ns the first two characters of the fi Ie name,
as conti nued below:

word 3 + A

C1 C2

o 7 8 15

word 6 + A

C7 C8

o 7 8 15

C1-C8, if present, is the name of the file to which oplb (1)
is to be assigned. That is, this file on the RAD is to be
linked to an unassigned RAD device-file number to which
oplb (1) is, in turn, assigned. This is meaningful only for
TY=11.

Return is to the location in the l register. The B register is
restored. The A register contains status information on the
return as follows:

A register

o

2

3

58 Service Routines

Meaning

Successful operation.

Mixed oplbs or device-file numbers
(foreground to background or vice
versa) or protection violation on buf­
fer address.

Invalid oplb or DFN.

No spare entries in oplb or DFN
tables.

A register Meaning

4

5

6

File name not found in designated
directory.

RAD area not allocated.

Illegitimate RAD file format.

When the A register = 0, the X register will contain the
physical record size (or sector size) for this device and the
E register wi II contain the newly allocated DF N.

M:ASSIGN FUNCTIONS

M:ASSIGN may be called to make any of four types of
assignments, according to the setting of TY, as follows:

TY = 00 oplb (1) is assigned- to the DFN to which
oplb (2) is currently assigned. Oplb (2) must
be the same mode (foreground or background)
as oplb (1) (error return A = 1). A background
program cannot assign foreground oplbs(error
return A = 1).

= 01 oplb (1) is assigned to the specified DFN.
DFN must be legal, must not be a RAD DFN,
and may not be foreground if oplb (1) is
background.

= 10 oplbl (1) is assigned to a currently unused
RAD DFN which, in turn, is linked via the
RBM Master Dictionary to a current RAD area.
The area may then be used exactly like a RAD
file with the following characteristics:

Format: random

Logical record size: sector size in
bytes

Write protection:

BOT:

EOF:

EOT:

area write­
protect code

BOT of area

none

EOT of area

= 11 oplb (1) is assigned to a currently unused RAD
DFN, which in turn is I inked via the RAD
dictionaries to an individual file within an
area (e. g. , XSYMBOL). The RAD area must
currentl y be accessible (error return A = 5).
The buffer address must be in the back­
ground if the ca Iii ng progra m is a back­
ground program.

If there are no errors, the assign wi II take place regardless
of the prior status of oplb (1). For TY = 10 and 11, RAD
files are rewound (file pointer is set to BOT). For TV = 00
and 01, the file position is unchanged.

M:RES (Temporary Storage Allocation)

M:RES allocates storage from a task's temporary stack b'y'
addressing the B register to the first available memory loca­
tion of that stack. If the temp storage is to come from the
task's associated temp stack (temp stack pointers in TCB
words 3 (start), 4 (end) and 13 (current pointer, K:DYN) it
is called dynam ic temp. When dynamic temp is requested,
M:RES saves the current B register, addresses B to the value
in K:DYN (from the TCB) and sets K :DYN to K:DYN +n
(where n is defined below).

Monitor service routi nes use only dynamic temp (as shown
in Table 7). This allows them to be reentrant (i. e.,
used concurrently by different tasks, each with its own
unique TCB). The calling sequence to allocate dynamic
temp is

RCPYI P,T

B *$+3

DATA n

DATA 0

ADRL M:RES

where

T must point to background memory if M:RES is
being called by a background program. (Other­
wi se, a PV abort wi 11 occur).

n is the number of memory locations to reserve.

A TSabort will occur if insufficient space is available.
This abort can only occur for dynamic temp allocation.

The calling sequence for nondynamic temp allocation is

RCYPI P, T

B *$+3

DATA n

NONDYN DATA temp Pointer to nondynamic
temp

ADRL M:R.ES

temp RES n

Nondynamic temp is used traditionally by Basic FORTRAN IV
library routines which are not in the Public Library. That
is, Basic FORTRAN IV library routines loaded witha speci­
fic task, for use only by that task. If one of these routines
is to be accessed as a Publ ic Library routine, the OLOAD
processor will set NONDYN to zero as it adds the routine

to the Public Library and will remove the trailing temp
reserve. This trail ing TEMP RES n must not be followed
by data or instructions.

M:RES FUNCTIONS

The former B register will be saved in location 1 relative
to the new B register. Location 0 relative to the new B
register will contain 0 if nondynamic temp was specified.
Otherwise, location 0 will not be zero and M:RES adds the
number of locations requested to K:DYN (i.e., increments
the temp stack pointer) after addressing B to the former value
of K :DYN. Obviously, locations 0 and 1 relative to the B
register must not be changed. Location 2 relative to B is
eventually used as the return for M:POP and is initially set
by M:RES to point to M:ABORT. M:RES returns to the loca­
tion in the T register +3 if the reserve was successful; other­
wise, M:RES will call M:ABORT with the code ITSI.

On return from M:RES, the calling program can set its own
return through M:POP as follows

LOA = return

STA 2" 1

The L and X registers are unchanged on return from M:RES.

M:POP (Temporary Storage Release)

A call to M:POP is made to release the current temporary
storage stack (pointed to by the current value in the B reg­
ister), restore the previous value to B, and return to the
location specified in temp + 2.

If the temporary storage was allocated by M:RES, the call
must set up a return in temp + 2. The calling sequence is

LDA = return

STA 2" 1

RCPYI P,l

B M:POP

where return is the location to which return will be made
after the stack is released.

Register L must always be set, even for foreground tasks.

Return is to the address specified in location 2, relative to
the beginning of the stack being [eleased. The location in
the L register and the return address must be in the back­
ground area if return is to a background program. On re­
turn, B contains its previous value before the RES-POP se­
quence. Assume return is made to location R; L is set to
the value R + 1.

Servi ce Routi nes 59

M:POP FUNCTIONS

M:POP performs the opposite functions of M:RES. If loca­
tion 0 refotive to the B register is zerO', M:POP does not
monipufate the dynamic temp stack pornter c K:DYN.
Otherw;se, the current vafue of the B register is stored
in K:OYN. location J relati.ve to the B register is then
moved . tathe B register (Ofter 2,,, 1 is set aside as the
return}.

M!OPFILE (Convert Operafionaf lobe' to Device-Fi Ie
Number}

M:OPFllE determines the fne fo which a foceground or
background operational taber is assigned. The caUing
sequence, is

lDA

lDX cdrlst

RCPVI P"l

B M:OPRlE

where

type is the mode of the operctional lahelj nega-
tive for foreground" positive for background.

addst is a pointer to the operational faber.

Return is to the locafion in the l register. The B register
is saved and restored. The status FS contained' in the E reg­
is.ter as follows:

E = negative if label is not found

= posiHve if labef is found

If E is positive, the foHowing rnformation is provided.

Register Contents

x Device-fi le numbet-

E
t

IOCT entry address

A Operational labef table entr/

Note: This routine is used primorify by RBM and certain
processors. It wiH seldom be needed by user
progroms.

tSee the chapter on SYSGEN for a discussion of the I/O
Control; Table and the Operational label Toble.

60 Service Routj nes

M!RSVP (Reserve or Release Peripherals)

M.:RSVP reserves a peripheral device for foreground use
only, until fhe foregrou.nd vofuntorify releases the device;
or untH on operator keyin refeases the device

lDX addst

RCPVI PI!L

where adrlsf is the pointer to the argument tist, which
consists of one to four consecutive words. either in the user's
program or rn a temporory stock. This argument Hst ap­
pears as fof (:ows;

wocdO

Device Number

o 2345678 15

wheJe

F =} if request is "reserve fOf' foreground&f..

= 0 if request is "rel,eo.se fo OOCkgfOUOO Il
•

u = 1 if reques.t is for onunconditionol reserve,
whefe operator intervention is not required.

= 0 if request is for a co ndH iona I reserve, where
operator intervention is required.

R = 1 if a receiver is to be entered when the con-

D

ditional reserve is compJeted (onry meoning,­
ful if U = (} or if 5 = I).

= 0 jf no such receiver is to be used.

= 0 if a device type is not specified.

= 1 if a device type is specified (used to distin­
guish KP40 from PT40}.

N = 0 if request specifies a device number to bits 8-
15 of word O.

S

= I if request specifies an operational labet (con­
tained in word T + R + D) which is to be used
to determine the actuol device number for a
reserve operation. The device number upon
a successful reserve wi 1.1 be returned in the
E-regis.ter. The device number must be u.sed
for a rerease operation since an unsoticifed
'FL' keyin may have reassigned the opera-
tional label. .

= 0 if nonexclusive foreground useofa background
device is requested. It is the responsibility

word

o

of the user to resolve contention between
competing foreground tasks.

if exclusive use of the device by the request­
ing task is desired. Since RBM knows the
"owner" of the device, an abort or termina­
tion of that task will cause an automatic re­
lease of the device. Once a task has been
granted exdusive use of that device, other
requestors receive a "device already reserved"
(A == -1) status if R or S = 0, or a return of
"request is queued for that device ll (A = 3)
if both Rand S == 1.

M == 0 normal RSVP messages on OC.

== 1 suppress RSVP messages on OC.

Reserve Complete Receiver (optional, R == 1)

15

A Reserve Complete Receiver should be used I ike a AIO
Receiver; namely, after the request has been acknowledged,
the foreground program should release control by a ca II to
M:EXIT and should regai n control when the reserve has been
effected through the specified receiver address. This re­
ceiver is entered at the priority level of the RBM Control
Task and should return to the location contained in the
L register.

word 1 + R

Device type (e. g., KP) (optional, D == 1)

Receiver is entered when the operator effects
the reserve. This is the normal response to a
conditional request to reserve a peripheral
device (F == 1, U = 0, R = 1).

= 2 if the device is not associated with a back­
ground file. Not applicable if request was
for "exclusive" use.

= 3 request is queued. The RXR (receiver) is
entered when the device becomes avai lable
(R = 1 and S = 1).

= 4 if the operational label is not defined (Reserve).

== 5 if the operational label is assigned to zero
(Reserve).

= 6 RXR (receiver) not specified (F = 1, U = 0).

= 7 if the operational label is assigned to a rota­
ting memory device.

= 8 operational label may not be specified for
"release ll

•

= 9 device has been previously reserved as shared.

= -1 if the request cannot be satisfied because
the RSVP table is full or if RSVPTABL, 0 was
specified at SYSGEN.

X register is significant as follows:

x = 0 if normal condition (i. e., O~ A ~ 3).

o 15 = -1 if abnormal condition (i. e., A < 0 or A > 3).

If D = 1, word 1 + R contains a device type specification
used to differentiate a specific unit of a multiple unit de­
vice (e. g., KP40 vs. PT40).

word 1 + R + D

Operational Label (optional, N = 1)

o 15

If N = 1, word 1 + R + D contains an operational label to
be used for the reserve operation. The actual device
number involved wi II be returned in the E- register.

Return from M:RSVP is always to the location contained
in the L register. The A register contains status as follows:

A = 0 if the request is acknowledged. If F == land
U = 1 (i. e., unconditional reserve), the
device is reserved for foreground use. If
F = 0 (i. e., release), the device has been
released for background use.

== 1 if the request is acknowledged but operator
intervention is required. The Reserve Compl ete

Thus, a SIX may be used to detect any error.

The E register is meaningful only when request was to re­
serve via operational label. In this case, upon a success­
ful reserve r~uest return {i .e., X = 0 and 0 ~ A ~ 3}, the
E register will contain the actual device number. The
device number must be specified for a release operation
since an operational label reassignment may have taken
place (e. g., FL keyin).

MRSVP FUNCTIONS

Reserve. If the request is for an unconditional reserve,
a message is output to inform the operator of the foreground
reserve action (e. g., !! lOB-RES, lP02).

If the request is for a conditional reserve, a message is
output to inform the operator of the request (e. g., !! lOB­
REQ, CR03). The operator should then prepare that de­
vice for the pending foreground operation, and then re­
serve the device by an unsolicited key-in of FR (fore­
ground reserve; for example, F R CR03). This will reserve
the device for foreground use. If the Reserve Complete

Servi ce Routj nes 61

Receiver is specified, it will be entered at this point.
Note that the dedicated interrupt location of a task
requesting use is indicated as di 1- (i.e., ! !di I-REQ, LP02).

Release. The peripheral device can be released for back­
ground use or the next foreground task by a call to M:RSVP
to release the device. The peripheral device specified
wi" be made available for other users or background. A
message will be output to inform the operator of the re­
lease action if the device is being released to background
(e.g., !! REL, CR03). The peripheral device can also
be released by an unsolicited key-in of BR (background
release). Unsolicited key-ins to reserve and release peri­
pheral devices are described in Chapter 3.

Limitations. The reserve peripheral table will accommo­
date only as many entries as were specified at SYSGEN,
{RSVPTABl, X where X represents the number of entries to
be provided for and defaults to 5.

M:DOW (Diagnostic Output Writer or Error Logger -
Foreground Only)

M:DOW is a dual-purpose service routine available only
to foreground tasks. The function that M:DOW wi II
perform is dependent upon the value of a code in word 0
of the argument list defined in the calling sequence below.

lDX adrlst

RCPYI P, l

B M:DOW

where adrlst is a pointer to the argument list, the format
of which is dependent upon its function code, as shown in
Table TO.

Return isalways to the location in the l register. The B reg­
ister is always maintained. If code = 0, status is returned
in the E, A, and X registers. This status wi II be the same
as that described for M:READ/M:WRITE. If code f 0, no
status will be returned; i. e., E, X, and A registers will be
unspecified.

M:DOW FUNCTIONS

Code = 0

Multitask use of the same file may result in a conflict sit­
uation wherein a task is unable to output a message because
a lower-priority task has control of the file. If such a
condition could exist, the higher priority task should call
M:DOW, which will wait until end-action-pending occurs,
save all status for the lower priority task, and translate the
M:DOW argument list to an equivalent M:WRITE call.
Since end-action-pending occursat the I/o interrupt level,
this allows multitask use of the same file without affecting
low level I/O.

62 Service Routines

Code f 0

The maintenance of an off-line, dynamic Error Log is
valuable in the diagnosis and correction of hardware and
hardware/software interface problems. As a SYSGEN
option (ERRORLOG), M:DOW is available for such log­
ging purposes. From the user-supplied argument list,
M:DOW will create an entry to this log according to
Table 10, and will add this entry to the Error Log when
RBM becomes active.

Note: If the Machine Fault Task makes an Error Log entry,
interrupts wi II be effectively inhibited for up to
350 microseconds.

M:COC (Character-Oriented Communications­
SYSGEN Optional, Foreground Only)

M:COC performs input, output, and control operations on
a specific communication line. The calling sequence is

LDX adrlst Pointer to the argument list

RCPYI P, L Set the return adsJress

B M:COC Branch to the routine

The argument list pointed to by adrlst is as follows:

word 0 I Order

word 1 E I Line number I Prompt character

word 2 Buffer address

word 3 T Byte count

word 4 EOM Receiver

o 78 11 12 15

where

Order (bits 12-15) is as follows:

Order Operation

o Status check of line.

Write n bytes, no editing.

2 Read n bytes, no editing.

3 Send break character (long-space).

4 Check previous read or write.

5 Write message of up to n bytes, edited.

6 Read message of up to n bytes, edi ted.

Table 10. M:DOW Argument Lists

Argument List

Function Word O/Code
t

Word 1 Word 2 Word 3

0000 oplabel
tt

Diagnostic output
8000 DFNtt Address of buffer Byte length

Error Log Entries:

SIO Failure 0091 DFNttt . - -

Channel timeout 0092 DFNttt - -

Bi t 6 = Overflow
indi cator

Spurious Interrupt 0093 Ala status
Bit 7 = Carry
indicator

I/O error 0095 DFNttt - -

System startup 0018 - - -

Power on 0020 - - -

Version 0022 - - -

Time stamp 0023 - - -

EBCDIC message 0027 - Address of entry Byte length

Machine fault OOBl Fault register - -
contents

User entry
tttt

OOFF Address of entry Byte length -

t
Any code other than those indicated in low-order byte is treated as a "no-operati on" . (The code is shown in

hexadeci rna I.)

tt Identifies fi Ie/device to be written to.

tttldentifies file/device involved in error (not the error file).

tttt
User entries receive a time value in words 2 and 3 of the entry.

Service Routines 63

Order Operation

7 Disconnect line (turn off data set).

8 Connect line.

where n = 0 < n $ 255.

E is 1 if an end-of-message (EOM) receiver is
specified; is 0 if no EOM receiver is specified.

Prompt character is meaningful on duplex lines for
orders 6 and 8. For order 6, it is the character
(EBCDIC) to be output before input is requested.
This can be used to signal the operator that input
can now begin. For order 8, it specifies the mode
in which all communication will be handled on
this line until it is disconnected, and it has the
followi ng form:

Bit

8

9

10

Value Meaning

Echo all input characters.

o Do not echo.

Translate all input from 7-bit
ANSCII to EBCDIC, and all
output from EBCDIC toANSCII.

o Do not translate any codes.

o

Check parity on input and create
parity on output (even parity).

Ignore parity.

11-12 00 Device is Model 33/35 teletype.

14-15

01 Device is Model 37 teletype.

10 Device is keyboard/display.

Device is foreign device, and
no echoing, editing, or trans­
lation wi II be performed (over­
rides setting ofbits8, 9, and 10).

Communication Lines (for con-
nect order). .

00 Full duplex (echoing accepted).

01 Simplex - send.

10 Simplex - receive.

11 Half-duplex (echoing not
accepted).

Note: The time required to turn a half-duplex
line from receive to transmit mode is con­
sumed in M:COC at user-program level,
not in the interrupt handler, RCOC.

64 Service Routines

EOM Receiver is used like an AIO Receiver. When
an input or output message is completed, the ap­
propriate communications task will branch to the
specified EOM receiver address, at the pri ority
level of either the input or output external inter­
rupt, and wi II show the line number (of the line
with the completed message) in the X register.
The user program should save this status, trigger
an appropriate user interrupt level, and return to
the location in the L register. All operations are
no-wait operations; that is, the return is immedi­
ate upon initiating I/O or performing the connect
or status checks. Thus, the EOM receiver is ap­
plicable only for read (2 and 6), write (1 and 5),
and send break (3) orders. EOM receivers are
subject to the same restrictions and precautions as
are AIO receivers. (See Chapter 6 for a more de­
tailed discussion of AIO receivers.)

Note: For half-duplex lines the EOM receiver is
activated before the EOM sequence is in­
itiated by a subsequent" check" call to
M:COC.

Return from M:COC is to the location specified in the
L register. On return, the B register remains unchanged; and
the E, A, and X registers are set as specified in Tables 11,
12, 13, and 14.

The nine possible orders that can appear in the argument
list, and the operation for each, are described below:

o Check status of line. This operation allows the
user to check both the logical condition of the
line (line mode, which is one of the unique codes
in Table 14) and the physical condition of the line
(which is reported just as it is received from the
hardware, as shown in Table 13). Only the line
number is needed in the argument list.

Write n bytes, no editing. If the byte count is
odd, the first output transmission takes place from
right of the first word, and the left of the first
word is ignored. No end-of-message codes are
added at the end of the message, and no trailing
blanks or null characters are stripped off. Parity
generation and translati on from EBCDIC to ANSCII
are under the control of the specified options for
this line.

2 Read n bytes, no editing. A read operation is
initiated, with no editing for cancel or character­
delete operations, but with a search for any
ANSCII control character. Input is terminated
if any control character is found or if the speci­
fied byte count is exhausted. If any input bytes
were received before this read request was given,
these bytes are thrown away. The end-of-message
character a I ways rema ins in the user's input buf­
fer, translated to EBCDIC, if specified. The
same comments about parity apply for the write
operations.

Table 11. Status Returns for M:COC

Operation Maior Status Action E A X

AlI operations Line no. not valid Return -1 8 Line no.

Calling seq. err.
immediateJy

-1 4 Line no.

Li ne has disconnected -1 2 Line no.

Invalid line status -1 1 Line no.

Initiate read Line is busy Return 0 -1 Line no.
or write immediately

Successful ty initiated Initiate and 0 0 Line no.
- return

Check previous Line is busy Return 0 -1 Line .no.
input or output immediately

Operation complete Clear Hne and 0 Completion Byte count
return code

Connect or Successful connection Connect and 0 0 Line no.
disconnect return

Status check Connec ted I i ne . Test and return line Line mode Line '19.
status

Table 12. Completion Codes Table 14. Line Mode

A Register Value Meaning A Register Value Meaning

0 Successful completion.

1 Pari ty error on some byte read.

2 Break condi ti on exists.

Table 13. Line Status

E Register Bits Meaning

0-11 Not used.

12-13 Receiver status

00: Data set not ready (if
data sets are used), or
receiver not installed.

01: Receiver on.

10: Receiver. off.

11: Break (tong space)
detected.

14-15 Transmitter status

0-: Dota set not reporting
"clear to send" (if data
sets are used) I or trans-
mitter not i nsta lied.

10: Transmission in progress.

11: Ready to send.

0 Line disconnected.

1 Output mode.

2 P-rompt character output (then
switch to input).

3 Input mode.

4 Inactive mode.

5 Message complete.

6 EOM sequence initiated (half-
duplex only).

3 Send break character (long-space). If the line is
in an inactive mode, the long-space is sent im­
mediately. If the line is in a write mode or a
read mode, the operation is termi noted and the
long-space is then sent. In the argument list, only
the line number is meaningful.

4 Check previous read or write. This operation is
required for all read and write operations, whether
or not an EOM receiver is specified. The user buf­
fer remains busy until the .previous operation is
checked. The line is then set inactive and be­
comes ready for subsequent use. This is the only
way to determine break conditions. The return
status is shown in Tables 11 and 12. Only the line
number is meaningful in the argument list.

Service Routines 65

5 Write message of up to n bytes, edited. This
operates like the write operation without editing
except (1) that trailing blanks and trailing null
characters are removed and (2) that appropriate
control characters are added as the final charac­
ters of the message.

6 Read message of up to n bytes, edited. This oper­
ates like the read without editing, except that
ignore, backspace, and cancel operati ons are in
effect for the current line; when any of these spe­
cial characters are encountered, the proper effect
takes place on the line and the user1s buffer is
modified accordingly. (Note that the backspace
is an editing, or destructive, backspace; that is,
the previous character is deleted from the user1s
buffer.) The prompt character I if nonzero, is out­
put prior to the read operation. (See Table 15 for
a summary of editing operations.)

7 Disconnect line. The send and/or receive mod­
ules of the line are turned off, the data set is
disconnected, and the logical status is set to
disconnect.

8'--'Connect line. The communication mode option
for the line, simplex or duplex, is matched against
the physical structure of the line and, where ap­
propriate, the receiver is turned on. Mode con­
flicts are returned as invalid line status. The
logical line mode is set to .. inactive" and the
other options are set. The connected line is
assumed to be a dedi cated I ine or a line that has

already dialed-in. A user program can poll the
lines with a II check status" order prior to logical
connection to determine when .::1 line has been
physicallyconneded(i.e., data sets ready).

FUNCTIONAL DESCRIPTION OF COC PACKAGE

The COC software package manages character-oriented
telecommunications equipment (normally Teletype-compatible
devices) at the message level, providing translation, echo­
ing, parity checking, and the line editing as required. It
consists of two portions, M:COC and RCOC.

M:COC. This is a monitor service routine that performs
all control operations and initiates all reads and writes.
It is part of the nonresident RBM overlay structure.

RCOC. This is a resident foreground program, usually re­
quiring installation modifications, that consists of the fol­
lowing tasks and related items:

1. An initialization routine.

2. An input- interrupt handler connected to the input in­
terrupt of the COC controller (7611), which translates
and edits input characters, echoes the characters as
required, and forms input messages.

3. An output-interrupt handler connected to the output
interrupt of the 7611, which translates and transmits
output characters and performs line formatting at end­
of-message (character-count completion only).

Table 15. Summary of Editing Operations

Codes Used
Operation --

33/35 37 Character Display

User-generated end-of-message CR or LF or BREAK NL or BREAK NL or INTERRUPT
character on input, edited

System-generated end-of- LF or CR (opposite of None for NL; None for NL; NL for INTERRUPT
message character on input user input); NL for BREAK

CR and LF on BREAK

Attention code; used to BREAK BREAK INTERRUPT
terminate input or output

Ignore this character, except RUBOUT or DEL or DEL or
after ESC ESC,SPACE ESC,SPACE ESC,SPACE

System-generated characters CR, LF,RUBOUT NL,RUBOUT NL,5 - NULL
on output at end-of-message

Delete previous character ESC,RUBOUT ESC,DELETE ESC,DELETE or EM
(echo-) (echo\) operation

Delete current line ESC,X ESC,X ESC, X or CR,CAN

66 Servi ce Routi nes

4. Input and output translation tables (ANSCII to EBCDIC
and vice versa).

5. A circular input buffer (i.e., IIring buffer"), which
overlays the initialization routine (item 1).

RCOC may be loaded at system boot time or as needed (in­
stallation option). When loaded, the initialization routine
automatically connects the COC handler tasks to thei r re­
spective interrupts, establishes linkage for M:COC, initial­
izes the COC for input, and exits. At this point, all lines
are set to the (logically) disconnected status, ready to be
tested, connected, and used via calls to M:COC.

M:COC FUNCTIONS

All line-control and read-write operations are initiated by
means of user calls to M:COC. Once RCOC has been ini­
tialized, all input/output requests are rejected by M:COC
until the I ine is connected. If a I ine is dedicated (i.e.,
leased or "hardwired") or if a dial-up line has dialed in,
only a connect (order 8) call to M:COC is required. If the
line is to be "dialed outll (physical activation from the com­
puter end rather than from the terminal end), an M:IOEX
SIO-order call to the Automatic Dia ling Equipment must
precede the M:COC connect request for each I ine (see
"Automatic Dialing" below for further details).

A check-I ine-status (order 0) call may be issued prior to a
connect request to check for line-operational and physically­
activated conditions, in which case detai led I ine-status and
I ine-mode information is returned (Tables 13 and 14). If
th is is not done and a connect request is issued for a line
that is nonexistant or nonoperational, i.e., no send and/or
receive module installed or receive module will not turn on
(but whose line number is valid), the following operatorls
message is issued and an invalid-I ine-status major status is
returned:

TROUBLE LINE nn

If the line is not physically activated, e.g., not dialed-in
(data set not ready or not "clear to send"), invalid-line­
status is returned also. If the specified line number is not
a val id one, this is so reported. (The range of val id line
numbers is determined during the assembly of RCOC.) See
Tab Ie 11 for ma jor-status returns.

A successful connect call for a given I ine sets the logical
I ine mode to II inactivell , in which mode any input received

on the line is ignored, but the I ine is avai lable for I/O
requests. Subsequent I/O operations on that line must be
initiated sequentially with a check-previ ous-operation (or­
der 4) call intervening between successive read/write calls
(I/O requests are not queued). As each read or write
operation is completed, the logical line mode is set to
"message complete ll . At this point the I ine is still busy and
can only be cleared (set to inactive) by the check-previous­
operation call. (This call, order 4, is not required after a
check-status, connect, or disconnect request.) The check­
status (order 0) call may be executed at any time.

Program and Interrupt-Task Relationship. A read request
simply sets the line mode to "input" at calling program
level, which in turn causes the input interrupt task to accept
input on that line and build the input message in the user IS

buffer, all at interrupt level. A write request sets the line
mode to "output" and causes M:COC to transmit the first
character in the userls buffer at call ing program level.
Thereafter, the output interrupt task automatically transmits
the remaining characters, one per cac output interrupt
(i .e., one each "output word time") unti I the entire mes­
sage is sent, all at interrupt level.

As each input or output message is completed (or otherwise
terminated), the line is set to II message complete", line
mode 5, and the userls EOM receiver (if present) is exe­
cuted at the interrupt level. Normally, the receiver should
trigger the requesting task and (always) return via register L.

AUTOMATIC DIALING

If Automatic Dialing Equipment (ADE) is included, real­
time tasks can dial a terminal and connect it to a pre­
determined cac line for that terminal. The ADE is a
multiunit controller that controls up to 16 dial positions
and correspondi ng lines. It is connected to a dedicated
lOP channel (additional to the COCls).

The dial ing operation can be accompl ished via M:IaEX.
A TDV order should first be issued to ensure that the dial
position is available. Then an SIO order can be issued to
activate the ADE and address the dial position. Any order
byte will be interpreted as a "write II • The memory buffer
contains the number of the data set being dialed (two digits
per word, each digit occupying the rightmost four bits of
the byte in four-bit BCD). After the dial ing procedure has
been completed, the task shou Id check the status of the
cac line before attempting to send or write on it.

Service Routines 67

5. I/O OPERATIONS

BYTE-ORIENTED SYSTEM

The Monitor performs all I/o services for the byte­
oriented I/o system. This includes:

• Logical-to-physical device equivalencing.

• Initiating I/o requests.

• Standard error checki ng and retry (optiona I).

• Task dismissal on "waitt! I/o (optional).

• Software checking of background requests to preserve
protection of foreground and Monitor.

• Optionally generating device order bytes for device­
independent operations.

• Accepting user-generated 10CDs and device order
bytes to provide complete control for a user's
program.

• Using data chaining for foreground programs performing
scatter-read or gather-write operations.

• Reading or punching cards in either BCD or
EBCDIC.

• Positioning magnetic tapes and RAD files.

• Editing from paper tape or keyboard/printer.

• All I/o interrupt handling.

• Managing both temporary and permanent RAD
files.

• limiting channel active time for VO transfers.

I/O INITIATION

Whenever a task needs to initiate an I/O operation, it
calls on the appropriate Monitor I/O routine (see Chap­
ter 4 for complete calling sequences). These Monitor
I/O routines are reentrant, so that a higher priority
task may interrupt and request I/O during the initiation
of a lower-priority task, in which case the low-priority
task is suspended and the higher-priority task satisfied
first.

A real-time foreground program may acquire control of
a multidevice controller from background users at the
completion of any current I/O. This technique is used
in place of queuing. All Monitor I/O initiation is made
at the priority of the calling task, with background tasks
having the lowest priority.

68 I/o Operations

The channel time limits imposed by the Monitor on standard
devices are as follows:

Device Type

KP

LP

CR

CP

MT (9 track)

PT

MT (7 track)

RO 7202/04

RO 7242/46

RO 7251/52

PL

LO (logical device)

Maximum Allowable Channel
Active Time (seconds)

255

3

3

3

10

II chars. x rate

10

3

4

3

Not imposed

Not imposed

END ACTION

The chapter on Operator Commun icati on spec i fies the pos­
sible error messages. Generally, standard error recovery
takes place when the I/O is checked for completi on rather
than on the I/O interrupt. This means that error recovery
for the background wil I be processed at the priority level
of the background rather than at the I/O interrupt priority
level. However, there is a provision for the real-time fore­
ground user to specify an end-action routine to be called
when the Monitor answers the I/O interrupt. This is the
Ala receiver address in the I/O calling sequence, and it
is to be used only when more sophisticated end-action is
required or whena foreground task is tobe restored to active
status at channel end. The routine is processed at the priority
level of the I/o interrupt, so the processing should be of
very short duration. Reentrancy in this routine is the user's
responsibility. For example, this routine might consist of
storing the I/o status information and then triggering a
lower-level external interrupt through a Write Direct, where
this lower-level task performs the actual processing. The
end-action routine should then return to the task from which
it originally came (by RCPY L,P).

The form of the call to the Ala receiver is

LOA

RCPYI

B

aiodsb

P, L

Ala receiver address

(device status byte
from Ala in bits 0-7;
device number in
bits 8-15)

The Ala Receiver routine should return to the location
contained in the L register on the entry. ·AII registers are
assumed to be volatile, which means that they need not be
saved and restored to their former contents.

The purpose of the Ala Receiver technique is to allow a
real-time user program to be informed by RBM when chan­
nel end occurs on a particular I/O operation. It is used
instead of I/o queueing by the Monitor . Typically a fore­
ground program wishing to maximize I/o and computation
overlap will issue an I/O request with the no-wait option
and with an Ala Receiver address specified. When the
I/O is successfully initiated, the foreground task exits from
the active state (by a call to M: EXIT) and is restored to
active status at channel end bya Write Direct to trigger
the interrupt level from the Ala Receiver. The foreground
program must then return to the Monitor I/O routine with
the "check II option to complete the end action on the
file. See Chapter 6 for a more detailed discussion of
Ala Receivers.

Note: for transfers invoking blocked fi les where no
I/O is actually performed, the X register will
contain -1 to indicate that the AIO receiver
will not be entered.

LOGICAL/PHYSICAL DEVICE EQUIVALENCE

When writing a foreground or background program in either
Extended Symbol or fORTRAN, the user is not required to
know the actual physical device number that will be used
in the input/output operation. Two ways are provided
under RBM to help the user select the input/output device
on a logical rather than physical basis.

The first method is the direct logical reference. The user
can specify a device-fi Ie number in his call ing parameters
to the input/output routines, and RBM will translate this
into an actual physical device number. There may be
several device-fi Ie numbers pointing to the same physical
device; however, only one device-file number is generally
needed per device per active task in the system. Each
device-file number can be used by only one task at a time.
This is a necessary restriction since the I/O status is saved
in the device-fi Ie number table in the RBMand independent
operation by several tasks on the same device would cause
invalid status from the separate tasks using it.

The second method is device referencing through indirect
logical reference. This method first assigns a device unit
number or an operational label to a device-file number,
which in turn is assigned to a physical device number. The
equivalence of operational labels or device unit numbers
and the device-file numbers is set at System Generation
time for certain standard devices, as shown in Tables 2
and 16. The standard assignments may be changed later by
use of !ASS1GN or !OEFINE control commands.

Table 16. Standard Device Unit Numbers

Device Unit
Number Standard Assignment

101 Keyboard/printer input

102 Keyboard/printer output

103 Paper tape reader

104 Paper tape punch

105 Card reader

106 Card punch

108 Line printer

Table 2 shows the standard background operational labels.
The devices and functions shown indicate how the standard
processors use these labels. Since each I/O call must spec ify
a byte count, a user program can read any number of bytes
from SI (if SI is magnetic tape, for example). The labels
are merely a name. There is no restriction on the record
size except as imposed by the peripheral devices.

LOGICAL DEVICES

In addition to the foregoing use of the term Illogical device, II

ilLogical Device" is also used to refer to' a SYSGEN mech­
anism for reserving logical groups of DFNs for a combination
of foreground and background use to accomplish information
or data transmission between tasks without the use of any real
physical device. (Refer to the RBM System Management
Reference Manual for a description of the SYSGEN mech­
anism for defining a Logical Device in this sense.)

Logical Devices are defined at SYSGEN via a 2-character
mnemonic t (for model number), and an accompanying
pseudo-device number (indicating a channel number, pre­
ferably unique). The user performs reads or writes on DFNs
(or assigned oplabels) associated with the LDs via calls on
M:READ and M:WRITE. Two DFNs must be assigned to de­
fine one Logical Device. Communication between fore­
ground and background tasks is accomplished by use of the
foreground (F)/background (B) SYSGEN option at definition
of the LD.

One example of possible use would be where a task receives
data from a hardware device via standard oplabel or DFN.
This data may be manipulated (if desired) by the task and
passed on to another task via a pair of DFNs associated with
the same LO. The receiving task may pass the data to a
different LD or to a real physical device.

t The mnemonic "lD" or any other 2-character mnemonic
other than RD or XX can be used. This mnemonic may indi­
cate a device type the Logical Device is to represent; e.g.,
LP for line Printer as required by the printer symbiont.

logical/Physical Device Equivalence 69

There are no restrictions astodirection of flow of information.
Either DFN associated with an LD may be used to read or
write to the other DF N associated with the same LD. Two
DF Ns must be associated with one pseudo-device number to
define an LD.

When using an LD, an I/O operation takes place between
the two DFNs associated with the lD. That is, an I/O
operation is only satisfied if a read/write pair of operations
occurs within the definition of one LD. If a task communi­
cates with more that one lD, another task (or tasks) must
perform the reciprocal I/O operation on the DF N of each
of the lDs the first task performed I/O on. A pre-I/O edit
routine for LDs satisfies the I/O operation only when each
of the reciprocal I/O requests have been made against on
LD. Refer to the RBM Technical Manual for further discus­
sion of the lD mechanism.

\ RAD FILES

The two types of RAD files available are sequential files
and random files. A sequential file may be used like a
single-file magnetic tape, whereas a random fi Ie may be
used like a truly direct-access device. The capabilities
and restrictions of each type of file are described below.

Random and sequential files vary in two primary respects:

1. Sequential files cannot be accessed randomly; the next
record to be accessed is the one at which the file hap­
pens to be positioned.

2. Sequential fi res can only be updated at the end.

Random and sequential fifes share the following attributes:

1. Both are available to foreground and background tasks
(but not concurrently).

2. Both are avai lable to routines M:READ, M:WRITE, and
M:CTRL, but not to M:IOEX.

3. Both can be blocked. The Monitor I/O routines do the
blocking and unblocking.

4. Logical records may be less than, equal to, or greater
than the RAD sector size. Unblocked records always
start on a sector boundary. Therefore, if a logical
record is less than a RAD sector and is unblocked, the
remaining bytes of the sector will be ignored. If a
logical record is greater than a sector, it will occupy
an integral number of physical sectors and the remain­
ing bytes of the last sector wi II be ignored.

70 RAD Files

5. BOT (beginning-of-tape) is defined as the logical load­
point and equals the first sector of the fife. EOT is de­
fined as the logical end-of-tape and equals the last
sector + 1 of the fi Ie. EOF (end-of-file) is defined as
the logical file mark (which mayor may not exist).

6. Both can be positioned by !REWIND, !FBACK, and
! FSKIP commands.

7. Foreground I/o requests can specify an AIO Receiver
at channel end for physical I/o transfers. When op­
erations involve only logical I/o transfers, the Ala
Receiver will be i!=Jnored. A flag will be set (x = -1)
indicating theAIO Receiver is not to be acknowledged,
(see M:READ/M:WRITE status returns).

8. Operational labels can be equated to permanent files
on the RAD, or be allocated from available temporary
RAD space. This can be accomplished either through
control cards or through Monitor service calls at ex­
ecution time.

9. When the operational label is defined or assigned to a
permanent fife, it is automatical fy positioned at the
BOT.

10. The transfer of any even number of bytes (to a maximum
of 65,534) may be requested, provided that the transfer
will not extend past the file boundary for unblocked
files. For blocked files a single record is processed
on each call.

SEGUENnAL FILES

1. Sequential RAD files can be compressed (with blanks
removed) if they are EBCDIC data. The Monitor I/o
routines do the compressing and expanding but do not
check for binary data. Compressed records are always
blocked and of variable size; therefore the logical
record size has no meaning except when allocating
the file.

2. As on magnetic tape, once a logical record or file mark
is written on a file, any records or filemarks previously
written beyond that point are unpredictable.

3. Sequential RAD files (except compressed files) can be
spaced forward or backward by logical records. Selec­
ted records may be read from a blocked sequential fi Ie

by spacing records forward or backward; but only
records at the end ofa sequential file should be written,
i.e., update in-place not permitted.

4. As on magnetic tape, the only record that can be
written at the EOT is the logical file mark.

RANDOM FILES

1. All unblocked I/o transfers start on a granule boundary
within a file. These granule boundaries are addressed
as a number that represents the displacement of the
granule from the start of the file, beginning with zero.
A granule boundary always begins on a sector boundary
but need not end on one (see discussion of granules
below).

2. When a random fil e is defi ned, the user may spec i fy a
FORTRAN logical record size and a pointer to the word
where the last referenced FORTRAN logical record +1
is stored. This information, al though unused by the
Monitor, is stored in the fi Ie and may be requested by
executing programs or processors (such as the FORTRAN
compiler), if necessary.

3. Random fi les may not be compressed. They may be
blocked with transfer on a logical record basis. In
this case, the Monitor performs all blocking/deblocking
operations. Any Write operations are really an update
in place and unmodified portions of a b lock are pre­
served. A block is not read into core if it is already in
core from a previous operation.

4. EOF has no meaning in random files except for file sav­
ing, truncating, and mapping purposes.

5. Random files (either blocked or unblocked) may be
accessed sequentially or randomly. At the end of any
operation, RBM automatically updates the record dis­
placement pointer to the II next II record. The pointer
can be "set.1I by any random operation, is initially set
to the beginning of the file, and may be changed
by M:CTRL.

As much data as specified by the byte count will be
transferred for the unblocked random Files but only one
record at a time will be transferred for blocked random
files and incorrect length can occur.

GRANULES

Wh ile a granule is usually synonymous with a sector on a
device, it may be defined (on a file basis) to be equivalent
to any of the followi ng:

• A partial sector.

• One sector.

• Several sectors.

A granule always begins on a sector boundary but need
not end on such a boundary. For example, to make the
7204 RAD and the 7242 disk pack transfers equivalent, a
granule can be defined to be 1024 bytes; this is then one
sector on the disk pack and two sectors plus a fraction of
a sector on the 7204 RAD.

BLOCKING BUFFERS

The RBM system allows for automati c assignment of blocking
buffers for files of blocked, compressed, or packed format.
The number of buffers required by a program may be speci­
fied through the! $BLOCK control card of the Overlay
Loader. Such buffers as will fit within unused memory
(UMEM) of the loaded program may be allocated to a max­
imum of 16. Size of these blocks is determined by the
value of K:BLOCK. Use of such blocks is identified and
maintained in the task TeB (use bits). Assignment is made
from this pool of buffers as required explicitly through an
M:OPEN call or implicitly through the first use of the file.
Closing a file that uses a block from the pool will free its
buffer for later assignment. Thus, a minimum requirement
for pool buffers may be achieved through a judicious open­
ing and closing of files requiring such blocks.

The !$BUFEND control command in conjunction with the
! $BLOCK command wi II allow the foreground user to allo­
cate an area outside his program as the buffer pool.

The abi lity of more than one file to share the same buffer
block is provided to accommodate IIpacked" files whose
records may be accessed random Iy and thus may requi re a
fresh block with each call to M:READ,.ANRITE. The capa­
bility of sharing a single buffer from the program buffer
pool is conveyed by the !$BLOCK command as the program
load file is generated. This capability is registered in the
TCB as the program is loaded into memory and the first buffer
from the pool is identified as the sharable block. Packed
random files may be individually identified as accepting a
shared buffer through an ASSIGN or DEFINE parameter.
Subsequent operations with such a file must be on a "wait"
basis since the shared buffer is freed before completing
each read or wri te request. If the transfer request is not
I/O with wait, a calling sequence error will be returned.
This is true whether the buffer is from the buffer block pool
or whether it is allocated explicitly (M:OPEN) within the·
program.

A buffer block may not be shared by other than packed
random files of the same task.

RAD Files 71

Records of compressed, blockedandpacked fifes are treated
as a contiguous stream of data for block ing purposes. As
such, individual records may overlap block boundaries
without concern to blocking procedures.

RAD FILE MANAGEMENT

RBM permits aUocation of the RAD into the subsections
shown in Figure 4. The exact bounds on these sections are
computed from the size of required contents or selected by
the user in accordance with the anticipated use of the
system. In eithe.r case, the bounds are set during System
Generation, and cannot be changed except by a new
System Generation. RBM maintains directories for as many
areas as the user specifies up to 35, plus: the Checkpoint
area, the Background temp area, the System Library, Sys­
tem Processor area, and System Data area. RBM also main­
tains control of the checkpoint area. The background temp­
orary space is allocated from control command inputs or
from calls to M:DEFINE as requested.

Areas need not be allocated contiguously (RAD tracks may
be skipped between areas), and can be distributed over
more than one RAD. One to 16 areas may be allocated on
each RAD or disk pack. However, each area must exist en­
tirely on a single RAD. If there is more than one RAD on
the system, one will be designated as the RBM System RAD,
which will receive any default areas. Any RAD with sec­
tor 0 avai lable wi If receive a bootstrap in that area.

72 RAD Fife Management

RBM Bootstrap loader

System Processor area

System Library area
r-------

System Data area

RBMGO RBMAl
RBMOV RBMS2
RBMPMD RBMSYM
RBMID

User P;ocessor area

User library are~

User Data area

Checkpoi nt area

Background temporary storage

0'0' areas

Alternate tracks (disk pock only)

Figure 4. RAD Allocation

6. REAL-TIME PROGRAMMING

FOREGROUND PROGRAMS

A foreground program is one that operates in protected
memory, utilizes foreground operational labels or device
unit numbers, and has access to privi leged instructions. It
is protected from any background interference through an
integrated hardware/software protection scheme. A fore­
ground program may be classified as either a resident fore­
ground program, a semiresident foreground program, or a
nonresident foreground program, and it is important that
this distinction be understood.

RESIDENT FOREGROUND PROGRAMS

Foreground programs are defined as resident through the
RAD Editor when their fi les are created on the user pro­
cessor area of the RAD. They are loaded into core from
the RAD whenever the RBM system is booted, and are either
automatica Ily armed, enabled and (optionally) triggered,
or they initialize themselves through their own initializa­
tion routines. Once loaded into core for execution, resi­
dent foreground programs remain resident until the RBM
system is again booted from the RAD.

SEMI RESIDENT FOREGROUND PROGRAMS

Semi resident foreground programs are normally not in core
memory. They are not read into core when the RBM system
is booted but must be called in explicitly when needed.
Semi resident foreground programs, when loaded, reside in
the resident foreground area. The user must schedule the
loading of semiresident foreground programs because the
Monitor provides no protection against overlay or over­
loading. When loaded, they may be automatica lIy armed,
enabled and (opti onally) triggered, or they may initial ize
themselves through their own initialization routines.

NONRESIDENT FOREGROUND PROGRAMS

Nonresident foreground programs are normally not in core
memory. They are not read into core when the RBM system
is booted but must be called in explicitly when needed.
Nonresident foreground programs, when loaded, reside in
the nonresident foreground area, and the area is then consid­
ered lIactive ll and is not available for subsequent use by other
programs (including the Monitor) until the program occupying
this area releases it by lIunloading". This feature is useful
when a system has several nonresident foreground prog~ams
that have a resource allocation problem or are connected to
the same interrupt level. The Monitor wi II control access
to the nonresident foreground area, thus providing protec­
tion against multiple loading of these conflicting programs.

If nonresident programs are to be used, at least K :BLOCK+ 17
memory locations must be allocated for the nonresident fore­
ground area of core. If allocated, the non resident foreground

area is adjacent tothe background. Ha nonresident foreground
program is to be loaded and the length of the longest path
(including COMMON) exceeds the size of the nonresident
foreground area, the background is automatically check­
pointed to allow the program to extend to the background.
The background remains checkpointed unti I the nonresident
foreground program unloads by a call to M:LOAD. When
loaded, nonresident foreground programs may be automati­
cally armed, enabled and (optionally) triggered; or they
may initialize themselves through their own initialization
routines.

MONITOR TASKS

The relative priorities of the separate Monitor tasks are
given in descending order below:

Highest Counters (optional).

Power On Task.

Power Off Task.

Machine Fault Task.

Protection Violation Task (optional).

Multiply Exception Task (optional)t.

Divide Exception Task (optional)t.

Real-time tasks, if any, higher than I/O level.

Input/Output Task.

Control Panel Task.

Counters = 0 (optional).

Real-time tasks, if any, lower than I/O level.

RBM Control Task (lowest hardware level).

Background "tasks", lower than all hardware levels.

Although the tasks are not reentrant, they are serially re­
usable; that is, as soon as a task finishes processing one re­
quest, it can immediately process another. For example,
I/o interrupts are processed one at a time, with the highest
priority device always processed first if several interrupts
are waiting, but as soon as the processing of one interrupt
request has been completed, another request for a separate
device can be processed.

POWER ON TASK

The Power On Task performs the following operations:

• Waits for acceptable RAD status.

• Arms and enab1es all RBM interrupts.

tSigma 2/3 only .

Real-Time Programming 73

• Triggers the RBM Control Task to send a !! POWER ON
message.

• Restores protection registers to failure-time contents.

• Loads and links to the Power-On receiver if specified
in pointer location X' lA9'. If the computer is a Sigma 3,
the X register will point to the interrupt status saved
at Power-Off time. This data is organized as follows,
one bit per interrupt per word as described for the
WD-instruction register bits in the appropriate com­
puter reference manual:

0,1: ° if recovery wi II be attempted, 3 if re-
covery wi II not be attempted.

1, 1: Group '0' interrupts enabled.

2, 1: Group '0' interrupts armed or waiting.

3,1: Group '0' interrupts waiting or active.

If the computer is a Model 530, the X register wi"
point to a data area organized as follows:

0, 1: ° (Recovery wi II be attempted).

1,1: Group '0' interrupts enabled.

2, 1: Group '5' interrupts enabled.

3,1: Group '6' interrupts enabled.

4,1: Group '0' interrupts armed or waiting.

5,1: Group '5' interrupts armed or waiting.

6,1: Group '6' interrupts armed or waiting.

7,1: Group '0' interrupts waiting or active.

S, 1: Group '5' interrupts waiting or active.

9,1: Group '6' interrupts waiting or active.

• Restores status at Power-Off time and exits if the com­
puter is a Sigma 3 with no external interrupts, or is a
Model 530.

• Restores context and exits if it is a Sigma 2 or there
are external interrupts and background is active.

If none of the above conditions are satisfied, the Power­
On interrupt is cleared and a SYSERR is forced.

Since Power-On processing is installation dependent and
correct recovery cannot always be guaranteed, a user­
developed Power-On Receiver may be used to restart after
a power failure. The following action may be taken within
the receiver:

1. Timeout errors will be simulated on all active I/O
channels at Power-Off time. Code within the receivers
may restart I/O for these devices.

2. The interrupt status is determined, in general, through
the TCB chain (each TCB contains the address of the
TCB of the task it interrupted). Race conditions can
exist that may cause this chain to inaccurately reflect
the interrupt status, although the PSD chain is correct.

74 Monitor Tasks

If this risk is considered negl igible or the effects
unharmful, the tasks can be reactivated through the
TCB chain by the receiver.

3. The foreground Power-On Receiver may activate one
or more foreground tasks or take other special action
to restart the system. This may involve going to some
recent checkpoint.

4. The receiver may exist from the Power-On routine
by going to M:EXIT.

POWE R OfF TASK

The Power Off Task performs the following operations:

•

•
•

•

Saves all available interrupt status, depending on
model of CPU (see above).

Saves context via a call to M:SAVE.

Scans the Channel Status Table and issues an HIO to
any channel flagged active and saves the device status
byte and the even and odd channel register contents in
the Fi Ie Control Tab Ie.

Interrogates location X' 1 AS' for a Power-Off receiver.
If one is specified, a branch is made to it; otherwise,
the Power Off Task waits for the power-on interrupt.

MACHINE FAULT TASK

For Sigma 2/3 Systems: The Machine Fault task responds to
the following Sigma 2/3 machine fault conditions, listed in
order of priority:

1. Memory pari ty error.

2.

3.

4.

5.

External lOP timeout. l
Incorrect direct I/O.

Internal lOP timeout. Sigma 3 only.

Combination of conditions 2 or 3 and 4.

Of these conditions, background can only cause a memory
parity error. When this occurs, the Machine Fault task trig­
gers RBM and the background task is aborted with an error
code of PE. For all of the above conditions, including parity
error when background is not active, an appropriate fore­
ground receiver will be tested, as specified below. If this
receiver pointer is zero, the action specified below will be
taken. Otherwise, the receiver wi II be linked to via a
RCPYI P, L. If the receiver returns, the Machine Faul t task
will proceed as if a receiver was not specified. The re-
ceiver may correct the situation and simply call M:EXIT.

Receiver Pointer
Condition Address Action

X 'lAD' Abort, code = PE

2 X 'lAB' SYSERR, code = ET

3 X 'lAA' Abort, code = MF

4 X 'lAC' Machine Fault Message

Abort action consists of disabling the associated interrupt
and exiting the task. If the task occupies the nonresident
area, an UNLOAD will be performed. If an HOP timeout
occurs, RBM wi II be triggered to write the "Machine
Fau It ••• II message. The active task wi II not be terminated
but, on exit from the Machine Fault task, overflow and
carry will be set to indicate device not recognized.

All foreground abort messages and the "Machine Fault •.• "
message will be written at the RBM Control Task level.
Therefore, if two consecutive foreground tasks abort, only
the message for the lower priority task wi II appear. How­
ever, both a foreground abort message and the IIMach ine
Fault .•• " message may accumulate.

For Model 530 Systems: The Machine Fault Task responds
to all Model 530 hardware-detected machine faults, as re­
ported by the fault register. If the error-logging option has
been selected at SYSGEN, the contents of the fault register
is logged in the system error file (ERRFILE, SD) along with
pertinent context data.

The fault condition is analyzed and a severity code
(0 through 4) is generated according to the breakdown
shown in Table 17. Location X'1AA' is interrogated for a
mach i ne-fau I t recei ver poi nter. If the poi nter is nonzero,
control is transferred to the receiver with the X and L reg­
i sters set as follows:

Register X - pointer to a two-word field, where word 0
contains the severity-level code (0-4), a nd word 1

contains the fault code (current fault-register con­
tent, see Table 17).

Register L - return location in Machine Fault Task.

If the receiver pointer is zero, or if the receiver returns
control (via register L), the Machine Fault Task wi II log
the error and proceed, as summarized below, according to
the assigned severity level:

Severity Action

o Immediate exit, i. e., log fault condition
only.

2

3.

Retry instruction at which fault occurred.

Abort task causing the fault with abort-code
MF.

Transfer to SYSERR routine, with code MF,
which writes SYSERR message and brings sys­
tem to orderl y hal t •

4 Immediate system halt with code MF in
register A, fault code in register X.

(The receiver can change the severity level and return, with
appropriate effect.)

Note that, other than error logging, no action is taken on
multiple fault conditions (severity 0).

Table 17. Machine Fault Classification by Severity Levels

Severity Code and Meaning

0- Error logging only.

1 - Retryable: not second
consecutive occurrence at
same location.

2 - Serious: not retryable
but limited to a specific
task.

Fau It Classification Fau I t Reg ister Contents (Hex.)

All faults not I isted below, including any combination
of multiple faults (i.e., faults reported concurrently).

Any other than below.

DIO data- in parity error.

DFSA constantly high.

Address-pari ty error on instruction fetch.

Data-parity error on instruction fetch.

DIO argument field error.

DIO data-out parity error.

NIO data parity error.

Interrupt-Master fau It.

No DFSA response.

U · 1 d . . t nlmp emente instruction.

8210

8204

81>2

81>1

n008

n004

n001

0802

8208

8202

Memory module absent (i.e., nonexistent address). tt 81x4

Address-parity error on operand fetch. 81<2

Data-parity error on operand fetch. 81<1

PCP pseudo-fault (TRACE on and PCP interrupt). 0804

DIO fault: parity error on external write direct. 0801

Monitor Tasks 75

Table 17. Machine Fault Classification by Severity Levels (cont.)

Severity Code and Meaning Fault Classification Fau I t Reg is ter Contents (Hex.)

3 - Critical: affects entire lOP fault. n020
system.

Watchdog timeout (special system devices). nOlO

4 - Catastrophic: the All mode-3 CPU faults: 83xx
integrity of any operation

Instruction timing error.
cannot be assured.

ROS address-parity error.
ROS data-parity error.
MCM error.
AU parity error.

Control module error. 8220

Legend: < i ndi cates I ess than 8, > indicates greater than 7, n = 1 for 10PT; 2 for IOP2, and x indicates nonspecified
value.

tThe error receiver is not entered if an unimplemented instruction is executed by a background program.

ttThe error receiver is not entered if a nonexistent memory address is referenced by a background program (abort with
code NA).

PROTECTION VIOlATION TASK

Any attempt by the background to modify the contents of
protected memory, or to execute a privi leged instruction,
will cause the Protection Violation Task to abort the back­
ground program, using the same method as the Machine
Fault Task.

Unavai lable core is set protected. On Sigma 2/3 systems,
write attempts to unavailable core cause protection errors,
and read attempts from unavai lable core cause parity errors.
The abort code after a protection error shows the location
causing the error if the error was an invalid store or a priv­
ileged instruction. An attempt by the background to branch
to protected memory wi" cause an abort with the address of
the location that was being branched to. Note that Mon­
itor service routine calls actually cause a protection viola­
tion from the background. However, if the branch address
and the return to the background are valid, the branch is
permitted.

The set multiple precision mode instruction, RD X l 81 I, does
not cause a protection violation when multiple precision
hardware is implemented.

MUL nPLY/DIVIDE EXCEPTION TASKS

Sigma 2/3 Systems Only: These tasks simulate a Multiply
or Divi-de instruction for Sigma 2/3 computers not equipped
with Multiply/Divide hardware. They are not reentrant,
and all lower interrupts are essentially locked out for the
duration of the simulation (approximately 250 to 300 CPU
microseconds.)

76 Mon itor Tasks

INPUT/OUTPUT TASK

After an input/output interrupt, the Input/Output Task
identifies the highest priority device with a pending in­
terrupt. It then clears the channel activity status and
sets the operational status byte count residue in the proper
device-fi Ie status tab Ie, if the device is no longer opera-
ti ng. (The channel is not cleared for a zero-byte-count
interrupt.) If a foreground AIO Receiver was spec ified (for
a description of an AIO Receiver, see "I/o Operations" in
Chapter 5), control is transferred to this receiver at the
I/o priority level. It is expected that the Ala Receiver
exits properly.

To minimize interrupt inhibit time, the channel registers are
loaded and the I/o initiating SIO is issued at the I/o inter­
rupt priority level. Consequently, any task with a priority
level higher than I/o must not use M:READ, M:WRITE, or
M:IOEX to perform I/O, but may perform its own I/o with­
out use of the I/o interrupt.

When Clock 1 is employed (a SYSGEN option),. M:READ/
M:WRITE operations are subject to a time limit. Clock 1 is
used to ensure that no channel is active beyond a preset
limit. If the limit is exceeded, an HIO is issued to the
offending device and appropriate end action will be taken.

CONTROL PANEL TASK

A Control Panef Intenupt causes the Control Panel Task
to perform one of two functions: (1) remove the foreground
task and (2) notify the RBMControl Task of a pending key-in.
If the Control Panel data switches are set appropriately,

a foreground disable and abort may occur (see "Operator
Control II , Chapter 3). Otherwise, the Control Panel Task
sets the key-in flag for the RBM Control Task, triggers the
RBM Control Task and exits. The key-in operation itself is
performed at the level of the RBM Control Task.

RIM CONTROL TASK

This task controls unsoli cited key-i ns and background oper­
ations. It is the only RBM task that actually performs input/
output and, therefore, is the only task that requires tempor­
ary stack space for the reentrant RBM input/output routi nes.

SCHEDULING RESIDENT FOREGROUND TASKS

When several programs and tasks are simultaneously located
in core memory, schedul ing is required for the orderly trans­
fer of control from one task to another. Schedu I ing takes
place in accordance with the following rules:

1. When no background or foreground task is active in
the system, the Monitor enters the "idle II state unti I
the operator di rects the loadi ng of a set of control
commands from an input device.

2. After a background program is loaded, the Monitor
transfers control to the program by an exit sequence
from the RBM Control Task. During execution of the
background program (if the program is waiti ng for its
own I/O to complete), there can be "lothing else in
execution in the system. That is, the Monitor makes
no attempt to multiprogram to absorb idle time. If
there is an armed and enabled resident foreground task
in core, the foreground program may receive an inter­
rupt from some external source.

3. After entry, the interrupti ng task saves the contents of
any registers it will alter and proceeds to carry out its
function. The task may use either the M:SAVE service
routine to perform the saving opertions or it may save
the contents of the registers itself.

4. When the real-time task is completed, it may restore
the context of the interrupted task and exit via the
standard interrupt exit procedure or may have these
functions performed by the M:EXIT service routine.

Warni ng: If the real-time task has changed the state
of the interrupt levels by arming or disarming
any active interrupt I the system integrity is
lost. The enable/disable feature should be
used to prevent interrupts until an orde~'ly
exit and inactive state is achieved.

Note that this is a last-in, first-out form of scheduling.
The interrupting task may itself be interrupted at any time

during execution by a higher priority task, up to the maxi­
mum possible number of tasks in the system.

Each time, a new task saves the status and register contents
of the interrupted task. When the new task exits, control
is returned automatically to the task it interrupted. If there
is another interrupt waiti ng between the level of the current
task (which is just completing) and the interrupted task, the
originally interrupted task is immediately interrupted again
and the new (intermediate) task follows the same procedure.
Thus, it is never necessary for any task to know what task
precedes or follows it. The task merely preserves and re­
stores the environment accordi ng to the establ ished rules.

The design of the hardware priority system makes it unneces­
sary for the Monitor to be involved in the actual schedul­
ing, and this procedure allows the tasks and programs to
independently control the execution priority of certai n
operationswithin the foreground. For example, a real-time
foreground task that is activated by an external interrupt
may perform some processi ng and then issue a special Write
Direct to trigger another related task to continue the pro­
cessing at a higher or lower interrupt level. If the Write
Direct is to a higher level, the interrupt to the higher level
takes place immediately and the new task is begun. More
frequently, the Write Direct is to a task at a lower priority
level, and in this case the current task exits in a normal
manner and the highest priority "waiting" task will become
active. This task mayor may not be the one that just re­
ceived the Write Direct. Eventually, the task that re­
ceived the Write Direct will be reached, and this task will
then continue the processing at that level. Thus, real-time
foreground programs can have an i ntri cate schedul i ng scheme
with no RBM intervention.

An example of interrupt-driven scheduling is illustrated in
Figure 5.

LOADING FOREGROUND PROGRAMS

All programs must reside on the RAD in order to be read into
memory for execution. They must be written onto the RAD
by the Overlay Loader or the Absolute Loader. (See the
lABS control command description in Chapter 2 for restric­
tions regarding the use of the Absolute Loader.) In each of
the methods described below, only the program root is loaded
into memory from the RAD file as a resu It of the action taken.
Segments must be read in by subsequent calls to M:SEGLD.

The most common method' of loading a foreground program
into memory is through a call to M:LOAD by another fore­
ground program. The call takes place at the priority level
of the foreground program and the request is placed into the
queue stack. The program is actually loaded by the Monitor
subroutine S:LOAD at the level of the RBM Control Task,
and this method is the most logical one to be used. It is
based upon conditions automatically detected by other fore­
ground programs and requires no response or assistance from
the operator.

Scheduling Resident Foreground Tasks/Loading Foreground Programs 77

High ________ _ 1/150 rcvr(2)

Q)

>
Q)
~

>-. • s:
o .s:

c..

I/O INTERRUPT

FGND 1

FGND 2

FGND3

RBM CONTROL TASK

BACKGROUND

Request CHECKPOINT

r----L
[Q---~

Initiate I/~ revr)

..... ··CD

@-------------~
'BKG RESTART'

CKPT CKPT rcvr{l)

--------t6---~ I I
t

'BKG CKPT1

I ,--, r-. ---

BKGNDt--- -IBGI- - - - - - - - - - - - - - - - -- - --- -- - --IBKGND
____ ~, L_J' ~ ___ _

t t t t t t t t t ttl
TO T1 T2 T3 T4 T5 T6 T7 T8 T9 no Tll

TIME SEQUENCE------~·-
Note: Times need not be equally spaced.

Time Point Activity (Meaning)

TO

T1

T2

The background is executing.

An interrupt is received for Foreground Task 2 which becomes active and saves the environment of the
interrupted background task into its TCB.

Foreground Task 2 requests an I/O operation, specifies an AIO Receiver, and exits. The background
resumes processi ng.

T2.5 An interrupt is received for Foreground Task 3 which interrupts the BG.

T3 An interrupt is received for Foreground Task 1 which becomes active and saves the environment of the
interrupted task (Task 3) into its TCB.

T4 At channel end, an I/O interrupt is received for the operation initiated by Foreground Task 2; the
I/O Interrupt Task saves the environment of the interrupted task (Task 1). The AIO Receiver is
entered at the I/O interrupt level and triggers Task 2, indicated by dotted line at FGND 2 level.

Figure 5. Foreground Priority levels

78 loading Foreground Programs

Time Point

T5

T6

T7

T8

T9

TlO

Tl1

Activity (Meaning)

The AIO Receiver returns via a RCPY L, P instruction. The I/O Interrupt Task exits, restoring the
interrupted task's status. Foreground Task 1 resumes operation, requests a checkpoint of the back­
ground, and specifies a Checkpoint Complete Receiver. This action causes the RBM Control Task
to be triggered, indicated by broken line at RBM Control Task level.

Foreground Task 1 exits, restoring the interrupted task's status. This was actually Task 3, but Task 2
is waiting and it immediately becomes active.

Foreground Task 2 exits, restoring the interrupted task's status. This was Task 3. It becomes active
and continues from where it was suspended.

Foreground Task 3 exits, restoring the interrupted taks's status. This was actually the background
task. Since the RBM Control Task was triggered at T5, it is the highest waiting interrupt level. The
RBM Control Task becomes active and stores the interrupted task's status into its TCB. The RBM
Control Task calls the RBM subtask S:CKPT which writes the background into the RBM Checkpoint
area on the RAD. S:CKPT then extends memory protection to the background and enters the specified
Checkpoint Complete Receiver at the RBM Control Task level. In this illustration the Checkpoint
Complete Receiver triggers Foreground Task 1 with a Write Direct instruction.

Foreground Task 1 becomes active and saves the environment of the interrupted task in its TCB. The
background area is now available to Foreground Task 1 for instructions and/or data. When processing
is complete, Foreground Task 1 requests a restart.

Foreground Task 1 exits, restoring the interrupted task's status (in the Checkpoint Receiver, which
returns via a RCPY L, P instruction). The RBM subtask S:CKPT now completes its operation and
returns to the RBM Control Task which calls in the subtask S:REST to restart the background task.
S:REST first clears the background area, then reads the checkpointed background task in from the
RAD. The background is then set "unprotected" which completes the restart operation.

The RBM Control Task exits, restoring the status of the interrupted background task which then
resumes processing.

Figure 5. Foreground Priority Levels (cont.)

Another method of loading a foreground program is through
an unsolicited key-in by the operator. The operator must
generate a Control Panel Interrupt and, in response to the
request ! KEYIN, type in "Q name", where "name" must

used to load background programs that are part of a back­
ground job, and that must be preceded by an FG key-in.
These commands are

be the name of a foreground program residing in the user
processor area of the RAD. This action also results in a
call to M:LOAD to queue the request. This method could
be used in response to conditions detected outside the com­
puter system (e.g., a certain time of day). Both of the
above methods apply to semiresident as well as nonresident
foreground programs. For resident foreground programs, they
wou Id be used only to obtain a fresh copy of a particular
program without rebooting the entire system.

Loadi ng through use of the queue stack requ ires use of the
nonresident foreground area whether or not the request is
for loading into this area. Therefore, whenever a nonresi­
dent foreground program is in core, all queue stack loading
is suspended until the program occupying the nonresident
foreground area releases the area by unloading.

Two other methods of loading foreground programs are avail­
able. They involve control commands that are normally

!XEQ initiates loading from whatever RAD file to
which background operational label OV is assigned.
The method presumes that either the appropriate
OV oplb assignment has been made, or that the
program to be loaded is on the RAD fi Ie RBMOV
to which the label OV is assigned by default.

! name causes the foreground program "name" to be
loaded in the same way a background processor is
loaded. The foreground program must reside in
either the SP, FP, or UP area: they will be searched
in that order. The user is responsible for avoiding
dupl ication of program names in those areas.

The control command methods are closely tied to back­
ground schedu les and do not provide adequate response to
real-time needs. However, they can be used when de­
bugging foreground programs.

Loading Foreground Programs 79

LOADING NONRESIDENT FOREGROUND PROGRAMS

Nonresident foreground programs are also loaded by the
Mon itor service routine M:lOAD. Once loaded, these
programs can be connected to an interrupt via an initializa­
tion routine or else can be triggered by a code given in the
program's rCB. These programs then behave exactly like
resident foreground programs. If the program iust loaded
resides in the area of core referred to as the nonresident
foreground area, the nonresident foreground area is tied up
untit the program releases this space. A method is provided
to automatically unload this area when M:ABORT or M:TERM
is cal led by the task occupying the nonresident foreground
area. Therefore, a FORTRAN program calls the Jibrary
routine L:OP (generated by the compiler when the program
colts STOP) to terminate and unload. If a FORTRAN pro­
gram calfs EXIT, the nonresident foreground area will not
be unloaded.

FOREGROUND INITIALIZATION

When a foreground program is loaded, it may either be
initialized by RBM (see Overlay Loader I$TCB card in
Chapter 7) or may have its own initialization routine.

If the !$TCB card is used, the initialization routine will be
entered at the interrupt level specified on the ! $TCB card.
The initial ization code must therefore take the necessary
precautions to ensure that it will only be executed once.
It must then branch to the start of the program. When
OLOAD builds the ! $TCB, the task organ ization is

Orgin, from! $ROOT Card -rEM[START

TEMP SIZE, from! $ROOT
Card

TEMP END

rDR~ PSD

See Table 18 TCB
TCB 16

PSD DATA 0
DATA 0
STA TCB + 10
RCPY L,A
STA TCB + 5
RCPYI P, l
B M:SAVE
ADRL TCB
B *$+ 1

VECTOR DATA ENTRY POINT
First instruction of users code

If any module with an operand on the END card is loaded
with the Root segment the last 'END' operand will be in­
serted into 'VECTOR1 and wiJI be entered when the asso­
ciated interrupt level is triggered. Otherwise, nVECTOR"
will point at the first word location cell of the Root.

80 Foreground Initialization/Task Control Block Functions

In the case where the program contains its own TCB, the
operand on the 'END' card will be entered at the level of
RBM. The initiafization code in this case must

1. Insert the PSD address into the dedicated interrupt
location.

2. Arm, enable and perhaps trigger the associated inter­
rupt level.

3. Perform any user-specified functions, such as special
receiver connections, establishing foreground maif
boxes, and so on.

4. Return to the' II register.

In this case, when the initialization routine executes at
the RBM interrupt level, the RBM temp stack is available
to the user code. This will allow enough temp for almost
all monitor service calls.

If HEXDUMP was included at SYSGEN time, all Monitor
service routines except M:RSVP may be used. If HEXDUMP
was not included, the N1onitor service routines M:RSVP and
M:SEGlD may not be used.

For the benefit of segmented foreground programs, the ini­
tialize code {entered byM:lOAD} can assign an internal
operational label to the foreground Mloperational label.
This internal operational label may then subsequently be
used in calls to M:SEGLD. The foreground program may
not use the ML operational label in calls to M:SEGlD.

If there is a loader built TCB, the initialization routine will
be entered at the task level when its interrupt is triggered
for the first time.

When foreground initial ization is completed, the routine
returns to RBM via RCPY L, P. Foreground initialization
routines will also be executed any time the system is booted
from the RAD if the task is flagged as a resident foreground
task and resides on the SP, UP, or FP areas.

TASK CONTROL BLOCK FUNCTIONS

The Task Control Block (TCB) is a convenient means for
organizing and storing information necessary to attain pro­
per context switching, define dynamic blocking buffer
pools, define temporary space necessary for reentrancy, and
arm and enable the associated task. A foreground program
may have one or more TCBs within the program (one for each
task), but it is assumed that the first loadable item within a
foreground program is a TCB. The TeB is used by the Monitor
service routines M:SAVE, M:EXIT, M:lOAD, and by the
Control Command Interpreter upon encountering a ! C:
command.

The TCB consists of 17 words and can be created at assembly
time with Extended Symbol, or at foad time by the Overlay

Loader. (A FORTRAN program must have its TCB created
by the Overlay Loader). The TCB is usually a block of
code contiguous to the task it describes, with address literals
pointing to the temporary stack space. A DATA statement
can set the initial code for the interrupt level state for the
task interrupt level. The complete contents of the TCB are
shown in Table 18.

Note: The code in TCB + 2 is the exact code used in the
Write Direct that sets the interrupt level. This code
is described in the appropriate computer reference
manual.

Bit T in word TCB+ 1 indicates whether the task is using the
Monitor I/o routines and the floating accumulator; if bit T
is zero, a temporary stack is required and the M:SAVE rou­
time wi II initial ize locations 0001 through 0006, after sav­
ing the previous pointers for the interrupted task. If bit T
is a 1 (meaning no floating accumulator and no temporary
space are required), the M:SAVE routine will not set these
locations. In a real-time environment it is recommended
that a user does not set the T bit to 1 (the floating accumu­
lator and temporary storage pointers are saved). The Moni­
tor serv ice routines M:SAVE and M:EXIT do not, themselves,
use any temporary storage.

When the task is programmed in FORTRAN, the task en­
trance and exit, TCB, and task entrance procedure are set
up by the Overlay Loader. The module load routine
M:LOAD sets the pointer to the PSD into the dedicated

interrupt location and arms, enables, and optionally triggers
the associated interrupt level.

The background program wi II have a Task Control Block in
protected foreground space.

Caution: Locations 1 through 5 in the zero tab Ie are not
saved and are recreated from location 6. Thus,
locations 1 through 5 must not be changed by a
foreground program or they wi II not be the same
after interrupt has taken place.

When the Overlay Loader creates the TeB for a foreground
task, the items shown in Figure 6 are generated adjacent to
the task. If the transfer address given in the object deck is
relocatable 0, it is not treated as the entry point to an ini­
tialization routine, but is used as the entry address for that
task. The task will be armed, enabled, and possibly trig­
gered when loaded for execution depending on the contents
of words 1 and 2 of the TCB, suppl ied to the Overlay Loader
on the! $TCB card.

After a foreground program is loaded into core, certain
items in the TCB are examined. A fatal load error results
if the number of specified operational labels requiring
blocking buffers exceeds the number of available blocking
buffers (word 15 of TCB). If the number of avai lable block­
ing buffers is sufficient, word 15 of the TCB is adjusted to
reflect the current blocking buffer requirements.

Table 18. Task Control Block (TCB)

Location Contents Set by

TCB+ a ADRL PSD Assembler/Loader
0 - 3 4 5 6 7 15

1 R-bit No.
T C X Dedicated Interrupt Location Assembler/Loader

For WD

2 o 11'1213 4 5 718 11 1 12 15
Assembler/Loader o 1010 11 ° Code 1 0000 I Int. Group No.

3 ADRL TEMPBASE (temporary stack) (FWA) Assembler/Loader

4 ADRL TEMPLIM (temporary stack) (LWA+ 1) Assembler/Loader

5 Contents of L register from interrupted task Current task (on actual entry)
-,-",.

6 Contents of T register from interrupted task M:SAVE (or current task)

7 Contents of X register from interrupted task M:SAVE (or cu rrent task) .

8 Contents of B register from interrupted task M:SAVE (or cu rrent task)

9 Contents of E register from interrupted task M:SAVE (or current task)

Task Control81ock Functions 81

Table 18. Task Control Block (TCB) (cont.)

Location Contents Set by

10 Contents of A register from interrupted task Current task (on actual entry)

11 Contents of Jocation 0006 (K:BASE) from interrupted task M:SAVE

12 Contents of Location 0007 (K:TCB) from interrupted task. M:SAVE

13 Dynamic base (K:DYN) for temp of current task;
initially TEMPBASE + 6.

14 Buffer poor lWA + 1.

15 Bits 11-15 contain number of buffers (0 ~ n ~ 16).
Bits 0-7 are reserved for Monitor use and should
be coded as zeros. Bit 8 = 1 indicates the first buffer
blocked is reserved as a sharable buffer for packed
fi les.

16 "Use ll bits for buffers in pool (0 if unused).

PSD + 0 Interrupt task status flags.

where

1 Interrupted task P register.

2 First instruction of current task.

Remainder of program (the PSD must be contiguous
with the program but need not be contiguous with
the TCB.)

Assembler/Loader (changed by M:RES and M:POP)

Assembler/Loader

Assemb ler /loader

M:OPEN or M:CLOSE

Interrupt sequence

Interrupt sequence.

Assemb ler/Loader

ADRL PSD is a pointer to the Program Status Doubleword. It is the location shown in the dedicated interrupt
location when the interrupt takes place.

R-bit No. for WD is the hexadecimal value (from 0 to F) that indicates the register bit that identifies the
particular interrupt level within the Interrupt Group (the hardware block of 16 possible interrupts).

T is the flag that indicates whether the M:SAVE and M:EXIT routines should set location 0001 to 0005;
o means yes, 1 means no. (T must be 0 if any Monitor service routines are used.)

C is the flag that indicates whether the task is critical (see Glossary); 1 means yes, 0 means no. The default
value is O. This flag is provided for interpretation and use by the installation; RBM as distributed makes no
distinctions based upon it.

X indicates whether or not the task is to be triggered at load time: 1 means yes, 0 means no. A code of 7 is
issued subsequent to issuing the code (normally 2, IIArm and Enable") given in word 2.

o when set, indicates that no dismissal on wait I/o wilt be performed for this task.

Code is the interrupt system control code that indicates current or desired initial interrupt control status.
The codes are 1 = disarm, 2 = arm and enable, 3 = arm and disable, 4 = enable, and 5 = disable, 7 =trigger.

Buffer pool is an amount of space from 1 to 16 buffer areas in length, each of which is equal in size to the
va.lue contained in K:BLOCK.

IIUse ll bits are bits, from Jeft to right, beginning with zero, showing which of the maximum number of buffers
have been oflocated by M:OPEN and have not yet been closed by M:CLOSE.

82 Task Control Block Functions

TEMP BASE

TCB

End of TCB

-I
n-word

= exloc, specified on
! $ROOT card.

n = temp. specified on

.. Word 0

2

3

4

5

12

13

14

15

Word 16
..

Word n

ENTRY

Reserved Area

ADRL Word n

- Interrupt Information

! $ROOT card; first five
words of temp are float­
ing accumulator; sixth
word is used by FlO.

TEMP LIM

- } Supplied on !$TCB card.

~--4

TEMPBASE Temp Stack FWA.

TEMPLIM Temp Stack LWA+ 1.

~--~

}
Reserve for savi ng con­
text of interrupt task.

K:DYN (Dynamic Temp Pointer)

Buffer Pool LWA + 1

No. Avai lable Buffers

Use Bits

I--- PSD Reserve

Initially set to
TEMP BASE + 6.

Set to Common Base.

Common Base - Last
Loaded item/K:SEC.

Initially set to zero.

- receives the interrupted
}

Two-word reserve that

~ ____________________ -. ________________ ~ ____ ~ task1s PSD.

" STA TCB+ 10

RCPY L,A

STA TCB+5

RCPYI P,L

B M:SAVE

ADRL TCB

B * $ + 1

ADRL ENTRY

Foreground Task

Figure 6. Task Entrance Format

Code to save registers,
~ TCB pointers, and temp

pointers.

Transfer Address

Task Control Block Functions 83

In the event of a fatal load error in response to a load
request from a background job stack via an ! XEQ or !name
command, the following message is printed on the DO:

! !BKGD XE ABORT LOCATION FFFF

If the request came from a queue stack load, the following
message is logged on the DO:

NONRES FGND PGM xxxxxxxx LOAD ERROR

If a program has an initialization routine (that is, an end
transfer address other than absolute or relocatable 0), that
routine is responsible for storing word 0 of the TCB (the ad­
dress to receive the interrupted task's PSD) into the dedi­
cated interrupt location, as well as arming and enabling the
appropriate interrupt level for each task within the program.

The initialization routine may also be used to assign any
specific operational labels required by the program (e.g.,
the operational label or device unit number required) to
read in subsequent segments.

If the program has no initialization routine, word 0 of the
first loaded task (actually word 0 of that task's TCB) wi II
be stored into the dedicated interrupt location for that task
when the program is loaded. Next, the associated inter­
rupt level is disarmed to remove any waiting interrupts; then
it is armed, enabled, and possibly triggered, depending on
the contents of words 1 and 2 of the TC B.

When a foreground task is activated, control is transferred
to the address given in the dedicated interrupt location,
where the interrupted task's PSD is stored, and execution
resumes at PS D + 2 at the I evel of that foreground program.
This is a hardware function that preserves the interrupt status
and execution location of the interrupted task. Next the
register contents of the interrupted task must be saved.

Normally, the first instruction in a foreground program
wi II store the contents of the accumulator into word 10 and
the contents of the L register into word 5 of its TCB and then
go to the Monitor service routine M:SAVE which will store
the remaining register's contents into the active task's lCB.
M:SAVE wi II also store the contents of K: TCB (used exten­
sively by the Monitor to identify the currently active task)
into word 12 of the TCB, and set K:TCB to point to the
active task's TCB. If the active task requires temporary
storage (word 1, T=O), the contents of K:BASE are stor.ed
into word 11 of the TCB and K:BASE is set to the first word
address of the active task's temp stack. The floating ac­
cumulator is then set to point to the first six cells of the
active task's temporary storage.

When the currently active task has completed all its opera­
tions, it exits through the Monitor service routine M:EXIT
which restores the general register's contents and resets
K:TCB and, if applicable, K:BASE. M:EXIT also performs
a hardware exit sequence, by which it restores the interrupt
status and the overflow and carry indicators, and returns to
the interrupt task.

84 Foreground Priority Levels and I/O Priority/Task Dismissal

FOREGROUND PRIORITY LEVELS AND I/O PRIORITY

All foreground tasks that have a priority level lower than the
I/o priority level and that operate without interrupts inhib­
ited may use the Monitor I/o routines without any special
restrictions. However, foreground tasks that have interrupts
inhibited or have an interrupt level higher than the I/O pri­
ority level must not use Monitor I/O.

The recommended procedure for a task whose interrupt level
is higher than the I/o priority level is to trigger a task
whose priority is lower than the I/o priority. This lower
priority task would then perform the required I/O operations.
Generally, these high-level tasks are for emergency situa­
tions where no I/O is performed or when the task does its
own I/O due to special requirements.

TASK DISMISSAL

When the SYSGEN option DISMISS is selected, the resident
M:READ/M:WRITE code is extended so that any foreground
task that elects to wait for on-going I/O to complete will
be automatically suspended, allowing lower priority tasks
(e.g., background) to proceed. This is accomplished by
constructing an Ala receiver for the suspended task, which
will reawaken the task when I/O completes. The implicit
consequences of the scheme are:

1. If the task must forestall lower priority processing, it
must be flagged for "no-dismissal" if I/O is performed
(see description of TCB "D" bit, above). The RBM con­
trol task is flagged in this fashion.

2. Dismissal is transparent to the task; however, there
is no overlapping of a task's I/o with computation
while the task is dismissed. Overlapping of compu­
tation and I/O within a task can only be accomplished
with "no-wait" M:READ/WRITE (and other) service
calls; regardless of whether or not "DISMISS" is
included.

3. Dismissal can occur on "no-wait" I/o but only when
the requested device is already busy; in which case,
the task will be suspended until the device becomes
free and return wi II be made after the I/O is initiated.
Double buffering can be achieved by a "no-wait" Read,
followed by a "WAIT" write from a different buffer,
followed by a "WAIT" check on the original read and
then repeating the process. Such a task wi II proceed
at the rate of the slower device.

4. By continually accessing only one device, a task may'
prevent lower priority tasks from accessing that device.
Therefore, a foreground task that accesses the system
RAD excessively may effectively suspend background.

AID RECEIVERS

An Ala Receiver is a means whereby a foreground program
can initiate an I/o operation, release control to lower
level tasks, and regain control when the I/O operation is
completed. The Ala Receiver itself is a closed subroutine
which operates at channel end (or zero byte count, if
specified) at the priority level of the I/o interrupt. It is
used in conjunction with an I/o operation specifying
lIinitiate only and return ll (no wait). Typically, in order
to maximize compute and I/o overlay, the foreground pro­
gram will issue an I/o request with the IIno wait" option
and specify an Ala Receiver. When the I/O operation is
successfu IIy initiated, this foreground task exits from the
active state (by a call to M:EXIT) and is restored to the
active status at channel end by a Write Direct to trigger
the interrupt level (from its Ala Receiver). The next I/o
operation for that device file-number must be a "check"
operation to complete the end-action of the fi Ie.

For I/O to RAD files, the Ala Receiver may be activated
before the operation is actually complete. This will happen
whenever a transfer across a disk track boundary occurs,
more than XI1 FFFI bytes are requested, or a flawed track
is encountered •. The calling task (not the AIO Receiver)
must issue a "check II operation to complete the transfer.
An AIO Receiver specified for the IIcheck II operation wi II
be honored.

Special considerations for use of Ala Receivers are:

1. The operation requesting an Ala Receiver is an
lIinitiate and return ll operation. If the device or the
file is busy, the I/o operation is not initiated and a
busy status is returned. It is the userls responsibility
to determine the course of action to be taken at this
point (e.g., loop until ready or ignore the operation).

2. If the file being used is a blocked file, an actual 1/0
operation may not be required, hence no channel end
interrupt and no AIO Receiver operation. In this in­
stance, the X register will be set to -1 to inform the
user that the AIO Receiver will not be effective. A
"check" operation is still required on the file before
another I/o operation may be performed.

3. If a "check, no wait" is performed on a device that is
busy with some file other than that specified by the
check call, the check operation will be performed
with an implied wait but only until the device is free
for use by the specified file. For example, a busy
status returned on a IIcheck, no wait" operation always
appl ies to the file specified by the Check call and if
an Ala Receiver was specified, it wi II be honored.

4. If the Ala Receiver mere Iy retriggers the task that ini­
tiated the operation, a danger exists in that it is quite
possible for the Ala Receiver to operate before the
task exits from its lIactive" state. Thus, the currently
active task is retriggered, which resu Its essentially in
a no-operation. One means of avoiding this problem
would be to have the Ala Receiver set a flag to inform
the active task that it has run. In th is way, the active

task could inhibit interrupts prior to exiting, test
whether the AIO Receiver has already operated, and
if so, restore interrupt status and return to the start of
the task. If examination reveals that the AIO Receiver
has not run, the task merely exits through M:E XIT wh ich
will properly restore the interrupt status. Another
means of avoiding this difficulty is to have the AIO
Receiver trigger a task lower in priority than the active
task. Th is lower priority task cou Id retrigger the task
initiating the I/O operation, thereby providing a posi­
tive trigger.

The form of the call to the AIO Receiver by the I/O Inter­
rupt task is

lDA aiodsb

RCPYI P, l

B AIO Receiver Address

(device status byte
from AIO in bits 0-7,
device number in
bits 8-12)

The Ala Receiver routine must return to the location con­
tained in the l register on entry. All registers are assumed
to be volatile, which means that they need not be saved
and restored to their former contents. Because the Ala Re­
ceiver is processed at the priority level of the I/o Interrupt
the processing in this routine should be of very short dura­
tion so as not to interfere with other I/o operations that
may be in process. See also IIEnd Action ll in Chapter 5.

CLDCKl RECEIVER

Extended zero table location X1 1841 contains a pointer to
the ClOCK1 receiver chain. The S24RBM procedure file
equates symbolic reference ClK1 RXR to this location.

The receiver is entered at the counter 1 = 0 level. At entry,
the A register wi" contain the actual counter 1 =0 reentrancy
count so that if it is desired to avoid repetitive operations
where the counter 1 = 0 pulses have effectively stacked up,
the receiver need only test for a change in the contents of
the A register. All registers except A are considered vola­
tile. The SYSGE N specification ClK 1 FREQ, n specifies the
desired frequency (see SM Reference Manual 90 30 36)
which defaults to 1/10 second but may be set to a value
from 1/100 second to one second.

All receivers connect by first saving the current contents of
the receive location elK 1 RXR at their entry address -1 and
then stori ng their entry address at Cl K 1 RXR.

The del inking process requiresa searchof the receiver chain
for the position within the chain of the del inking task and a
substitution of the del inking IS task exit address for that posi­
tion within the chain.

Note that interrupts should be inhibited whenever the chain
is manipulated. The following code might be utilized to
connect and to del ink from the chain.

AIO Receivers/Clock 1 Receiver 85

To connect:

INHIBIT R:PSWI

lDA ClKl RXR

STA MYENTRY-l

lDA =MYENTRY

STA CLK1 RXR

RESTORE R:PSWI

Assum ing tasks A, B, and C had connected in that order to
the CLOCK1 receiver, the CLOCK1 receiver chain would
be as follows:

CLK1RXR

To disconnect:

SEARCH

ITS ME

TASK C EXIT
TASK C ENTRY

TASK B EXIT
TASK B ENTRY

TASK A EXIT
TASK A ENTRY

Original value of
CLK 1 RXR

INHIBIT R:PSWI

LDX =CLK1RXR

LDA 0, 1

CP =MYENTRY

BNC $+2

B ITS ME

RCPY A,X

RADD *Z,X

B SEARCH

LDA MYENTRY-l

STA 0, 1

RESTORE R:PSWI

86 Checkpointing the Background

CHECKPOINTING THE BACKGROUND

A foreground program may require use of the background
area for either instructions or data. A checkpoint feature
is included in RBM to allow access to the background area
by a foreground program by writing any active background
program onto the RAD and extending memory protection to
the background area.

A checkpoint operation is initiated by a call to M:C KREST
with the appropriate option. M:CKREST will return a status
specifying whether or not the request Was honored. The
request will not be honored if the background has already
been either checkpointed by a foreground request or auto­
matically checkpointed as a result of loading a nonresident
foreground program extending into the background. It is
the responsibility of the user to schedule the use of the
background space by foreground programs. The actual
checkpointing is accomplished either at the priority level
of the RBM Control Task or at the priority of the calling
task.

If the checkpoint is performed at the priority level of the
calling task, a return from M:C KREST with a status of zero
(A = 0) indicates that the checkpoint has been performed .
If the checkpoint is to be performed at the level of the RBM
Control Task, the requesting program must exit its "active"
state to allow the checkpoint operation to be performed.
The program requesting the checkpoint would generally
specify a IICheckpoint Complete Receiverll. This receiver
is operated at the priority level of the RBM Control Task
when the checkpoint is complete.

The receiver will generally retrigger the requesting pro­
gram to inform it of the completion of the checkpoint.
Return from the Checkpoint Complete Receiver is to the
location contained in the L registers on entry. All registers
are assumed to be volati Ie, and need not be saved and re­
sto red to the i r former contents.

When the foreground program no longer requires use of the
background area, it should restart the background task by
a call to M:CKREST with the "restart" option.

7 . OVERLAY LOADERS

Two loaders, OLOAD and BLOAD, are provided with RBM.
Functionally, they are quite sim ilar. The two major dif­
ferences are (1) Public Library loading is supported only by
OLOAD, and (2) BLOAD creates a load module one granule
at a time. Thus, OLOAD runs faster than BLOAD, but
BLOAD can load program segments larger than the avai lable
loading space. In this chapter, statements or paragraphs
applicable only to OLOAD or to BLOAD are indicated
parenthetically.

The Overlay Loaders can be used to create overlay program
load modules for later execution in either the foreground or

°backgrol,.lnd. Overlaid programs can be permanently entered
(as a fi Ie) into either the system or user processor areas, or
into a temporary overlay file. Since they are stored on the
RAD as an absolute core image, they can be quickly loaded
into memory for execution.

A general overlay structure is illustrated in Figure 7. The
structure is restricted to a permanently resident root seg­
ment and up to 255 overlay segments. (For background
and nonresident foreground programs, the permanent root
segment is resident only during actual execution.) For fore­
ground programs, the TCB and the initialization routine
(if one is present) must be in the root segment, but data
and instructions can be located in both the root and the
overlay segments.

A Blank COMMON data area can also be establ ished
for use by the root and overlay segments.

Each segment is created by the Overlay Loaders from one
or more object modules (assembly language, FORTRAN,
or RPG output). The control commands required to create
the overlay segments are defined in this chapter. During
execution, the Mon itor service routine M:SEGLD is used to
control both the load ing and the transfer of control between
various segments.

The overlay segments must be expl icitly defined at load
time and expl icitly called at execution time. There is no
provision for automatically call ing in a new overlay seg­
ment by a subroutine reference. However, the subroutines
on a particular path may commun icate with each other, with
the restriction that it is the program's explicit responsibility
to ensure that any subroutine referenced is currently in
core.

The Overlay Loaders accept input in Xerox Standard Object
Language from predefined, prepositioned files, and prepare
output in absolute core-image form on the RAD to be read
by the RBM Loader (M:LOAD) for later execution in either
foreground or background areas. If a resident or nonresident
program can tolerate a loading delay of 20 to 100 milli­
seconds, foreground or background programs of virtually
unlimited size canbe constructed by the use of overlays de­
spite limitations in available core storage.

In creating core images on the RAD, the Overlay Loaders
perform the following functions according to user options:

• Satisfy external reference/definition I inkages and re­
solve forward reference and displacement chains.

• Search specified libraries for unresolved references and
load these selected routines into core memory.

• Build the OV:LOAD table for the loading of overlay
segments.

• Write the overlay cluster onto the OV file.

• Allocate COMMON.

• Allocate temporary storage stacks.

• Create a Task Control Block (TCB) and initialization
information.

• Create the Publ ic Library and associated transfer vectors
(TVECT)(OLOAD only).

• Output maps of segment names and addresses, external
definitions, and information concerning COMMON and
temporary areas to the LO device.

• Allocate, initial ize, and satisfy reference I inkage for
Labeled COMMON.

OVERLAY CLUSTER ORGANIZATION

The overlay cluster is the collection of absolute overlays
formed by the Overlay Loaders from relocatable binary ob­
ject modules. (Note that the Loaders do not accept an
absolute load origin in any input module.) An overlay
cluster usually consists of two principal sections: the root
segment and the overlay segments although it may consist
of only a root segment. Each segment consists of one or
more binary modules and associated library routines. Over­
lay segments are numbered in any order by the user, except
for the root segment, which is always designated as seg­
ment O. Those segments in core memory at anyone time
form a path. An overlay cluster with several paths is shown
in Figure 8. Segments are shown as horizontal I ines and,
in this example, are numbered in the order in which they
are built by the Overlay Loaders. Note that a given node,
each path associated with a branch must be completed before
a new branch is connected to this node.

The overlay cluster shown in Figure 8 consists of a root and
segments 1 through 15. Segments 0, 1, 3, 4, 5, 6 constitute
a path. On the RAD or disk pack the root is preceded by
a file header, one RAD granule in length, that contains in­
formation by which the RBM Loader M:LOAD can correctly
read the root. The root is resident at all times during exe­
cution of the overlay program and contains information
(OV:LOAD table) for loading of the remaining overlay
segments.

Overlay Loaders 87

I
I
I
I
I
I
I
I
I
I

Low Core

Root
(Segment
No. 0)

Root Area

I
I
I
I
t

88 Overlay Cluster Organization

Overlay Segment n

Overlay Segment No. 3

Overlay Segment
No. 21

Overlay Segment No. 2

Overlay Segment
No. 22

Overlay Segment No. 1

Overlay Area

Figure 7. 'General Overlay Structure Example

Blank

COMMON

Data

Area

COMMON
Area
(Optional)

I
I
f

High Core

6

7
3

o

10

11 14

15

Figure 8. Sample Overlay Cluster Configuration

When first defined along a path by an object module,
Labeled COMMON will be allocated preceding that mod­
ule. Should the same Labeled COMMON be subsequently
defined by another module, the area prescribed should be
no greater than that al ready allocated, and reference to
the in itial definition wi" be provided. Allocated space for
Labeled COMMON is cleared to zero entries except where
data is provided by modules of the same segment (or root).
An XSYMBOL subroutine may access Labeled COMMON
via an external reference (REF or SREF) if the Labeled
COMMON is defined in a previously loaded module.

Library modules of the root may not initialize Labeled
COMMON al located in the program portion of the root.
The number of Labeled COMMON blocks associated with
a module is lim ited to 40.

Commun ication between segments by external reference/
definition linkages is subject to the following restrictions:

1. No segment in a path may reference a segment in an­
other path.

2. The user must ensure that al I communicating segments
are in core memory during execution.

3. Because the Overlay Loaders will satisfy a linkage only
within a path, identical references and definitions
may be used in different paths that do not contain a
common segment. However, the user must avoid refer­
ences to the same definition in different higher level
segments.

4. Library search procedures for a User or System Library
restrict the use of un ique library DEFs and REFs to a
maximum of 300 along any path of the program.

5. Forward references in I ibrary modules of the root are
disal1owed, and it is suggested for good programming
practice that User Library programs not make references
outside the library realm.

To satisfy any remaining unsatisfied primary references, the
Overlay loaders search the following libraries in the spec­
ified sequence:

1. Publ ic Library

2. Monitor Service Routines

3. Basic or Extended Library (optionally)

4. Main Library

CORE LAYOUT DURING LOADING

Background memory during the operation of the Loader is
divided into four areas:

1. A fixed area large enough to contain the background
temp stack, the Loader root, and the Loader overlays.

2. The segment table, fixed at 1 O(n+ 1) where n equals the
number of segments.

3. In OLOAD, a dynamic area in which the segment is
loaded. In BLOAD, a fixed (granule sized) length block
for segment loading.

4. A dynam ic area containing the symbol tables (allocation
is five to eight words per symbol).

If areas 3 and 4 overlap at any point in the load process,
overflow occurs and loading aborts.

OVERLAY LOADER OPERATIONAL LABELS

The Overlay loaders reference the operational labels listed
below. Some assignments are user-defined, while others
are handled internally by the Job Control Processor or by
the Loader itself. All other operational labels referred to an
! $LD cards must be assigned and positioned by the user prior
to the ! OLOAD or ! BLOAD command.

Label

CC

DO

GO

Explanation

Control commands. If a KP key-in is in effect,
control commands are read from OC.

Diagnostic messages. The default assignment is
that given by the Job Control Processor on read­
ing a !JOB card.

Sequential-access file that contains object mod­
ules to be processed by the Overlay loaders.
Object modules are written onto GO by a pre­
ceding processor. The loaders rewind GO ini­
tially, and also after loading is completed. GO
receives a default assignment by the Job Control
Processor to the permanent file RBMGO in the
System Data area.

Core Layout During Loading/Overlay Loader Operational Labels 89

label

lO

II

II

OC

OV

PI

XI

JD

.,':MAP

Explanation

Maps.

Assigned intemqHy fo~ file I/O.

log of control commands.

Abort messages and Overlay loader messages that
~equire operator attention. Control commands
are read from OC if a KP key-in is in effect.

Output file (random format) for the Overlay
loaders containing the comptetedoverlay duster.
If the user wishes to have the overJoy duster in
a permanent fHe, he must key in SY (for write­
protected files)and assign OV to that permanent
file. By default, OV is assigned to the permanent
fi fe RBMOV in the System Data area.

Used for loading the Overlay Loaders r own over­
lays. PI is assigned by the Job Control Processor.

Temporary RADor disk pack scratch file contain­
ing the symbol table for each segment. X 1 is
assigned by the Job Control Processor_.

An optional operational label used to write the
idents of non I ibrary programs for use by Debug at

Label

ID
(cont.)

Explanat ion

execution time. If the user assigns ID, the
assignment must be for a packed fi Ie that has a
record length of five words. By default, ID is
assigned by the Job Control Processor to RBMID
(a one-sector fife) in the System Dtsta area.

MAP
Three types of maps may be output to the LO device fol­
lowing PASS2, according to one of three Map control
commands that may be input: a Short Map (!$MS), long
Map (!$ML), or Program Map (!$MP). If no Map control
command is specified, no map wi" be output.

Figure 9 shows the format for a Long Map. Note that
DEFs in the Permanent Symbol Table are mapped after
the Overlay Task line. The format for a Program Map
would be the same as the Long Mop except that library
and Permanent Symbol Table symbols are suppressed. The
lines of the map that are flogged with an asterisk (*) show
the format and output of a Short Map (i n an actual Short
Map no asterisk would appear in the listing). A definition
of each item of the mop is included in Figure 9.

.,'''OVERLAY TASK {~~} ORG xxxx HLLOC = xxxx CBASE = xxxx CSIZE = xxxx UMEM = xxxx SECT xxxx

xxxx OV : LOAD xxxx SEV "<ROOT ORG = xxxx tWA xxxx LEN = xxxx TRA = {NONE}
xxxx

DEF

"'<SEGMENT IDENT

xxxx

REF

.,':SEGMENT

*SEGMENT

*ERRSEV xxxx

90 Map

symbol 1 ~}{~lm yyyy DEF symbol .•• etc.

symbol I~}{ m! I zzzz REF symbol. •. etc.

NODE ORG LWA LFN TRA SEV

xxxx xxxx xxx x xxx x xxxx xxxx

Figure 9. long (Load) Map Format

where header keywords have the followi ng meani ng:

Overlay Task Keywords

ORG

HLLOC

CBASE

CSIZE

UMEM

SECT

Root Keywords

ORG

LWA

LEN

TRA

SEV

OV:LOAD

General Keywords

DEF

REF

symbol

•

First word address of the Overlay Task area. It is the FWA of the Temp stack.

Last word address of longest segment.

Base of Blank COMMON.

Largest Blank COMMON size encountered.

The number of locations between the end of the longest path, and either the beginning
of Blank COMMON or the end of the assigned task area.

The number of sectors requi red to store entire overlay cluster.

FWA address of the root. In the foreground, this is assumed to be the address
of the TCB; in the background, it is the FWA of the root.

Last word address of the root segment. The area from ORG to LWA includes
the root code and the OV:LOAD table (and in the foreground, the TCB).

LWA-ORG+l.

Background - last end transfer encountered on a modul e used to form the root. If there
is no transfer address, 'NONE' is output.

Foreground - the entry address of an initialization routine that arms and optionally
triggers interrupts at run time. If the Loader builds the TCB, it is assumed that no
such initialization exists and TRA=NONE.

Error severity encountered during loading binary modules. Taken from the END item of
the binary module.

Address of the OV:LOAD table.

Error and identifier flags preceding external definitions and references. Possible flags
are:

D Double definition or reference.

LC Labeled COMMON

U (DEF) - a defi nition declared, but given no value.

U (REF) - reference unsatisfied in this path.

P Primary reference.

S Secondary reference.

An external defi nition.

An external primary or secondary reference.

DEF/REF name of one to eight EBCDIC characters.

Figure 9. Long (Load) Map Format (cont.)

Map 91

General Keywords (cont.)

L/I

S/U/P

B/E/M

yyyy

zzzz

Segment Keywords

IDENT

NODE

ORG

LWA

LEN

TRA

SEV

ERRSEV

END MAP

Library or Input REF/DEF.

System, User, or Public Library.

Basi c, Extended, or Mai n mode.

Value of a DEF.

The number of the segment in which this reference was satisifed. For unsatisfied
references, zzzz is blank.

Numerical identifier of this segment as found as the first parameter on the! $SEG card.

The numerical identifier of the segment to which this one will be attached. If NODE
is the root, 0 is output.

Beginning location (execution) of this segment. The point in core at which loading
begins. The first reserves before data in a segment are not output.

LWA of this segment. Includes areas defined by RES and ORG.

LWA-ORG+l.

The last encountered transfer address is placed as an entry point in the OV:LOAD table
for this segment.

Same as for ROOT.

Total error severity for loading process. If any SEV > 0 or there are unsatisfied primary
references, ERRSEV=l. Only in forming a PUBLIB do double DEFs or unsatisfied secondary
references cause ERRSEV=l. Errors in the input binary may cause ERRSEV=2.

Completion of loading process.

Figure 9. Long (Load) Map Format (cont.)

Certain reserved DEFs will be output by the Loaders. These
are:

CALLING OVERLAY LOADER

P:FWA

P:LWA

P:TCB

P:RLWA

Program First Word Address

Program Last Word Address

Primary TCB FWA (if the Loader builds the TCB,
otherwise, not generated)

Root Last Word Address is an overlaid program
(suppressed for root-only programs)

These are treated as external definitions and may be refer­
enced by the program.

P:LWA and P:RLWAare restricted todefinition by the Loader.
User definition of these symbols will result in indeterminate
results. They may, of course be referenced by user code.

P:FWA and P:TCB may be user defined, but they will be
flagged as duplicates and otherwise ignored. '

92 Call ing Overlay Loader

The Overlay Loaders are requested via an ! OLOAD or
! BLOAD command which causes the root segment of the
loader to be read into core memory from the RAD. The form
of the command is

!OLOAD [segments, {~} ,S,D,X,cmnJ[,R]

or

! BLOAD [segments, {~} , S, D, X, cmn] [, R]

where

segments denotes the number of segments in the
overlay cluster. If "segments II is not specified,
a zero is used, denoting that only a root segment
is to be loaded. The value of the segments param­
eter may exceed the actual number of segments to
be loaded.

F or B specifies either a foreground (F) task or a
background (B) task. The default case is
background.

5 specifies a step mode of loading to be used for
paper tape input.

D indicates the ident of each nonlibrary module is
to be written to operational label ID for use by
Debug at execution time.

X indicates that the Loader is to abort the job if a
severity error greater than zero is encountered dur­
ing loading. The loading procedure is completed
and the map is output.

cmn for background tasks, cmn denotes an optional
Blank COMMON size. For foreground tasks, cmn
denotes a base for Blank COMMON. A check is
made at the end of the load to determine whether
the Blank COMMON allotment overlaps the root.
If it does, the warn ing message $$ ERR CO is
printed but no error severity level is set.

R for foreground tasks only, specifying this param-
eter causes only the root size to be entered into a
sector header (OV:LOAD table) instead of the pro­
gram's longest path.

This action is intended for the use of a foreground
program that only occasionally uses a large data
buffer. A program of this nature can reside in
foreground without checkpointing background unti I
such time as it requires background space. Caution
must be exercised in the use of this parameter,
since the background must be explicitly check­
pointed and restored, when necessary, by the fore­
ground task.

When the step mode of loading is defined, the operator is
notified after the loading of each module from paper tape
by the message

! !BEGIN WAIT

Depressing the console interrupt button and keying in an 5
will initiate either the loading of the next module from the
paper tape unit or the reading of the next control com­
mand. An X response causes the loading process to abort.

In allocating COMMON for background programs, the
Overlay Loader compares the cmn parameter with the first
nonzero COMMON size allocation value encountered in
loading and employs the larger of these two values. The
COMMON base is set by subtracting the COMMON size
from K:UNAVBG.

BLANK COMMON ALLOCATION IN FOREGROUND LOADING

For foreground loads, the Overlay Loader allocates Blank
COMMON and blocking buffer pools in accordance with
the rules delineated in Table 19.

Reading an !EOD control command causes the Overlay
Loader to satisfy forward references, output any specified
map, close files, and return control to RBM via M:TERM.
The form of the command is

CONTROL COMMAND FORMAT
Except for the !OLOAD and !BLOAD commands which are
read by the Job Control Processor, the Over! ay Loader
control commands are read from the CC device under Loader
control, unless a KP key-in is in effect, in which case con­
trol commands are read from the OC device. The general
format of control commands is

(' $mnemonic parameter

where

identifies the record as a control command.

$ indicates that the control command is unique to
the Overlay Loader.

mnemonic is the code name of an Overlay Loader
control command and begins immediately following
the ! $ characters.

parameter is a series of optional or required param-
eters unique to the specific command. 1 T~e formats
of parameters are (1) a decimal integer of up to
five positive numbers but having a value less than
32,767; (2) a hexadecimal string of the form
±Xxxx; (3) an EBCDIC string of up to eight char­
acters but not exclusively characters 0 through 9;
or (4) a string of the form EBCDIC string ± hexa­
decimal number.

From one through eight blanks are permitted between the
mnemonic and the first parameter. If more than e-ight
blanks are detected, the parameter list is considered empty.

The only allowed delimiter between parameter fields is a
comma; no embedded blanks are allowed in or between any
fields. A single blank terminates the parameter string.
Two successive commas indicate an empty field. Com­
ments are allowed on a control card.

CONTROL COMMAND REPERTOIRE
BLOCK The !$BLOCK control command will allocate
blocking buffers from unused memory space as requested

Control Command Format/Control Command Repertoire 93

Table 19. Foreground Load Blank COMMON Allocation

Program Type

Resi dent Foreground

Nonresident

Foreground

Nonresident

Foreground with

R Option

where

cmn Specification

< Program origin

> Program origin

Not specifi ed

< Program origin

> Program origin

Not specified

< Program origin

> Program origin

Not specified

CBASE

cmn

cmn

FGLWA-CSIZE

cmn

cmn

FGLWA-CSIZE

cmn

cmn

BGLWAt

CBASE is the first word address of COMMON.

Program Limit BB Pool End

FGLWA !$BUFEND (required)

cmn !$BUFEND (required)

CBASE ! $BUFE ND (defaults to CBASE)

BGLWA !$BUFEND (required)

cmn !$BUFEND (required)

CBASE !$BUFEND (defaults to CBASE)

BGLWAtt ! $BUFEND (required)

cmn ! $BUFEND (required)

CBASE !$BUFEND (required)

CSIZE is the size of the first COMMON declaration encountered.

FGLWA is the last word address of foreground (K:BACKP-1).

BB POOL END is the blocking buffer pool last word address plus 1.

BGLWA is the last word address of background.

cmn is the COMMON specification parameter on the! OLOAD command.

tlf Blank COMMON is encountered in the root, a warning is issued ($$ ERR C1), CBASE is set to FGLWA-CSIZE and the
R option is ignored.

ttIf the root exceeds FGLWA, a warning is issued and automatic checkpoint will occur at program core-load time.

either by a count or by defining operational labels that
may require blocking buffers at run time. The list of such
labels along with limits of available memory will be passed
via the fi Ie header to M:LOAD, which wi II allocate a
blocking buffer pool at run time. The pool will be uti­
lized dynamically to provide blocking buffers in cases
where a call to RBM routines M:READ or M:WRITE is not
preceded by a call to M:OPEN. A call to M:CLOSE may
release any such buffers. Thus, if two operational labels
were to use a blocking buffer area at different times, the
first might release the area for use by the second. Only
one of the two labels would be required on the !$BLOCK
command.

M:LOAD checks which of the operational labels are as­
signed to block files at run time to make the pool alloca­
tion. If such an allocation overflows the available memory
space (between the end of the longest path and COMMON),
the execution aborts. However I the user may define his
own blocking buffer by specific ca lis to M:OPEN. Such
an area should be in a reserved area of his own path. He
should not use the dynamically allocated pool area, and
blocking buffers may not be allocated in temporary stacks.

94 Control Command Repertoire

Only one ! $BLOCK command is allowed in a single job
step, except when used with multiple !$TCB commands.
The format of the! $BLOCK command is

jOPlb 1 [,oplb 21 •.• 'OPlbnJ)
!$BLOCK ALL [,S]

c .

where

oplb i defines an operational label (which is a two-
letter mnemonic or a FORTRAN device unit num­
ber; e. g., BI, SI, F: 106. The oplb i parameter may
not be a device-file number or file name. The
oplb must be assigned to a blocked file. Only 10
operational I abe Is wi II be read; additional ones wi"
be ignored. In I ieu of operational labels, the user
may provide a count (c)ofblocking buffers required.

ALL results in the entire area of unused memory
(UME N) being used as blocking buffers to a maxi­
mum of 16.

c defines a count of buffers required to a maximum
of 16.

S indicates that the first of the indicated buffers is
to be set aside as sharable by packed random files
(see II Blocking &Jffers", Chapter 5).

BUFEHD The !$BUFEND command must be used to
specify the LWA+1 of the blocking buffer pool for fore­
ground loads if required 'by the rules specified in Table 19.
Only one ! $BUFE ND command applies during a load se­
quence. Buffer requirements must be specified by an
! $BLOC K command. The lack of buffer specification, or
overlap with COMMON, program, Publ ic Library, or Monitor
areas will cause an Overlay Loader error message ($$ERR BU).
The format of the command is

!$BUFEND

loe
CB
PP
BL
NL
RL
PF

where

loc is a decimal or hexadecimal address.

CB indicates that pool LWA+1 = CBASE.

PP indicates that pool LWA+1 = program LWA plus
pool size.

BL indicates that pool LWA+1 = BGLWA.

NL indicates that pool LWA+ 1 = nonresident
FG LWA.

RL indicates that pool LWA+l = resident FG LWA.

PF indicates that pool LWA+ 1 = program FWA.

See also "COMMON Allocation for Foreground loading. II

LIB The! $UB control command specifies the library
search sequence for the entire load process, or from that
point in the OLOAD control command sequence at which

it occurs. If the !SUB command is not present, OLOAD
follows the default case (Basic System Library search). The
format of the command is

(' $ UB[m,x [,y]] [,N p]

where

m specifies the search mode and is one of the fol­
lowing EBCDIC codes:

Code Search Mode

B Basic (and Main)

E Extended (and Main)

M Main only

x[,y] specify the order of search, and are either of
the following EBCDIC codes:

Code
~

S

U

Library

System

User

The order in which x and yare specified deter­
mines the order of library search. If only x is
specified, y will not be searched.

NP specifies suppression of Pub lic Library linkage
if the !$UB command precedes a !$ROOT com­
mand. If the NP parameter occurs on a UB com­
mand following a !$ROOT command, or in a
PUBLIB load, NP is ignored; any other param­
eters in the command are interpreted as described,
however.

An !$UB command with no parameters or with only the
NP parameter wi II suppress nonresident library search from
the point of its occurrence in the OLOAD control com­
mand stream.

MS,ML,MP The Map control commands specify that
map information is to be output on LO. The three forms
of map commands are shown below.

If the! $MS (Short Map) control command is specified, only
root and segment headers will be output. Also output is a
summary containing the origin of the overlay program, the
length of the longest path, temp stack size, memory that is
available for the blocking buffer pool, and the COMMON
base. The format of the command is

Control Command Repertoire 95

If the ! $ML (Long Map) control command is specified, the
short mop plus external references and all external defi ni­
tions and their values including the libraries and permanent
symbol toble are output. Double definitions, and definition
declarations that were not given a value are flagged D
and U, respectively. Unsatisfied primary references are
flogged with UP, unsatisfied secondary references with US.
The format of the command is

The output of the !$MP control command is identi col to
that of ! $ML, except that I ibrary definitions and references
and the permanent symbol table are suppressed. The format
of the command is

If relevant, information concerning the Public Library is
also mapped.

TCB The! $TCB control command i ndi cates (for a fore-
ground task only) that the Overlay Loader must create a
TCB and reserve a PSD location, and must generate a call
to RBM routine M:SAVE. M:FSAVE will be called if the
set multiple precision mode exists. In addition, information
to initialize the TCB at run time will be passed in the file
header. If no! $TCB command is present, it is assumed that
a TCB has been assembled into the root segment. Since the
background TCB lies in protected memory, it cannot be as­
sembled into the root of the background overlay cluster, but
the necessary information is passed by the Loader to M:LOAD
via the file header. Therefore, the TCB option applies to
foreground tasks only. Multiple ! $TCB commands may be
used internal to the root program. Each !$TCB command
would connect a separate interrupt function to the root pro.­
gram and be followed by ! $LD commands to load associated
modules. The! $TCB may be followed by a ! $BLOC K com­
mand that would identify independent buffer blocks with its
function. Individual temp stacks will be reserved by other
than the initial ! $TCB command that must precede the
! $ROOT command. The format of the command is

($TCB wl ,w2[,temp]

where

wl,w2 are the values to be placed in words 1 and 2
of the created TCB (see "Real-Time Programming,"
Chapter 6).

temp defines the size of the temporary stack to be
reserved for a TCB other than the initial TCB.

96 Control Command Repertoire

The Overlay Loaders will handle specific and default cases
of program execution and TCB initialization within the frame­
work of the following restrictions:

• The Overlay Loaders define all background Task Con­
trol Blocks completely, using the value of the temp
parameter on the !$ROOT card, load information, and
the! $BLOCK parameters.

• In foreground tasks, if the user assembles the TeB as
part of the program, it either must contain all informa­
tion as data or as external references satisfiable at
load time, or be initialized by the task itself. A trans­
fer address is assumed to be a transfer to an initializa­
tion section that wit! do any required housekeeping,
arming, enabling, or triggering the task. If no trans­
fer address exists, M:LOAD will arm and enable and,
optionally, h:igger the task using information in
words 1 and 2 of the TCB.

• If the Overlay Loaders initial izes the TeB by means of
the TCB parameters, they do so completely, using load
information and values on the! $TCB and! $BLOCK
cards. No partial initialization of a TCB is allowed
with the exception of the blocking buffer pool. If a
user builds his own TCB, the TeB must begin at the
execution location plus the "temp" value specified
on the! $ROOT command.

• For foreground tasks for which the Loader builds a TCB,
the Loader wi II create the PSD reserve and a call to
M:SAVE. The user's root is then entered either at the
location specified in the transfer address, or at the
FWA of the root when the transfer address is missing.
The map will indicate a transfer address of "NONE"
for the root.

• Where multiple ! $TCB commands are used within the
root program, the transfer address for the program is
establ ished by the modules precedi ng a second use ofthe
! $TCB. FORTRAN generated programs do not provide
a transfer address. If no transfer address exists, each
subtask within the root program will be initialized by
M:LOAD using the information in words 1 and 2 of
their respective TCB. If a transfer address is provided,
M:LOAD will not initialize any subtask.

The user exits with either a call to the RBM routine M:EXIT
or by a standard exit procedure.

Public Library routines and Monitor service routines called
by the user program wi II require temporary storage areas
that are dynami ca IIy a IIocated at execution time. These
temporary storage areas mustbe allocated in a fixed storage
stack that is reserved by the Loader at load time on the
basis of the temp parameter on the !$ROOT control com­
mand. In addition, the Loader wi If insert in the TeB the
first and last word addresses of the area. The temp area
will be allocated preceding the root segment. It need not
be a reserve in the module.

For more information on in itialization and structure of
T CBs, see Chapter 6.

ROOT The! $ROOT command specifies that the modules
that follow it constitute the root segment of the overlay
cluster. A ! $ROOT command must precede all ! SSE G com­
mands, and may be followed by ! $LO, ! $INCLUOE,
!$EXCLUDE, !$TCB, !SLCOM, !$RES, !$MO, !$UB, and
! $LB commands, which cause the loading of those modules
that form the root segment. Loading of the root wi II begin
at the first cell following the temp stack for the background
task. An execution bias may be specified. The user must
ensure that the root segment, exclusive of any library load­
i ng, is I ess than 32K bytes. The root and its library are
written as two records. Therefore, the library portion of
the root may also be a maximum of 32K-l bytes, which
gives a maximum root size of approximately 32K words. The
format of the command is

!$ROOT[temp,exloc,oplb,n] [,OTJ

where

temp defines the size of the overlay cluster's tem-
porary stack needed for the largest possible nesting
of Public Library and Monitor service routines.
The default size is 80 cells. If a TCB has been
assembled into a foreground program, zero should
be used for temp.

exloc specifies the beginning location of the area
in memory that the overlay cluster will occupy at
execution time. The default case is K :BACKBG
for a background task and K :NFFWA for a fore­
ground task. The temp stack will be allocated at
exloc.

oplb,n specifies that n modules are to be loaded
contiguously from the operational label oplb.

OT specifies that calls to M:PUSH, M:PUSH K,
M:PUSHC, M:PSHC, and M:RES are modified to
dynamic-temp storage (in the calling sequence,
"AORL tempI! is changed to II DATA 011, and trail­
ing reserve is stripped). This is done only for
those ROMs {including library modules} loaded by
th i s command.

Note that if the oplb parameter is absent, !$LO (Load) or
! $INCLUDE control commands must follow ! $ROOT to
specify loading. If oplb is present but the n parameter
is not, loading proceeds from oplb until an EOF status
is encountered.

LD The ! $LD control command identifies one or more
modules to be loaded as part of a segment. Each input fi Ie
must be ordered in the same sequence as the ! $LD cards in
the control stack accessing that file. The Overlay Loader

reads only relocatable binary modules from the GO fi Ie and
other input files specified on !$LO, !$SEG, and !$ROOT
cards. All files must be pre-positioned (GO is rewound by
the Loader), and the modules must be in the same position
on each file as calls on that file. The use of the IONT on
the !$LD card ensures the loading of the proper module.
Note that the file must be positioned to the proper module
in the file when the Loader reads from that file. Since
there are no file-positioning control commands recognized
by the Overlay Loader, each file must be constructed in
correct sequential order. The form of the command is

where

oplb is the operational label of the medium from
which the binary module is to be loaded. The
default case for an empty field is GO.

ident is an EBCDIC representation of the
ID NT of the program to be loaded. It is

used for checking purposes only. If nm is speci­
fied, it indicates the number of modules to be
loaded from oplb; no check of any ident is made. '
If this parameter is an ide nt, one module is
loaded. If empty, loading proceeds until an EOO
is encountered.

DT specifies that calls to M:PUSH, M:PUSHK,
M:PUSHC, M:PSHC, and M:RES are modified to
dynamic-temp storage (in the calling sequence,
"AORL temp" is changed to "DATA 0", and trail­
ing reserve is stripped). This is done only for
those ROMs (including library modules) loaded by
this command.

LB The! $LB command controls the search of libraries
(for this segment only) to satisfy external references en­
countered during the loading of modules forming the seg­
ment. If the ! $LB control command is omitted, the
Overlay Loader wi" first attempt to satisfy all references
by defi nitions in other segments of that path or from the
root, and then will search the libraries specified by ! $UB
or by the default case. Individual ! $LB cards supersede
! $UB or default for that segment only. Libraries are

searched only on occurrence of a !$SEG or !EOD control
command. 1$LIB and !$LB cards only set the mode and
sequence of search. Only libraries on the RAO or disk pack
may be loaded selectively using the !$LB command. To

Control Command Repertoire 97

input II library II programs from other media, the user must
use standard ! $LD commands. The format of the com­
mand is

where

m

m,x [,y]

specifies the search mode and is one of the fol­
lowing EBCDIC codes:

B

E

Search Mode

Basic {and Main}

Extended (and Main)

M Main only

x [, y]. specify the order of I ibrary search and are
either of the following EBCDIC codes:

Code Library

S System

U User

If y is not specified, only x will be searched.

There are no default values for m, X, or y.

INCLUDE The ! $1 NCLUDE control command specifies
external definitions in those library modules that are to be
loaded with this segment, even though they are not refer­
enced in the segment. Their definitions will be included
in the Symbol Table for use by higher-level segments.
More than one ! $INCLUDE command may be used. Li­
braries are searched according to a preceding! $LB or ! $LIB
card or the initial default case. The format of the com­
mand is

! $INCLUDE def 1 (,def 2' ... ,def)

where defi is an external definition of a library program to
be included in the segment.

EXCLUDE The! $EXCLUDE control command inhibits
library search and linkage for the named definition(s} even
though an external reference occurs in a module of the seg­
ment. The format of the command is

($EXCLUDE def1,def2, .. • ,defn

where def. is the external definition for a library routine
that is nol defined along the current path. If def. is one

I
of several definitions associated with a specific library

98 Control Command Repertoire

program, then excluding the one def is sufficient to fore­
stall loading of its associated library module.

MO The ! $MD (modify) control command is used to
change core locations at load time before the absolute
overlays are written out onto the OV file. ! $MD commands
must be inserted within a SEG sequence and apply only to
the segment being loaded. A check is made that the
effective address of the! $MD command lies in the segment
and that any labels used are defined for the path the seg­
ment lies in. The Overlay loader aborts if the modifica­
tion location lies outside the limits of the segment. In­
serted values are not tested for range. External symbols
(definitions) used in locor value must have been previ­
ously defined. The format of the command is

! $MD loc, vafue&value
1
,value

2
,· .. ,value '1]

where

loc specifies the execution location of the first
modification, relative to the FWA of the current
segment.

value i is the hexadecimal quantity to be inserted
at loc + i (for example, value is inserted at loc,
value 1 at loc + 1, etc.).

Both the loc and the valuei parameters are subject to the
restrictions set forth in "Control Command Format, II i. e.,
hexadecimal notation must be indicated by a leading + or -.
Note thatit is not possible to modify a library module by use
of an ! $MD control command.

RES The !RES control command allows the user to re-
serve an area at the end of the segment (root) program for
run-time patching. The format of the command is

! $RES def ,si ze (,def ,si ze] , ... [,def ,si ze]

where

def is the name of the area to be reserved.

size is a decimal value specifying the number of
words in the re serve area.

LCOM The !$LCOM control command allows the user
to allocate labeled COMMON blocks within a segment
(root) program. The format of the command is

! $LCOM block,size[,block,size] ... ['block,size]

where

block is the one-to-eight character EBCDIC name
of the labeled COMMON block.

size is a decima' value specifying the words to be
at located for the brock.

SEG The !$SEG control command defines the modules
that will form a segment. Numbers used to define a seg­
ment must be unique. Segment identifier numbers need not
be consecutive. A segment, including its library, is re­
stri cted to a maximum of 65,534 bytes provided enough
background is avai lable.

Each !$SEG or !$ROOT control command may be followed
by !$LD, !$MD, !$INCLUDE, !$UB, and !$LB commands
to load the modules to form that segment. The loading for
a segment terminates on a new !$SEG control command.
The control command stack is terminated by an !EOD. The
user may defer the loading of a specifi c library routine
through the application of the !$EXCLUDE command. The
Loader wi II attempt to sati sfy a" references present at a
level from the libraries specified on !$LB, !$UB, and
!$INCLUDE commands or from the default library case. A
given library is searched only once per segment. The
format of the command is

!$SEG si,sn[,oplb,n] ~DTJ

where

si is a number less than or equal to X'FF' used to
identify the segment being loaded. It wi II be
used to call the segment at run time.

sn is the number of the segment to whi ch thi s seg-
ment is attached.

oplb,n specifies that n modules are to be loaded
contiguously from the operational label oplb.

DT specifies that calls to M:PUSH, M:PUSH K,
M:PUSHC, M:PSHC, and M:RES are modified to
dynamic-temp storage (in the calling sequence,
"ADRL temp" is changed to "DATA 0", and trail­
ing reserve is stripped). This is done only for
those ROMs (including library modules) loaded by
this command.

The following rules should be observed in defining segments
for the overlay cluster:

1. In OLOAD, the longest segment must fit into core with
the Loader and its tables. If a segment is too long, it
may be reassembled as two modules and loaded as two
segments.

In BLOAD, segments (and the root) are loaded one
granule at a time, so that all background (less the
space required by BLOAD and its tables) is available
for symbol tables.

2. The Loader will first attempt to satisfy library refer­
ences using the Public Library and then will search the
appropriate I ibraries on the RAD or disk pack. Using
the !$INCLUDE command, other often-used library
routines can be loaded with the root where they wi II
be accessible to all segments. However, I ibrary routines

loaded in any segment will be accessible only to
segments in the same path.

3. Where segment content (not the root) is preceded by
reserve area, such area does not consume space during
the loading process. However, if a Labeled COMMON
block is initially defined by the first module of a
segment, it is considered a data area that wi II precede
all reserve areas which will consequently consume space
during Loader processing.

PUBLIB (OLOAD only) The !$PUBLIB control command
indicates that the Overlay Loader is to create a Public li­
brary using modules that follow and/or modules from selected
libraries. The Public Library isbiasedatthe location specified
in K :PLFWA of the RBM zero table. Each symbol is flagged
as Extended, Basic, or Main according to control information
on the !$PUBUB card. However, a library may contain
routines of more than one mode. Such identical definitions
of different modes are differentiated in the Symbol Table
(LIBSYM) and are not considered duplicate.

When library routines are part of the Publi c Library, they
must be reentrant and therefore must use the dynami c tem­
porary stack (specifi ed as the temp field on the ! $ROOT
command) for their temporary storage space. The loader
will change the calling sequences of any calls to M:RES,
M:PUSH, M:PUSHK, M:PUSHC, or M:PSHC to indicate dy­
namic temporary stack; and will delete trailing reserve from
ROMs containing these calls.

A severity level of 1 is set if unsatisfied references or
double defi nitions are encountered duri ng the loadi ng of a
Public Library, and the library will not be written onto the
PUBLIB file. When a Public Library is being created, the
Overlay Loader creates a new Public Library on the RAD
or disk pack. The Public Library just loaded is written
onto the PUBLIB file in the User Processor area. The total
length of the Publ i c Library must not exceed 9191 words.
The Monitor Services Transfer Vector (TVECT) file is read
from System Processor area, and the Public Library section
is updated and written onto TVECT. A new Public Library
Symbol Table is written to UBSYM file in the System Data
area. The new UBSYM is incompatible with the Public
Library currently in core. All files are closed and nor­
mal termination through M:TERM takes place. The new
Public Library is then loaded into core by rebooting the
RBM. The format of the command is

I $PUBLIB library-mode[,oplb,n]

where

mode mustbe one of the following EBCDIC codes:

Code

B

E

M

Mode

Basic

Extended

Main

Control Command Repertoire 99

A new !$PUBLIB control command must be pro­
vided each time mode is to be changed.

oplb,n specifies that n modu les are to be loaded
contiguously from the operational label oplb.

!$LD, !$LB, !$INCLUDE, and !$MD commands are hoh";'
ored when using !$PUBLIB in the same manner as for the
!$SEG command. !$ROOT, !$TCB, and !$SEG commands
may not be used in conjunction with the !$PUBLIBcommand.

END The !$EN D command is treated exactly Ii ke an
IEOD command. It shouId be used in place of IEODwhen­
ever multistep job stacks are to be prestored on a RAD fi Ie.
The Utility COpy routine wi II not interpret this command as
end-of-file (EOF). The format of the command is

LOADER ERROR MESSAGES

The Overlay Loader program outputs messages on both OC
and DO concurrently with the load operation. HOC and
DO are assigned to the same device, duplication of mes-
sages on DO is suppressed. The Overlay Loader error mes­
sages are given in Appendix D.

100 Loader Error Messages

The format of the 'encoded' error messages is

$$ ERR xx

where xx is a two-letter mnemonic that identifies the error
(as described in Appendix D).

The types of Overlay Loader messages are as follows:

1. Warning messages (W), after which loading continues.

2. Response messages (R), requiring an S or X key-in from
the operator, in which case the message

I !BEG IN WAIT

is written on ac. The operator activates the console
interrupt and keys in either of the following codes.

Code Mean i ng

S Continue.

X Abort Overlay Loader with code lOP'
and return control to JCP.

3. Abort messages (A), upon which the Overlay Loaderexits
via the RBM routine M:ABORT (see also Appendix D for
abort codes, abort messages, and their meanings).

The Overlay Loader 'pl.ain text' error messages are largely se If­
explanatory but are also further described in Appendix D.

8. RAD EDITOR

The RAD Editor controls RAD and disk pack allocation by
maintaining file directories for all resident standard areas.
A resident standard area is one that has its area mnemohi c
in the RBM Master Directory (either as a permanent area
defi ned at sysG El'l or a temporary area defi ned by the
Mount key-i n) and is not checkpoint (CP), background
temporary (BT) area, or of any area whose mnemonic begins
with the character X. (X identifi es a nonstandard area.)
Through its control commands the RAD Editor can

• Add entries to or delete entries from file directories

• Copy data from one random fi Ie to another

• Maintain libraries in the system library (sL) and user
library (UL) areas for use by the Overlay Loaders

• Copy an object module contained in a library

• Map file and library module allocations

• Dump contents of RAD fi les, RAD areas, or RAD-type
devices in hexadecimal format.

• Save the contents of areas or files in a format restor­
able by the RAD Editor, or save the contents of areas
in a rebootable format on magnetic tape (which may
olso be restored by the RAD Editor)

• Clear an area or file

• Truncate a file or all files within an area

• Output messages to the operator

• Initialize file directories for new disk packs

• Flaw bad disk pack tracks and allocate alternates.

The RAD Editor generates and maintains directories for the
following permanent areas:

• System Processor area (SP)

• System Library area (sL)

• System Data area (sD)

• User Processor area (UP)

• User Library area (UL)

• User Data area (UD and aa)

Size and location of each permanent area are contained
in the RBM Master Directory. The RAD Editor allows map­
ping of all areas, including Checkpoint and Background
Temp areas, and the dumping of all random-access files.

STANDARD RAD IDiSK PACK AREA ORGANIZATION

Every area contains its own file directory. Each file is
identified by a file directory entry that indicates the name,
format, and location of the file. The areas and their file
di rectories are software write-protected (at sysGE N) and
may have any of the following four write-protect codes:

Code Meani ng

NO

BG

FG

sy

only files with a write-protect code of NO
may be added to the area.

only files with write-protect codes of NO
or BG may be added to the area. Back­
ground programs may write on any file in
the area, but foreground programs may only
write on fi les with NO write-protect codes.

only files with write-protect codes of NO
or FG may be added to the area. Fore­
ground programs may write on any file in
the area, but background programs may only
write on files with NO write-protect codes.

fi les with any write-protect codes may be
added to the area.

For areas with BG or NO write-protect codes, any RAD
Editor control command may be used without the need for
an sY key-in. However, for areas with FG or SY write­
protect codes, the following RAD Edit control commands
require that an sY key-in be in effect at the time the con­
trol command is executed:

!DADO

! #DELETE

! #TRUNCATE

! #SQUEEZE

! #RESTORE

!#CLEAR

Space within an area is allocated sequentially; the first file
in the area begins in the first sector following the first file
directory. The second file in the area begins in the next
available sector following the first file. Normally, as each
file is added to the area, the next available sector is used
as the start of the new fi Ie; however, the control command
used to allocate space for the file may specify that the file
begin on the next available track (or cylinder) boundary.
In this event, any space bypassed will remai n unused and
the RAD Editorwill not attempt to fit a new file into the un­
used space. New files are always added at the end of the
currently allocated space within an area.

RAO Editor 101

When a directary entry (and, effectively, its correspondi ng
file) is deleted, the area formerly occupied by the file is
left unused. In normal operation, the RAD Editor makes no
attempt to recover these unused areas. Therefore, the
addition of a fi Ie may cause overflow of the permanent area
although ample space may be available. However, RAD
squeezing can be requested via an Editor! #SQUEEZE com­
mand to overcome this problem. Squeezi ng recovers the
unused storage within a permanent area by regenerati ng the
directory and moving files.

Before any permanent file can be written (using the Moni­
tor routine M:WRITE), space must be allocated for the
file. This is accomplished by requesting the RAD Editor
to add a new entry ot the designated directory. Con­
trol commands allow directory entries to be added or
deleted.

Warning: While processing the commands ADD, DELETE,
TRUNCATE, SQUEEZE and CLEAR, foreground
fi les that may become active are the user1s
responsibi lity.

DATA FILES

Ordinarily, data is not written in permanent files by the
RAD Editor. Data files are normally written by user pro­
grams. However, a RAD Editor control command can be
used to copy data from one random-access fi Ie to another.
Copied files may be temporary or permanent fi les.

LIBRARY FILES

System and User library fi les, which are searched by the
Overlay Loaders for external references, are generated and
maintained by the RAD Editor (the only processor that
writes in these files).

A library area (either the System Library area or the User
Library area) contains six files:

1. Module Directory File (directory of library modules).

2. EBCDIC File (list of all library definitions/references).

3. Extended DEF/REF File (index to extended precision
definitians/references in EBCDIC file).

4. Basic DEF/REF File (index to standard precision
definitions/references in EBCDIC fHe).

5. Main DEF/REF File (index to main definitions/
references in EBCDIC file).

6. Module File (library object modules).

The extended and basic DEF/REF files (items 3 and 4) are
optional.

These files are generated and maintained from information
in controt commands and object modules placed in the

102 Standard RAD/Disk Pack Area Organization

library by the RAD Editor. Special commands are supplied
to allow the addition and deletion of object modules; these
control commands will cause the six fi les in the RAD li­
brary area to be updated. A control command allows an
object module contained in a library to be copied onto BO.

Any random-access or sequential-access file (either tem­
porary or permanent) can be dumped on La.

The RAD Editor can save the contents of a permanent area
and the RBM bootstrap in a self-reloadable form. The
saved image contains a bootstrap loader, the execution of
which restores the RBM bootstrap and the permanent area
on the RAD or disk pack. .

U pdat i ng or squeezi ng of permanent areas and library fi I es
that contain information for real-time programs must not
occur while the foreground is using these permanent areas
or files. The user must ensure that the RAD Editor is not
modifying a permanent area while a foreground program is
using it.

The names for the library files must be ~ne of the following:

Code File

MODIR Module Directory

EBCDIC EBCDIC

EDFRF Extended DEF/REF (optional)

BDFRF Basic DEF/REF (optional)

MDFRF Main DEF/REF

MODULE Module

The DEF/REF file needs to be added only as required. The
System Library (SL) requires only the MDFRF file.

ALGORITHMS FOR COMPUTING LIBRARY FILE SIZES

The following algorithms may be used to determine the
lengths of the six fi les ina I ibrary area:

The number of granules in the MODIR file is

MODIR
6 (1 + i)

g

where

g

n

is the number of modules to be placed in the
library (including main, extended-precision, and
single-precision routines). i must be equal-to or
less-than 1023.

is the granule size in words.

The number of granules in the EBCDIC file is

EBCDIC
4 (1 + d)

g

where

d

g

n

is the number of unique DEFs and REFs in the
library (including main, extended-precision, and
single-precision routines). d must be equal-to
or less-than 8191.

is the granule size in words.

The number of granules in the EDFRF file is

n

2 + L(2 + r + d)

EDFRF
1=1] 1.

n g

where

n is the number of routi nes in the extended-
precision library.

rl is the number of REFs in the extended-precision
library.

di is the number of DEFs in the extended-precision
library.

g is the granule size in words.

The number of granules in the BDFRF file is

n

BDFRF

2 + L(2 + rk +dk)
k=l

where

n

n g

is the number of routines in the single-precision
library.

is the number of REFs in the kth library routine
in the single-precision library.

d
k

is the number of DEFs in the kth 1ibrary routi ne
of the single-pTecision Hbrary.

g is the granule size in words.

The number of granules in the MDFRF fife is

n

2 +L:{2 + r. + d.)

MDRFR
j=l J J

where

n

r.
I

d.
I

n g

is the number of routines in the main library.

is the number of REFs in the jth library routi ne
in the main library.

is the number of DEFs in the jthlibrary routine
in the mai n library.

g is the granule size in words.

The number of records in the MODULE fi Ie is

n
MODULE L: (c.)

where

n

c.
I

n i = 1 I

is the number of modules in the library (includ­
ing main, extended-precision, and single­
precision routines), and n must be equal to or
less than 1023.

is the number of record images in the ith library
routine.

RAD EDITOR OPERATIONAL· LABELS

The RAD Editor uses the temporary background operational
labels XO through X6. These labels must not be assigned at
the time the !RADEDIT control command is executed, nor
may they be used on ! #OUMP or ! #FCOPY commands.

The following labels must be assigned before requesting the
RAD Editor:

Label

BI

BO

CC

Explanation

Obiect module input (and Restore) to System
and User library.

Object module output (and Save) from the
System and User Librari es.

Control command input ... If KP isin effect,
-control command input is read from oplabel
'OCI.

RAO Editor Operational Labels 103

Label Explanation

DO

LL

LO

OC

Log of error messages and operator key-i ns.

Log of control commands.

Maps of directories and dumps of files.

Messages to the operator and key-ins from
the operator. Control commands are read
from OC if a tlKP" key-in is in effect.

CALLINGRAD EDITOR

The RAD Editor is requested with a !RADEDIT control com­
mand. The !RADEDIT control command is read fromCC
and causes the root segment of theRAD Editor program to
be loaded into core memory from the RAD. It has the format

(RADEDIT

Reading an !EOD from CC causes the RAD Editor program
to return control to the Monitor. If CC is assigned to
magnetic tape or a RAD file, an EOF condition encoun­
tered whi Ie reading control commands from CC wi II cause
the RAD Editor to return control to the Monitor. The form
of the command is

CONTROL COMMAND FORMAT

All RAD Editor control commands are input from CC (or
from OC if a "KP" key--in is in effect) and listed on LL.
The general format is

! #menmonic specification

. where

I!}

identifies the record as a control command.

indicates that the control command is unique to
the RAD Editor.

mnemonic is the code name of a RAD Editor com-
mand immediately following the! # characters.

specification is a series of required or optional
parameters unique to the specific command. The
conventions used in specifying parameters are
(1) a string of up to five decimal digits, having
a value less than 65,535, denotes a decimal in­
teger; (2) a string of the form +xxxx is treated as
hexadecimal; (3) all other strings are assumed to
be nonnumeric.

One or more blanks must separate the mnemonic and speci­
fication fields, but no blanks may be embeddded within a
field. An empty parameter in the specification field is
denoted by a comma. However, commas may be omi tted
for empty trailing parameters. A control command is
terminated by the first blank after the specification field.
If the specification field is absent and a comment follows
the mnemonic field, the command is terminated by a period.

The fi rst two characters of the mnemoni c portion of the
command are sufficient to define the command; the re­
maining characters may be omitted since they are ignored
if they are present.

In the descriptions of the following individual commands,
certain terms are used that have specific meanings for the
RAD Editor. The terms are:

Term

area

Meaning

The two-character alphanumeric
mnemoni c fora resident standard area.
The area mnemonic must be currently
present in the RBM Master Di rectory
and, generally, may not be BT, (P,
or Xn.

For the commands !#LADD,
! #LREPLACE, ! #LDElETE, ! #LCOPY,
! #LMAP, and! #LSQUEEZE, area must
be either SLor UL. If neither is speci­
fied, SL is assumed by default.

filename Three to eight alphanumeric characters
denoting a file contai"ep within (or
to be added to)an area file directory_ At
least one character must be alphabetic.

identification The library routi.ne name denoted by ,
the Extended Symbol IDNT directive,
which is located in the start module
load item of an object module.

I ibrary An object module I ibrary (within the
System or User library) denoted by one
of the codes

Code

M

E

B

library

Main

Extended

Basic

For the commands !#LADD,
! IILREPLACE, and ! 'LDELETE the de­
fault library isM (main).

CONTROL CIIt1MAND REPERTOIRE

ADD The ! /I ADD command adds a new entry to the
specified permanent file directory. It defines the name,

104 Caning RAD Editor/Control Command Format/Control Command Repertoire

size, record length, format, and write protection for the
new file. It may also declare that the file will contain
a resident foreground program, and wi II be mai ntai ned start­
ing at a cylinder or track boundary. Space is allocated for
the new fi Ie and the fi rst sector of the fi Ie is set to zero
if it has random format. The form of the command is

! # ADD area,fi lename'{~r~~ }[{ ~ec n['filefmtl~

L[,wp] ~{~Fij t{;:~J]
where

ALL indicates the fi Ie wi" be allocated to extend
to the end of the area. After an EOF has been
written on the fi Ie, it may be truncated to recover
the unused space.

nrec is the number of records in the file and may
not exceed 65,535.

S indi cates that the record size is equivalent to
sector size and that nrec is to be used to determine
the number of sectors to reserve.

srec is the maxi mum number of bytes per record
which must be even and may not exceed 65,534.
If filefmt is R, srec is used as the granule size.
The following default values are provided, depend­
ing on the fi Ie format.

Default Record Size

• 120 for fi Ie format, Band P

• Sector size, in bytes, of the device contain­
i ng the area for fi Ie format R or U

• 80 for fi Ie format C. Since compressed fi les
may contain records of variable length, this
value is used for allocation purposes only.
The S character may be used to force the
allocation of a specific number of sectors for
a compressed file. In this case, nrec indicates
the number of sectors to reserve for the com­
pressed fj Ie.

filefmt is the structure of the file, as denoted by
one of the following codes:

Code Format

B

C

P

R

U

blocked sequential-access file with a
fi xed record si ze

blocked (and compressed) sequential ac­
cess fi Ie with a variable record size

blocked (packed) random access fi Ie,
fi xed record si ze

unblocked random access file

unbJocked sequential access file.

wp

If the format parameter is omitted, the default for­
mat is determined by the area mnemoni c as follows:

Default Area Mnemonic

R SP, SL, UP, UL, FP, BP

B any other

specifies the write-protection level for the file,
as denoted by one of the following codes:

Codes

NO (or N)

BG (or B)

FG (or F)

SY (or R)

Write-Protection Level

No write-protection; background
or foreground programs may write
on the fi Ie.

Write permitted by background
programs only.

Write permitted by foreground
programs only.

Background programs may write on
the file if an SY key-in is in effect.

Write permitted by RBM only.
Foreground or background programs
may write on the file if an SY
key-in is in effect.

If the wp parameter is omitted, the default write­
protection level is NO.

RF or F specifies that the fi Ie wi" contain a resi-
dent foreground program that is to be automati co lIy
loaded at boot time, and therefore the area mne­
monic must be SP, UP, or FP (the order of search).

CYL specifies that the BOT of the fi Ie is to be
allocated and maintained on acyl inder boundary
if the area is on adisk pack.

TRK specifies that the BOT of the fi Ie is to be
allocated and maintained on a track boundary.

DELETE The! #DELETE command deletes on entry from
the specified permanent file directory. The space formerly
allocated to the file becomes unused. The space is recov­
ered if the file being deleted is the last file in the area.
The Form of the command is

If no filename is specified, all files in the area are deleted.
If there are active files in the area, the operation is not per­
formed. Under no condition can the SParea be de leted. In­
stead, the following messages are output

##OPEN FILES, NO CHANGE: area, filename

NO CHANGE: area

If the write-protect code for the area is SY or FG, the SY
key-in must be in effect at the time the control command is
executed.

Control Command Repertoire 105

FCO''f The !#FCOPY (File Copy) command copies data
from one random-access file to another. The file copy pro­
cess terminates when EOF is encountered on an input file or
when an end-of-tape is encountered on either the input or
the output file. The form of the command is

(DFCOPY

where

oplbi is the operational label or FORTRAN device
unit number (e.g., F :109) ofa temporary or perm­
anent random-access file. The Utility COpy
Routin.e (see Chapter 9) must be used to copy
sequential-access fi les.

is the input file.

is the output file.

DPCOPY The! #DPCOPY (Disk Pack Copy) control
command copies data from one disk park or cartridge disk
to another. The entire contents of the pack or cartridge ·is
copied and a checkwrite is performed on the copied data.
The form of the command is

! #DPCOPY +device
1

, +device
2

where

device] is the hexadecimal device number of the
disk pack

device2 is the hexadecimal device number of the
disk pack to copy to, which may not contain any
currently "mounted" areas.

Note: The bootstrap record is not copied to sector zero.
The INITIALIZE command always writes the
bootstrap record to sector zero.

LADD The! #lADD (library Add) command adds an
object module to the designated library. The object
modure is read from BI, checked for sequence and checksum
errors, and stored in the Module File within the library.
From the data in the object module and on the control com­
mand, the information about the module is extracted and
placed in the Module Directory File (MODIR), the EBCDIC
File, and one of the three DEF/REF Files (either MDFRF,
BDFRF, orEDFRF File) as indicated in the library param­
eter. BI may be assigned to any device; if BI is assigned
to the RAD, it must be sequential file. The object mod­
ule on BI must be in standard object language. Any blank
card or binary card on BI that contains only zeros is ignored.
The form of the command is

! #LADD [areaJ(ident]Llibrary]

where ident is the program name located in the start module
item of the object module on BI.

106 Control Command Repertoire

The Hbrary routine ~ay be selectively added to the Slor Ul
area from a file of library routines. If the identification
parameter is omitted, all object modules on BI will be added
to the library up to, but not including, the file mark or EOD
on BI.

Within a permanent area (Sl or Ul), each object module
ident must be unique except as follows: an object module
ident in the Main library cannot exist in either the Basic or
Extended library. An object module with the same ident can
exist in both the Basic and Extended libraries.

If identification is present, the start module load item of
the fi rst program read from BI must be the same as shown by
the identification parameter.

LREPLACE The! #lREPlACE (library Replace) command
replaces an object module of the same identification .in the
designated library. The object module is read from BI and
checked for sequence checksum errors. The object module
on BI must be in standard object language. Any blank card
or binary card (on BI) that contains on ry zeros is ignored.
The form of the command is

! #lREPlACE [area,) ident[,library]

where ident is the program name located in the start mocJule
item of the object module on Bl. The object module on
BI replaces the module in the library having the same
identification.

LDELETE The! #lDElETE (library Delete) command
deletes an object module from the designated library. The
form of the command is

! #lDElETE [area,] ident [,library J

where ident is the program name of the object module to be
deleted.

LCOPY The! #lCOPY (library Copy) command copies
an object module from the designated I ibrary onto the BO
devi ceo The form of the command is

(ILCOPY [area,] iden!

where ident is the program name (located in the start module
item) of the object module to be copied onto the BO device.

LSQUEEZE The l'lSQUEEZE (library Squeeze) com-
mand wi' I squeeze designated I ibrary areas. Unused space
is recovered by regenerati ng the di rectory files and

squeezing (compacting) the module file. The form of the
command is

!#LSQUEEZE [area]

MAP The !#MAP command causes the specified direc-
tories to be mapped on La. For each permanent RAD area,
the beginning and ending RAD addresses for the area are
mapped. For each file, the contents of the directory entry
describing the file are printed. This information includes
name, format, write-protection, foreground task indicator,
beginning address, EOF address, and EaT address for each
file. For files on disk packs, the map also includes the
cyli nder/track/sector values for BOT. For fi les on RADs,
the map also includes the track/sector values for BOT. The
form of the command is

where area must be a currently defined area. If no area
parameter is i ncl uded, a /I currentl y defi ned areas are
mapped.

LMAP The! #LMAP command causes the library files of
the specified areas to be mapped on La. For each area,
the beginning and ending addresses for the area are mapped,
followed by a map of the library fi les in the area. The
I ibrary map i ncl udes the followi ng information for each
routine:

• library B (basic), E (extended) or M (rna in)

• Identification of routine

• Length of routine in words

• Sector within the MODULE fi Ie that contains the routine

• DEFs in the routine

• REFs in the routine.

The form of the command is

DUMP The !#DUMP command dumps a RAD file, a RAD
area, or a RAD-type device in hexadecimal format on the
LO device. Records are dumped beginning with the first
record of the file (record 0) unless an optional starting rec­
ord number is given. The dump is terminated by an EOF,

EaT, or by having dumped the requested number of records -
whichever occurs first. The form of the command is

1
0Plbi }

! #DUMP area [, fi lename] [, start[, number]]
+devi ce-number

where

oplbl is the operational label or FORTRAN device
unit number (e.g., F:109) assigned to a RAD file.
Operational labels XO through X6 may not be used
because they are reserved for use by RADEDIT.

device-number is the hardware device number of
the RAD or disk device. This number must be
preceded by a + (plus character) and must match
a RAD or disk device number input at SYSGEN.

start is the relative record (or sector) number at
which the dump is to begin. For RAD files, this
number represents the record relative to the first
record of the file. For RAD areas, it represents
the sector relative to the first sector of the area.
For device-number, it represents the sector rela­
tive to the first sector of the device. If start is
omitted, the dump begins at the first record rela­
tive to the BOT of the fi Ie, area, or device.

number is the number of records (or sectors) to be
dumped. If number is omitted, the file, area, or
device is dumped until an EOF or EaT is encoun­
tered. If the file format is random (R) or packed
(P), the EOF is ignored.

SAVE The! #SAVE command saves the contents of areas
of specific files. Each file is written on the BO device,
along with all pertinent information about the file. The BO
media may be magnetic tape, unblocked file, paper tape, or
cards. If the media is magneti c tape and an end-of-reel condi­
tion occurs, the operator is expected to mount the next reel to
be used for output. If the media is paper tape and an ! ATTE ND
command has been input for the current job, the message

nnnn FT. OK?

will be output on the OC device. If there is more than nnnn
feet of paper tape availahle, the 0p~9tor is expected to
type in Y. This process will continue until all files speci­
fied by the !#SAVE command have been output, or until
the operator determi nes that the required amount of tape is
not available. Any input other than Y causes the pro­
gram to output an end-of-reel record followed by blank
tra i I er ~ The program the n outputs the message

! !BEG IN WAIT

on the OC device. The operator must then mount a new reel
of tape, interrupt, and key-in S. The program then out-
puts blank leader, a save-continuation record, and proceeds
as described above.

Control Command Repertoire 107

The BOoufput can be restored via the !# RESTORE command.
The form of the command is

where FILE indicates that the output format contains 01 I
necessary information for the restoration of specific files.
Each file saved is followed by an !EOD (or file mark in the
case of magneti c tape). If another ! # SAVE FILE contro I
command follows immediately, the additional files are ap­
pended to the previous output.

Note: !#SAVE FILE command does not save the following
files from the SP and SD area:

SP, BOOT
SP, RBM
SP, TVECT
SP, RADEDIT
SP,OLOAD
SD,RBMGO
SD,RBMOV
SD, RBMAl
SO, ERRFILE
SD, RBMID
SD, RBMSYM
SD, RBMPMD

When a control command is encountered that is not a
!#SAVE FILE command, an additional EOF is written and
the BO device is rewound before the next command is
executed.

The FILE keyword may be omitted only if the BOoperational
label is assigned to magnetic tape, causing a bootstrap pro­
gram to be output on BO followed by the contents of the
specified areas. No fi lenames may be specified in this
case, since the allocated portion of an area is saved as i·f
it were a single fi Ie. The specified areas are followed by
two fi Ie marks and the tape is rewound.

When the output magneti c tape is booted, the bootstrap
program wi II restore the saved areas and then initiate an
RBM boot process.

The user must not mix the output of the !#SAVE command
with the !#SAVE FILE command on the same magnetic tape.

VERIFY The !#VERIFY command checks the output of
the !#SAVE command to ensure that it can be correctly pro­
cessed by !#RESTORE at a later time. The form of the com­
mand is

iHVERIFY [oplbIJ

where oplbl is the operational label of the medium from
which the "SAVE output is to be read. If no oplbl is pres­
ent, fhe opJbf BO is assumed by default.

108 Control Command Repertoire

RESTORE The !#RESTORE command restore the contents
of areas or specific fi les that hove been saved via the
!#SAVE command. The files are selectively restored from
the BI de vi ceo The form of the command is

! 'RESTORE [area [!;;':ame}' 00 -] ,0 0 oJ

If the fi Ie being restored does not have a corresponding en­
try in the area file directory, a new entry is made and the
file is copied into its allocated region. If the file being
restored already has an entry in the area file directory the
fi Ie will be copied into the currently allocated region unless

• There is a format conflict

• The allocated region is too small

• The proper level of write authorizationis not in effect, that
is, SY key':"in not performedand fi leis write-protected.

If an end-of-reel condition is encountered whi Ie reading
from BI the operator wi II be requested to mount the next ree I
in sequence, as created by the !#SAVE command.

If the BI input is a rebootable save tape, no filenames may
be specified - each area is restored in its entirety.

SQ.UEEZE The !#SQUEEZE command compacts thedesig­
nated fi Ie areas. Unused space is regai ned by regenerating the
directori es and moving fi les. The form of the command is

!#SQUEEZE area [,area] ... Larea]

The areas BT, CP, and any area beginn ing with the letter X
are never squeezed. An explicit request to squeeze any of
these is ignored. If the area being squeezed contains a file
that is assigned to an operational label and the file can be
moved, the fol lowing message will be output.

OPEN FILE, NO CHANGE: area,filename

File is not moved and squeezing continues.

File directory information may be destroyed if an area being
squeezed contains a file that is assigned to an operational
label being used by an active foreground program.

Care should be exercised when SQUEEZEing areas thatmay be
currently in use by foreground programs in order to avoid file
conflicts.

CLEAR The !#CLEAR command zeros out the specified
RAD area or fif e. The form of the command is

1# f{area}] • CLEAR area r filename· , ...

If no filename is specified, all files in the area are cleared,
including file directories. If there are open files in the
area, the operation wi II not be performed. Instead, the
following message will be output

OPE N FILE, NO CHANGE: area, fi lename

If the write-protect code for the area is SY or FG, the SY
key-in must be in effect at the time the control command is
executed.

BDTRACK The !#BDTRACK command specifies the disk
pack and the track numbers for wh ich alternates are to be
provided.

Two methods of selecting alternate tracks are used: the
flawed headers and the bad track list.

The disk packs, Models 7242/46, use flawed headers. The
original track will have its headers rewritten with a flaw
mark and a reference to the a Iternate track. The headers
of the alternate track wi II be rewritten to refer to the
original trock. The cartridge disks, Models 3231/32/33 and
7251/52, util ize a bad track I ist which is written on cyl­
inder 0, track 0, sector 2. The bad track numbers are written
into the I ist and the corresponding alternate tracks are se­
lected during the read-write process. The form of the com­
mand is:

!#BDTRACK -tdn, +number[' +number] ••• [,+number]
{

ALL }

decimal [,decimal] ••• [,decimal]

where

dn is the device number of the disk pack.

number is the hexadecimal track number on the de-
vice starting with O.

decimal is the decimal track number on the device
starting with O.

ALL indicates that a bad track list is to be con-
structed from the flawed headers previously written
on the 323x device. Once th is is done, ! #SDTRACK
commands can be used to enter track numbers into
the bad track list on the device.

Note: See the Unso) icited Control section as to how
bad track I ists are entered (Mount) and re­
moved (Remove) from the system tabl es.

Example:

! # BDTRACK +E5, +325, +297

GDTRACK The !#GDTRACK command specifies the disk
pack and the track numbers for which alternates are to be
eliminated. This may be used if it is suspected that a desig­
nated flawed track is good.

On the disk packs, Models 7242/46, for each track spec­
ified, its headers wi" be rewritten to clear the flaw mark
and the headers of the assigned alternate track wi II be re­
written to free the alternate track.

On the cartridge disks, Models 7251/52 and 3231/32/33,
which uti I ize a bad track list, a "blank" bad track nst can
be written on cylinder 0, track 0, sector 2 of the device
using the "ALL" option. If a bad track list exists on the
device, bad tracks can be eliminated as described above.
The form of the command is:

!#GDTRACK +dn +number[,+number] ••• [,+number]
{

ALL]

decimal [,decimal] •.• [,decimal]

where

.dn is the device number of the disk pack.

number is the hexadecimal track number on the de-
vice starting with O.

decimal is the decimal track number on the device
starting with O.

ALL indicates that a "blank ll bad track I ist is to be
written on the device.

INITIALIZE. The !#INITIALIZE command provides disk
pack serialization (including date) and allocation of data
areas. The form of the command is

! #INITIALIZE +dn L serial-number], DO

where

dn is the hardware device number of the disk pack
to be initialized. The device number must match
a disk pack device number input at SYSGEN.

serial number is any combination of eight characters,
excluding blanks or commas. If the disk pack is
Xerox Model 7242 or 7246, the serial number is
written on cyl inder 202, track 19, sector 0, to­
gether with the current date. For Xerox Models 725x
and 323x, the serial number and date are written
on cyl inder 0, track 0, sector 1.

DO indicates that the file directory on the device
is not to be initial ized.

Control Command Repertoire 109

The t#INITIAUZE command may be foUowed by a set
of area defin Hie" cards fhat hove the format

(' , area"'frock.[.wp J

where

area isonoreamnemonic from the following list:

SP
SD
FP

BP SL
CP BT
S K (ski p tracks) GO'

UP
Ul

tracks is the number of tracks to be oJ located
for the area. A parameter of tAlLI allocates
aft the remaining tracks on the device.

wp is the write-protect code to be used for the
area. This code is tested whenever any of the
foHowing operations are performed:

ADD
CLEAR

DELETE
RESTORE

SQUEEZE
TRUNCATE

See JlStandard RAO/Oisk Pack Area Organization"
for write-profect codes.

MESSAGE The ! 'MESSAGE control command writes
messages to the operator on the OC and LO devices. The
form of the command is .

(' #MESSAGE message

where message is any EBCDIC character string up to a full
card image.

PAUSE The! #pAUSE control command causes a message
to be written on the OC and lO devices followed by a wait
for the operatorls response. The form of the command is

(#pAUSE message

where message is any EBCDIC character string up to a full
card image. The format of the output is:

! #pAUSE message

! !BEGIN WAIT

It is necessary for the operator to activate the control panel
INTERRUPT switch and key-in an S to continue.

TRUNCATE The! #TRUNCATE command eliminates un-
used space from the end of specific fi les by setting the
EOT pointer equal to the EOF pointer. If an EOF has not
been written on the file, the file EOT will not be changed.

110 RAO Editor Messages

AU compressed fifes or fifes containing programs loaded by
the Overlay loaders (or with the Monitor !ABS command)
will have an EOF pointer. The space is recovered if the file
being truncated is the fast fife in the area. The form of the
command is

JII [{Qrea }n . TRUNCATE area , filename ~' ~ ..

If no filename is specified 011 files in the area containing
an EOF are to be truncated to the EOF. If the area is SD
and no filename is specified, the following message will be
output on the DO device and the OC device (if KP is in
effect) and providing oplobelsare not assigned to same device.

III NO CHANGE: SD

If the write protect code for the area is SY orFG, the SY
key-in must be in effect at the time the control command
is executed"

END The JIIEND command is used exactly like the !EOD
command; that is, it transfers control from the RAD Editor
to the Monitor. The form of the command is

This command should be used in place of IEOD whenever
multistep job stacks are to be prestored on a fj Ie. The
Uti Ii ty COpy routi ne wi II not interpret th i s command as
an EOF.

RAD EDITOR MESSAGES
The RAD Editor program issues the error messages I isted in
Appendix D {Table 0-4}on DO. If a KP key-in is in effect,
the error message is output on OC and DO un less OC and DO
are assigned to the same device. The warning (W) messages
in Table 0-4 are written on the OC and DO devices to
provide a record of operations not performed or of critical
operations in process. If an operator response' is required,
the R-type error message is followed by the RBM message.

! IBEGIN WAIT

written on OC. The operator activates the PCP interrupt
and keys in one of the following:

Key-In

SY,S

S

X

Meaning

Suspend disk write-protect and continue.

Continue.

Abort RAD Editor and return control to RBM.

RAD Editor initiated aborts are identified by the abort
code IREI. If the abort is operator-initiated, this is indi­
cated by the abort code I Opi .

9. UTILITY

INTRODUCTION

The Utility program operates in the background under the
Real-Time Batch Monitor. It contains routines that:

• Copy variable-length binary or EBCDIC records from
one medium to another (Copy).

• Dump records onto an output device in either hexa­
decimal or EBCDIC format (Dump).

• Generate or update fi les that contain Xerox Standard
Object language modules (Object Module Editor).

• Generate or update symbolic fj les (paper or magnetic)
that contain source data (Record Editor).

• Edit card imagesbysequence number (Sequence Editor).

Routines in the Utility program are device-independent.
Utility handles any blocked or unblocked, sequential-access
RAD file. Use of a sequential-access RAD file is similar to
that of a magneti c tape, as it has a beginning-of-tape, an
end-of-fi Ie (if one has been written), and an end-of-tape.
Note, however, that a sequential-access RAD file cannot
be forward-spaced or backspaced over more than one fj Ie
mark. A rewound sequential-access RAD fj Ie is positioned
at beginning-of-tape. For both blocked and unblocked
fi les, a record skip is a logical record skip.

UTILITY PROGRAM ORGANIZA 110N

The Utility program consists of two major sections: the Util­
ity Program Control routine (always res.ident when the Uti I ity
program is operating), and the currently operating Utility
subroutine. The Utility Program Control routine contains
four interdependent elements:

1. The Program Executive, which initiolizes the program
(upon entry from RBM), interprets the IUTILITY con­
trol command (explained in "Calling Uti lity"), exer­
cises control over the flow of control commands, handles
norma I and abort exits to the Monitor, and performs
a" II 0 checki ng for the Uti I i ty program.

2. The Source Input Interpreter, which reads and scans
Uti lity control commands for the Control Function Pro­
cessor and the current Utility subroutine.

3. The Control Function Processor, which executes con­
trol functi on commands common to a II Uti I i ty subrouti nes.

4. The Operator Communication routine, which outputs
messages to OC and DO and recei ves key-in responses.

UTILITY PROGRAM EXECUTIVE

When RBM reads a ! UTI UTY control command control is
transferred to the Program Executive routine. The !Un UTY
control command is then scanned for parameters. If the
name parameter is omitted (see "Calling Utility" below),
it is assumed that on I y the Control Functi on Processor wi II
be used. Uti lity control commands are read from the source
input (51) device unless a KP key-in is in effect, in which
case commands 'are read from OC.

If a specific Utility subroutine is requested, the Program
Executive verifies that the subroutine is in storage; if
not, an error message is written and an exit to RBM is taken,
terminating the background operation. If the subroutine is
present, initialization of tables and flags occurs.

The Program Executive then transfers control to the requested
Utility subroutine. The Utility subroutine uses the Source
Input Interpreter to read all commands, and uses the Control
Function Processor to execute control functions. All other
control commands are interpreted and executed by the Uti­
lity subroutine itself.

SOURCE INPUT INTERPRETER

The Source Input Interpreter, which is cal.led by the Program
Executive routine, processes all control commands that are
read by the Uti lity program. Uti Iity control commands are
input from the SI device (unless a KP key-in is in effect)
and listed on the II device as they are interpreted.

Upon reading a command, the Source Input Interpreter de­
termines whether the command is valid. If the syntax for a
command is invalid, the following message is written on OC
and DO:

** INV CTl

The Utility program then reads the next command or enters
the wait state if attend mode is in effect.

If the command is valid, it may be interpreted and executed
either by the Utility subroutine or by the Control Function
Processor.

CONTROL FUNCTION PROCESSOR

The Control Functi on Processor interprets and executes com­
mands that are common to all Utility subroutines. If any of

Utility 111

the controt commands interpreted and executed by the
Controf Function Processor contains on invalid operational
label, the foHowing message is output:

** INV OPLB

The Uti nty program then reads the next command or enters
the wait state if attend mode is in effect.

I

CONTROL ROUnlE OPERATlDlAllABEtS

Four operational 'abets are reservedfor the Program Control
routine. Their use. is restricted to thefuncfions below; they
may not be used in ptace of the labels required by the vari..;.
ous Utility subroutines. explained later.

Lobel.

SI

DO

lL

OC

X5

Explanation

Device for Uti lity control command input, and
various modification source inputs. (If a KP
key-in is in effect, control commands are read
from OC.)

Device for listing of messages, error conditions,
operator responses, etc. If OC and DO are
assigned to the some device, dupt.ication of
messages is suppressed.

Log of contro I commands.

Device for messages to the operator, key-in re­
sponses from the operator (always via the keyboard!
printer), and contror-command input if a KP
key-in is in effect.

Temporary RADfite used for prestoring commands
read from Sf.

Utility functions are generally ex.ecuted dynomicatiYi that
is, contror commands are interpreted and executed os they
are read. However, when severat operational labels are
assigned to the some device-file as SI" it is impracticaf to
execute dynamicaHy. In th.is case, commands must be pre­
stored to avoid confus·ion with data from that device. This
decision to prestore is made by the Utifity program with one
exception: the ! *PRESTORE control command aHows the
user the option of prestoring control command input untit
on EOD card image is encountered. For RBM UtiUtiesl! pre­
stored commands are written on a temporary RAD 'file (using'
operational label)(5) and read from the RAD for interpreta­
tion and execution.

112 CarUng Utility

CALLING UTiliTY

The Utility program is requested via a !UTlLITYcontrol com­
mand, which causes theroot segment of the Utility program
to be loaded into core memory from the RAD. The !UTllITY
cootrol command has the format

(UTILITY [nome J[. parameter]

where

name is the nome of aUtifity routine or may be
omitted. It moy be any of the foflowing:

COpy

DUMP

OMEDIT

RECEDIT

SEQEDlT
t

(Copy)

(Dump)

(Object Module Editor)

(Record Editor)

(Sequence Editor)

parameter represents the series of optionar param-
eters that are unique to each Uti lity routine. Pa­
rameters are fully explained in the description of
the individual routines.

When. R8Mreodsthe IUTlllTY command, it loads the Program
Control routine (root segment) from the RAD and transfers
control to the Program Executive which controls the operation
of the Utility program. The Executive first scans the
IUTllITY control command parameters. If the name pa­
rameter is omitted, the Executive assumes that the control
commands that follow use the Control Function Processor
only. If a specific Uti lily routine is referenced with the
name parameter I the Program Executive checks the name
for validity. If the name is invati,d, the message

I ** UT NT RES I I
(UtHity not resident) i.s written on OC and DO and the
Uti lity program aborts. If the name is valid, the overlay
segment containing the Uti fity routine is loaded from the
RAD,. nags are initialjzed, and control is transferred to the
named routine.

When the Program Control routine encounters on fEOD card
image from 51, it terminates processing. The form of the
!E.OD command is

This causes the Utility program to transfer control bock to
RBM.

tThe Sequence Editor always reads from SI" whether or not
a KP key-in is in effect.

If a Uti lity routine encounters the control command IUT [name]
. [,parameter], normal termination occurs and the named rou­

tine is loaded and given control without return to RBM.

CONTROL COMMAND FORMAT

All Uti lity program control commands are input from SI and
are listed on the LL device as they are interpreted. The
general format is

! *mnemonic specification

where

*

identifies the record as a control command.

indicates that the control command is unique to
the Uti lity program.

mnemonic is the code name ofa Utility command
~md begi nSimmediately following the! * characters.

specification is a series of parameters unique to
the specific command. The conventions used in
specifying parameters are (l) a string of up to five
decimal digits having a value less than 32,768
denotes a decimal integer and (2) a string con­
taining more than five characters isalwaysassumed
to be EBCDIC, regardless orcontent.

One or more blanks separate the mnemonic and specifica­
tion fields, but no blanks may be embedded within a field.
A control command is terminat€d by the first blank after the
specification field; or, if the specification field is absent
and a comment follows the mnemonic field, the command is
terminated by a period. No control command record may
contain more than 80 characters. The first two characters
of the mnemonic portion of the command are sufficient to
define a control command; the remaining characters may
be omi tted, since they are ignored when present.

CONTROL FUNCTION COMMANDS

The Contr01 Function Processor interprets and executes con­
trol commands that are common to all Uti lity subroutines.
These control function commands are given below. Unless
otherwise noted, "oplb" is.the operational label of the .de­
vice, "number" is the number of file marks or records to
skip (if omitted; the number is assumed to be 1), and "de­
vice ll is the device type and physical device number.

FBACK The! *FBACK command backspaces a magnetic
tape over a specified number of fj Ie marks or a sequential­
access RAD file to beginning-of-tape (BOT). The form of
the command is

(*FBACK oplb(, number]

The! *FBACK command cannot be used for random files.

FSKIP The! *F5KIP command spaces a magnetic tape
forward over a specified numbercffile marks or a sequential­
access RAD fi Ie over its end-of-fi Ie. The form of the com­
mand is

(*FSKIP oplb(, number]

The ! *FSKIP command cannot be used for random fj les.

MESSAGE The ! *MESSAGE command writes messages
to the operator on the OC and the DO devices. The form
of the command is

(*MESSAGE message

where message is any EBCDIC character string up to a full
card image.

The format of the output is

!*MES5AGE message

PAUSE The ! *PAUSE command causes a message to be
written on the OC and DO device followed by a wait for
the operator1s response. The form of the command is I *PAUSE message

where message is any EBCDIC character string up to a full
card image.

The format of the output is

! *PAU5E message
! !BEGIN WAIT

PRESTOR£ The ! *PRESTORE command causes all control
commands to be read from the 51 device, but not to be in­
terpreted or executed until an !EOD is read. The prestored
commands are written on a temporary RAD file (using opera­
tional label X5) and are read sequentially from the RAD.
(The prestore mode is set automatically when a name param­
eter appears on the! UTILITY command and one or more
operational labels have been assigned to the same device
or RAD DFN as SI.) The ! *PRE5TORE control command
must immediately follow the !UTlLITY control command
and must precede any other control commands for the Uti I-
i ty program. The form of the command is

(*PRESTORE

Control Command Format/Control Function Commands 113

REWIND The! *REWIND command causes the specified
magnetic tape or sequential-access RAD file to be rewound.
The form of the command is

('<REWIND oplb

BBAe K The ! *RBAC K command backspaces a magneti c
tape or sequential-access RAD fi Ie over a specified number
of records. The form of the command is

,<RBACK oplb[,number]

If oplb is assigned to a blocked sequential-access RAD file,
the number parameter is the number of logical records to be
skipped. The ! *RBACK command cannot be used for random
files or compressed RAD files.

RSKIP The !*RSKIP command spaces forward theindi-
cated magneti c tape orsequentia l-access RAD fi Ie over the
specified number of records. The form of the command is

(*RSKIP oplb[,number]

If oplb is assigned to a blocked sequential-access RAD fi Ie,
the number parameter is the number of logical records to
ski p. The ! *RS KIP command cannot be used for random
fi les but can be used for compressed RAD files.

UNLOAD The ! *UNLOAD command unloads a magnetic
tape or c loses a sequentia I -access RAD file. The form of
the command is

(*UNLOAD oplb

END The! *END command is treated exactly . like an
! E OD; tha tis, transfers contro I from Uti Ii ty to the Moni­
tor. This command should be used in place of !EOD when­
ever multiactivity iob stacks are to be prestored on a RAD
fi Ie. This command wi" not be interpreted as on EOF when
read from U I. The form of the command is

«END

114 COpy Routine

WEOF The! *WEOF command writes a file mark, EOD,
or end-of-fi Ie pointer if appropriate to the device. The
form of the command is

(*WEOF oplb

ASSIGN The ! *ASSIG N command allows a Uti lity user
to assign any operational label to any other background
operational label, device-fj Ie number, or RAD fi Ie. The
form of the command is

!*ASSIGN Qplhl==} df.fln
{

OPlb }

-1, I e,ar~a

fdun

where

dfn is a device-file number.

fj Ie is a RAD file name.

area is the RAD area within which the RAD fj Ie is
defined ..

fdun is a FORTRAN device unit number.

COpy ROUTINE

COpy provides the abi lity to copy variable-length binary
or EBCDIC records from cards, paper tope, magnetic tape,
keyboard/printer, and sequential -access RAD fi les to cards,
paper tape, magnetic tape, line printer, keyboard/printer,
and sequential-access RAD fi les. Using control functions
of the Control Function Processor, records and fj les can
be skipped except for random files. The COpy routine
also provides for fi Ie verification (separate from the copy
operation). If the binary mode is requested for either copy­
ing or verifying, fi Ie marks are recogni zed for paper tope,
magnetic tape or sequential RAD fUe. An !EOD card is
recognized as a file mark. The number of records and files
read or verified is listed upon completion of the COpy or
VERIFY operation.

Since COpy uses RBM routines M:READ and M:WRITE for
all reading and writing, fj les copied with the COpy routine
will be treated according to the default conventions of the
FORM, size, and BIN parameters of the ! *COPY command.
Deviation from inherent conventions is accomplished via
FORM, size, and BIN parameter options.

For records being copied to the card punch, records con­
taining a first byte of X'1C', X'3C', X'9F', X'BF ' , X'DF',
X'FF', X100I, or X' 781 are always punched in the binary
mode; all other records are punched in EBCDIC. For all
other devices, the distinction between binary and EBCDIC
modes is meaningless because records are copied directly

without translation. Therefore, attempting to copy binary
data to an EBCDIC device wi II result in meaningless output.

For paper tape, if BIN and size are not specified, the
length of each binary record (first byte of X' 1C, X'3C',
X'9F', X'BF ' , X'DF', X'FF', X1001, or X'781) is always
120 bytes. When M:READ reads EBCDIC records from paper
tape, it transmits only the number of bytes specified by the
calling sequence to memory. Ordinarily, the COpy rou­
tine assumes that paper tape EBCDIC records have a byte
count of 120. The size specification allows the user to
override the standard count.

By assigning the X4 oplb to a RAD fi Ie or paper tape device
before the !*OPLBS command is read, records copied from
UI are adjusted to a 80- or 120-byte length, depending upon
the contents of the first byte.

When copying or verifying a 9-track magnetic tape to a
7-track magnetic tape, UI and X4 should be assigned to
the 9-track device.

If a record copied to the line printer or keyboard/printer
contains more than 132 characters, only the first 132 are
printed. Normally, the first character of the record is
printed and single spacing is forced. Therefore, even if
the first character is intended for format control, it wi II be
printed as the first character of the print I ine in the normal
mode. If the format option is specified, the first character
is interpreted as a format control character and is not
printed.

The BIN option should be used to copy nonstandard binary
records. Paper tape codes NL, EOM, and I- are not inter­
preted as editing characters. All records are copies on a
byte-for-byte basis. If paper tape is the input source,
leading blanks are ignored and trai ling blanks are included
in the byte count. Paper tape !EOD NL is recognized as
a file mark if it occupies the first five bytes of a record.

COpy OPERATIONAL LABELS

The following operational labels are used by the COpy
routine in addition to the Utility subsystem operational
labels:

Label

UI Copy input.

X4 Verify input.

UO Default copy output or second verify input.

Other operational labels may be used by COpy (at the op­
tion of the user) to specify a second input device for veri­
fying or an output devi ce for copying.

COpy OPERATING CHARACTERISTICS

The COpy routine checks whether input/output operational
labels are assigned to the same physical device or same disk
file as control input. If so, all control commands are read
from the SI device and stored in memory prior to interpre­
tation of the control commands to begin copying. When the
SI and any input or output operational labels are assigned
to the same physical device and attend mode is in effect,
the message

** LD INPUT UI, ddnn
! !BEGIN WAIT

is written on the OC and DO device. The operator should
load the input at this point and enter an S key-in to initiate
the actual copy procedure.

If the operational labels are not assigned to the same physi­
cal devices, interpretation of control commands takes place
as they are read from SI, and copying begins immediately
without any message being output on the OC device.

CALLING COpy

The COpy routine is requested with the control command

(UTILITV COPV[, CORE]

where CORE specifies that, for the first I *COPY or ! *VERIFY
command, the records from the input device are stored in
core in addition to being copied or verified. For subsequent
I *COPY or ! *VERIFY commands, these records in core,
rather than those on the input device, are used as the input
source. Following any I *COPY or !*VERIFY commands,
record and file counts are displayed on the DO device.

After interpretation of the IUTILITY control command, con­
trol is transferred to the COpy routine which interprets the
control commands listed below.

COPY CONTROL COMMANDS

OPLBS The !*OPLBS command identifies the operational
labels of output devices to be used in COpy requests and
input for comparison for VERIFY requests. The input for
COpy operations is read from UI. For VERIFY operations,
X4 is read. Operational labels may be assigned to any de­
vice. The form of the command is

(*OPlBS oplb l ,. .. ,optbn

COpy Routine 115

where oplb i (i ~ 8) is the operational label or fdun for an
output device for s.ubsequent ! *COPY commands, or for an
input device for subsequent ! *VERIFY control commands.
UI or X4, may not be s.pecified. In the absence of an
f *OPlBS command, the default is UO. (SI prestore mode
is determined after each! *OPlBS command.)

COPY The ! *COPY command causes records from the
input device (UI) to be copied on the output device (speci­
fied in'the ! *OPLBS command) unti I the requested number
of ! E ODs or fi te marks has been read and copied, or unti I
the specified number of records has been copied. The form
of the command is'

! ·C OPY type [. number] [. FORM] [. SizeJ.~ i~~ [. P]

where

type is R if the number parameter refers to records,
or F if the number parameter refers to fj les.

number has different meanings, depending upon
the type parameter that precedes it. If the type
parameter is R, "number" is the number of records
to be copied, but refers to logical records for 0

blocked, sequential-access file. If "type" is F,
"number" is the number of files to be copied, or
is ALL, indicating that all files should be copied
unti I two consecutive EOD images or fi Ie marks
are copied. If "type" is F and any of the input/
output devices is a sequential-access RAD file,
"number" is 1 or it is omitted. If the number pa­
rameter is omitted, one record or file is copied.

FORM applies only if data is being copied onto
the line printer or keyboard/printer. If the FORM
parameter is omitted, single spacing of printed
output is the format. If FORM is used, the first
character of each record is used for format control
and is not printed.

size specifies the maximum number of bytes in each
record. If data is being copied to or from a
sequential-access RAD file, "size" is the maximum
logical record size and must be an even number.
If "size" is omitted, all records are read and written
in the standard record size (120 bytes). An lEaD
card wi II not be recognized by M:WRITE if an odd
byte count is specified or if a byte count of less
than four bytes is specified.

BIN if omitted, mode (BIN or EBCDIC) is deter-
mined according to byte 1 of the record. If pres­
ent, all copying is done in binary, either with
the count specified in "size" or the standard rec­
ord size (120 bytes) by default.

116 DUMP Routine

ETA specifies that the data read from the input
operational label is to be converted from EBCDIC
to ASCII before copying out to the devices speci­
fied on the! *OPlBS control command. Refer to
Appendix E for the EBCDIC -- ASCII translation
table.

ATE specifies that the data read from the input
operational label is to be converted from ASCII
to EBCDIC before copying to the devices speci­
fi-ed on the! *OPLBS control command. Refer to
Appendix E fOl" the EBCDIC -ASCII translation
table.

P specifies that a page eiect is to be performed on
all ! *OPlB line printer 'devices prior to and after
execution of the current command.

BCOPY The ! *BCOPY command causes records from
a user blocked disk fi Ie or magnetic tape to be copied on
the output device (specified on the! *QPlBS command) until
the requested number of records or a complete file has been
copied. This command allows for the case where the last
record written is a short record by setting the SR flag on
the write operation (see M:WRlTE). The form of the com­
mand is:

! *BCOPY type[, number]" size G{~~~}]

where type, number size, ETA, and ATE are defined as
for the ! *COPY command. Size must be specified equal
to or greater than the actual record size to prevent loss of
data.

VERIFY The! *VERIFY command requests comparison of
data on the X4 device with data in core (CORE option) or
with data from devices specified in the ! *QPlBS control
command. The form of the command is

! 'VERIFY fype[. number][. SiZe][m~}]

The parameters are defined as for the ! *COPY control
command.

Before the ! *VERIFY control command is issued, i tis assumed
that aU files have been repositioned, if necessary, by use
of ! *REWIND and other fi Ie positioning control commands
(described in "Control Function Commands"). The entire
verification process is completed when the number of files
or records for verification has been compared.

DUMP ROUTINE

The DUMP routine is used to dump records or files onto an
output device in either hexadecimal or EBCDIC format.

DUMP uses M:READ and M:WRITE for all input/output. If
no mode is specified for dumping, all records are dumped
according to the contents of the first byte of each record.
Any record having a first byte of X'lC', X'3C', X'9F',
X'BF', X'DF', X'FF', X'OO', or X'78' is assumed to be a
binary record containing 120 bytes, and is dumped with
each data word being represented in EBCDIC as a 4-digit
hexadecimal number. Any record that does not contain one
of these characters in its first byte is assumed to be in
EBCDIC and is dumped as such.

The user has the option to specify the byte count for paper
tape record input, since M: READ pads all EBCDIC records
with trailing blanks so that they appear to be fixed length
in memory.

The HEX option for dumping should be used to dump non­
standard binary records. The option causes all records that
are to be dumped to be read in binary and dumped with each
data word represented in EBCDIC as a four-character hexa­
decimal number. 5ince no editing is done when a binary
read is specified, NL, EOM, and ¢ are not interpreted as
editing characters. ! EOD is recognized as a file mark.

DUMP OPERATIONAL LABELS

The DUMP routine uses the following operational labels:

Label Explanation

La

UI

Output device for dumping.

Input device for dumping, unless some other
input device is specified.

DUMP OPERATING CHARACTERISTICS

If both 51 and DUMP input are assigned to the same device,
all of the control commands on the 51 device are read and
stored in memory before interpretation of the commands and
dumping of the input tape begins. When this occurs, the
message

** LD INPUT UI, ddnn
! !BEGIN WAIT

is written on the OC and DO device. The operator mounts
the input tape and enters an 5 key-in to continue.

If 51 and the tape device to be dumped are not assigned to
the same devi ce, no message is written and control com­
mands are interpreted as they are read. The DUMP control
commands are then listed on LL and dumping is performed.

CALLING DUMP

The DUMP routine is requested with the control command

(UTIlITY DUMP[,oplb]

where oplb is the operational label or device input number
of the input device. If the oplb is omitted or empty, the
operational label is set to UI.

DUM P CONTROL COMMAND

DUMP The ! *DUMP command causes records to be read
from UI and written on the La device in the specified mode
unti I an !EOD or fi Ie mark is read, or the specified number
of records has been read. The form of the command is

! *DUMP [number] Lmode] [,si ze]

where

number is a decimal integer. Only the specified
number of records is dumped. If "number" is omit­
ted, the file is dumped to an EOF or file mark. If
IInumber" is ALL, the dump is performed to double
fi Ie marks or lEaDs.

mode indicates that all records on UI, regardless
of the content of the first byte of each record, are
written on the La devi ce in the mode specifi ed.
"Mode ll is HEX for hexadecimal and EBCDIC for
EBCDIC. If omitted, the record first byte sets mode.

size specifies the maximum number of bytes to be
read in each record. If the dump "inputll is a
sequential-access RAD file, the size parameter
must be an even number. For a blocked sequential­
access file, "size" is the maximum logical record
size. If it is omitted, the standard record size is
used.

OBJECT MODULE EDITOR ROUTINE

The Object Module Editor is designed to maintain files con­
taining sets of Xerox Standard Object Language modules.
It generates or updates fi I es by i nserti ng and de I eti ng obi ect
modules according to the program name in the start module
item for each module. For each output fi Ie written, a list
of module names is printed in the order of their appearance.

Object Module Editor is also used to list files containing
object modules and to verify that the input object records
contain no checksum or sequence errors.

Object Module Editor Routine 117

A binary object module is defined os a sequence of binary
records in Standard Binary format, each of which begins
with a nonbJank name item and terminates wi tha record
whose first byte is X'9F' (END card) incfjcating that the
record contains an end item.

A set cons;stsof one or more object modules and is termi­
ooted by a file mark or IEOD. A tape may contain one or
more sets and is terminated by double file marks or !EODs.
Only one set of object modules can be contained in a
sequential-access RAD file.

Note that the Obiect Module Editor routine does not main­
tain the object modules in the System Ubrary and User
library areas on the RAO. These permanent areas are rna; n­
tai ned vi.a the RAD Editor (see Chapter B).

OBJECT MODUlE EDITOR OPERATlOIAllAlELS

The Object Module Editor uses the following operational
labels:

Label

BI

LO

UI

UO

Explanation

Device-fite from which binary object
modules are to be inserted.

Device-file for listing either UI or UO
object module names.

Input devi ce-fj Ie.

Output device-file.

OBJECT MODULE EDITOR OPERATI.G CHARACTERISnCS

Object Module Editor operates in two modes: list and
modify.

In the list mode, only UI is read. The names of the object
modules are printed on LO,and the checksum and sequence
for each record are verified. After interpreting the ! *LIST
control command, the Editor checks if any two of SIt, BI,
and UI are assigned to the some device or disk fi Ie. If so,
the message

** LD LIST VI, ddnn
! !BEG IN WAIT

is written on OC. The operator responds by preparing UI
and entering an 5 key-in. Listing of the modules proceeds.

If no two of the labels SIt, BI, or UI are assigned to the
same device, control commands are interpreted as they are
read and are written on DO. If the UI device is assigned
to a sequential-access RAD file, the Object Module Editor
leaves the list mode after reading the end-of-file.

118 Obiect Module Editor Routine

In the modify mode, any modules to be inserted are read
from the 81 device and written on UO, as indicated by the
control commands. If there are input files to be updated,
they are read from .UI. The names of aU object modules
written on UO are listed on LO. The object modules on
B1 must be in the same order in which they are to be in­
serted on UO, or Bl must be rewound before each INSERT
command. If 81 is a disk file it is rewound with each
INSERT command.

The Object Module Editor operates in the Ifprestore ll mode
(reading and storing commands before interpreting) when
the condItions shown below .cCUri otherwise, the Editor
operates dynamicaHy.

Operational labelst Assigned
to Same Device-Fi Ie

SIF 81
51, UI
81, UI
51, 81, UI

Prestored Data

51
51
Sf
51, 81

81 is never prestored if assigned to d disk file.

After entering the modify mode, the Object Module Editor
operates as follows:

If any two of the operational labels Slt,SI, and UI are as­
signed to the same device-fHe. Object Module Editor fol­
lows the steps below:

1. Interpretation of control commands begins. If any ob­
ject modules are to be inserted, and if 51 and 81 are
assigned to the same device, the 51 device is reod until
an !EOD is encountered and the message

** lD INSERTS UI, ddnn
! !BEGIN WAIT

is written on OC and DO. The operator loads the mod­
ules to be inserted on the Bf device and keys in an S ..
If SI and SI are assigned to different devices or files,
no message is written. The Editor then reads in alt the
modules on Sf until either an !EOD or any other record
with a first byte different from X'FF' or X/9P is read
from 81. Blank records are ignored.

2. If there are input files to be updated, the message

** LD INPUT UI, ddnn
! !BEGIN WAIT

is written on OC and DO. The operator must prepare
UI and enter an S key-i n.

3. The mode modification control commands are inter­
preted, causing updating or generation to proceed. Each
control command is listed on LL as it is interpreted.

tSubstitute OC for 51 if a KP key-in is in effect.

If no two of the operational labels SIt, Bl, and UI are
assigned to the same device-file, control commands from SI
are read and interpreted dynamically. Records are read
from BI and UI and written on UO in response to each mode
modification control command. Every control command is
I isted on Ll.

Object Module Editor uses M:READ and M:WRITE to perform
all input/output. Each object module is identified by the
program name stored in the start module item. No modules
with blank names are even written on the UO tape.

CALUNG OBJECT MODULE EDITOR

The Object Module Editor is requested with the control
command

(UTIlITY OMEDIT

After interpretation of the IUTILITY control command,
control is transferred to the Object Module Editor routine.
The control command and options avai lable to OMEDIT are
descri bed be low.

Object Module Editor begins reading control commands
unti I an !EOD or an ! *END is read, whi ch terminates
the input.

OBJECT MODULE EDITOR CONTROL COMMANDS

LIST The I*LIST command causes the Editor to enter the
list mode. The names of the object modules on UI are read
and listed on LO. Any checksum errors detected cause
error messages to be written on LO, but listing continues.
If the record is an !EOD, it is listed. If two consecutive
IEODs are encountered, the Editor leaves the list mode and
the next control command is interpreted. The form of the
command is

(*LIST

t
Substitute OC for SI if a K P key-in is in effect.

MODiFY The ! *MODIFY command indicates that ob­
ject modules are to be output on the UO devi ce and causes
the Editor to enter the modify mode. The modify mode ter­
minates when an !EOD command is interpreted from 51.
The form of the command is

where

GEN is an optional parameter indicating that ob-
ject modules are to be selectively input from BI
and that files are to be generated on UO. UI is
not read. The control command! *MODIFY GEN
may be followed only by ! *INSERT control com­
mands (GEN implies !*INSERT) used to define the
elements to be selectively copied from BI to UO.
No ! *DELETE control commands may be used in
the GEN mode.

INSERT must be specified if insertions from BI are
to be read. If BI and UI are assigned to the same
non-disk device, the complete BI fj Ie (up to an
!EOD) wi II be prestored. Modules can be selected
from BI by names on the ! *INSERT control com­
mands. The inserts must be in proper order. This
command is used to update (input both ! *INSERT
and! *DELETE commands) UI and to write UO.

If INSERT and GEN are omitted from the !*MODIFY
control command, only ! *DELETE control commands
may be input.

MODIFY SYSTEM RBM SYSGEN magnetic tapes or any
object module file can be rapidly and easily updated by use
of ! *MODIFY SYSTEM, a UTILITY OMEDIT control com­
mand. This command updates UI to UO with new object
modules inserted from BI. Deletion and insertion are done
in the sequence; read BI for IDENT, record back BI, delete
UIobject module with IDENT corresponding to that just read
from BI, and insert new object module from BJ. This process
continues until the specified number of fi les are updated and
written to UO. BI is rewound with this command. UI may
contain mixed EBCDIC (80 byte) and standard RBM binary
(120 by te) records.

Note: The first six records of the RBM SYSGEN system
are nonstandard binary records and are copied
automatically.

The form of the UTILITY OMEDIT control command is:

(! *MODIFY SYSTEM, n

Any number of files (n) may be copied to UO from UI with
binary object modules inserted from BI modules replacing
those containing the same IDENT from UI. All BI object

Object Module Editor Routine 119

modules are inserted until an EOF is encountered. UI is
copied to UO until n files (default = 31)are written to UO.
An additional EOF is then written to UO and return is to
RBMJCP. No! *END or !EOD control command is required.
(Note that ! *END control command will cause a monitor
CC abort.) BI must be assigned to a RAD or magnetic tape
fi Ie with an EOF terminating the object modules. Object
modules from BI must be in the order that they are encoun­
tered on UJ. Appropriate error messages followed by aUT
background abort results when errors are-detected.

INSERT The ! *1 NSE RT command causes on object mod-

RECORD EDITOR ROUTINE

The Record Editor is used for source editing by record
number from any sequential device to any other sequential
device. Record Editor provides the following capabilities;

1. Generates files containing source data.

2. lists files containing source images in addition to asso­
ciated line numbers.

3. lists selected records in a fife.

4. Modifies fifes containing source images.

ule to be inserted and is effective only in the modify mode. RECORD EDITOR OPERATIONAL lABELS
The form of the command is

('>INSERT nome, [,nome2J

where

name1 is the name (up to eight EBCDIC characters)
of the object module to be inserted.

name2 is the name (up to eight EBCDIC characters)
of the object module on UI that the nameT object
module must foHow. If name2 is omitted, the
name1 module is written following the moduJe
previously written on UO.

Modules to be inserted from BI must be in the same order as
in the INSERT control commands. If GEN is specified on
the MODIFY command, only the namel parameter in the
INSERT command is required; if a name2 is specified, it is
ignored. If BI is a disk file, it is rewound with each IN­
SERT command.

DELETE The DELETE command causes object modulesto
be deleted and is effective only in the modify mode. The
form of the command is

! *DE LETE name 1 [,narne
2

]

where

namel is the program name (up to eight EBCDIC
characters) of the first or only module on UI to be
deleted.

name2 is the program name {up to eight EBCDIC
characters} of the last module on UI to be deleted.
If absent, only one module is deleted.

The! *DELETE control command must name modules in the
same order as their occurrence on UI.

120 Record Editor Routine

The following operationaJ labefs must be assigned in oddi­
tion to the standard Utility program operational labels:

label

51
LO
UI
UO

Explanation

Input device for control commands.
Output device for listing source images.
Input device.
Output device.

Note: Substitute OC for 51 if KP key-in is in effect.

RECOil) EDITOR OPERA nNG CHARACTERlsnCS

The Record Editor routine operates in two modes: fist and
modify.

In the list mode, the Editor reods source images from UI and
I ists them on the LO device. It associates each image with
a decimal line number, starting with 1.

In the modify mode, the Editor either updates or generates
files on the UO device.

Record Editor uses M:READ and M:WRITE to perform all
input/output. Therefore, all the paper tape editing and
keyboard/printer editing that is standard to these routines
is performed.

CALLING RECORD EDITOR

The Record Editor is requested with the following control
command

(UTILITY RECEDIT

After interpretation of the !UTIlITY control command, con­
trol is transferred to Record Editor, which begins reading
controf commands.

RECORD EDITOR CONTROL COMMANDS

A command requesting either the list or modify mode must
immediately follow the !UTILITY command. All other con­
trol commands are interpreted as subcommands under each
mode.

If a binary record is read from UI, Uti lity aborts after issu­
ing the following message on OC and DO:

** MODE ERR UI, device

LIST The ! *LIST command (list mode) causes the previous
mode to terminate. The source fi les are read from UI and
listed on LO. Each EBCDIC source image is listed along
with an associated line number up to and including the
first !EOD source image or file mark read. After the
required number of fi les has been listed, another control
command is read. Each ! *LIST control command, file
mark, or !EOD causes the line numbering to restart with 1.
The form of the command is

('LIST [number]

where number indicates the number of files to list. Listing con­
tinues until two consecutive !EODs are encountered or the
specified number of files is I isted. If "number" isomitted, one
file is listed. If number is zero, the from/to parameters form
limitpairs that define inclusi vely the records to be listed from
the current file. Limit pairs must be in ascending order,
except that two equal pairs causeonlyone record to be listed.

A ! *MODIFY, ! *END, or !EOD control command causes
the list mode to terminate.

MODIFY The !*MODIFY command informs the Record
Editor that fi les are to be either generated or updated. It
terminates the previous mode and initiates the modify mode.
The form of the command is

('MODIFY [UST][, GEN]

where

LIST indicates that a listing of records deleted or
inserted will be produced on LO. If LIST is the
only parameter used, the listing wi II contain the
UI line numbers (the number deleted or the num­
ber preceding the one inserted). If GEN is also
present, the UO line numbers will be listed.

GEN i ndi cates that records are to be read from SI
(there is no input on UI) and written on UO. If
updating is to be performed (that is, there is input
to be read from UI), the parameter field is left empty.

The modify mode is terminated whenever a ! *LI5T,
! *MODIFY, ! *END, or ! EOD control command is input
from 51. When the modify mode is terminated and GEN is
specified, an !EOD or file mark is written on UO. When
the modify mode is terminated and GEN is not specified,
the remaining source images of the file on UI (until an EOD
is encountered) are written on UO, followed by an EOD or
file mark.

DELETE The ! *DE LETE command causes the indi cated
record source images to be deleted and is effective only in
the modify mode. The form of the command is

! *DELETE number 1 [, number 2]

where

numbeq is the line number of the first (or only)
source image to be deleted.

number2 is the line number of the last source image
to be deleted.

INSERT The ! *INSERT command causes record source
images from 51 to be added to UI and written onto UO, and
is effective only in the modify mode. The form of the com­
mand is

«INSERT number

where number is the line number that the insertions are to
follow. If a line number of 0 (zero) is used, the insertions
wi II precede the fi rst Ii ne.

Every source image on 51 following the! *INSERT control
command is inserted unti I a new Record Editor control com­
mand is encountered.

CHANGE The! *CHANGE command causes the indicated
source images to be deleted, and the source images fol­
lowing the CHAN GE command to be written on UO. The
command is effective only in the modify mode. The form
of the command is

! *CHAN GE number 1 [, number 2]

where

numbeq is the line number of the first source image
to be deleted.

number2 is the 1ine number of the last source image
to be deleted. If omitted, only one source image
will be deleted.

Following the !*CHANGE control command, every source
image on SI is inserted until another Record Editor control
command is encountered.

Record Editor Routine 121

SEQUENCE EDITOR ROUTINE

The Sequence Editor edits EBCDIC card images by sequence
number. It is more flexible than the Record Editor in that
multiple programs or sections of programs may be updated
and sequenced individually within single or multiple files.
It provides greater protection from updating in an incorrect
sequence, or from accidentally updating the wrong program.
Another feature of the Sequence Editor routine -is that update
card images may be inserted without changing the existing
sequence numbers. Thus, update decks may be cumulative
and wi II reflect the development of a source program.

The Sequence Editor is primari Iy intended for installations
where EBCDIC source programs are kept on magneti c tape.
It is somewhat impractical for paper-tape-oriented systems
or systems without a line printer.

Editing is accomplished bydesignating columns 73 through 80
of a source card image as the "sequence field". This field
consists of two parts, the ident and the sequence number.

The optional ident is that portion of the sequence field that
uniquely identifies a program or program segment. If de­
fined, the ident begins in column 73 of the card image and
is from one to six alphanumeric characters in length.

The required sequence number is that portion of the sequence
field Hiat is sequenced numerically. It consists of from two
through eight decimal characters and ends in column 80 of
the card image. The user can specify the value by which
successive sequence numbers are incremented. In general,
a large sequence increment will allow larger insertions
without affecting the existing sequence numbers.

Together, the ident and sequence number must not total
more than ei ght characters. Any unused columns wi" be
between the i dent and the sequence number and wi II be
ignored by the Sequence Edi tor.

SEQUENCE EDITOR OPERATIONAL LABELS

The following operational labels are used by the Sequence
Editor routine:

Label

SI

LO

Explanation

Update data (includes card images and con­
trol commands). Not effected by KP key-in.

Annotated listing of added and deleted
card images.

UI Input devi ceo

UO Output device.

Device, above, refers to any permanent storage device such
as magneti c tape, paper tape, or RAD (single sequential
file). Note that LOshouJd not be assigned to the keyboard/
printer, because the sequence number portion of the print­
out is truncated on that device.

122 Sequence Editor Routine

SEQUENCE EDITOR OPERATING CHARACTERISTICS

The Sequence Editor performs two separate and distinct
functions: generates files on UO from source images input
on UI and updates fi les from UI onto UO, taki ng updates
from SI. Only one of these functions can be performed per
call to the Sequence Editor (SEQEDIT).

The file generation (GEN) function is used to create the
permanent files initially. It is required that files be se­
quenced as they are generated. The user can generate one
file (terminated by a file mark) wherein a single file mark
is written on UO, or multiple fi les {terminated by two file
marks} wherein two fi Ie marks are written onto UO and UO
is backspaced one file.

The update function is used to update UIbyreplacing, delet­
ing, or inserting card images from SI and writing the updated
files onto UO. The files can be resequenced as they are
written. The user can update one fi Ie (terminated by on EOF
from UI) wherein an EOF is written onto UO, or all files
(terminated by logical end-of-tape or two EOFs from UI)
wherein two file marks are written on UO and UO is back­
spaced one file. With theALLoption, it is not necessary to
update each file, but all files will be copied onto UO.

Sequencing is a separate operation in that the card images
are sequenced as they are written on UO. Thus, it is possible
to update an existing file by identand sequence number while
placing a new ident and sequence number on the update fi Ie.

CALLING SEQUENCE EDITOR

The Sequence Editor is requested via the control command

! UTILITY SEQEDIT, [GEN][,IGN][,AU]

where

GEN indicates that output files are being gener-
ated on the UO device and that there are no input
fi I es to be updated.

IGN in update mode indicates that UI sequence
errors are to be ignored if UI is being updated. If
IGN is used, no sequence error messages are
printed.

In GEN mode, IGN indicates thatUO isnot listed.

ALL indicates that the function is to continue unti I
two EOFs are encountered from UI.

The leading comma must be specified.

The Program Executive transfers control to the Sequence
Editor, which interprets and validates the parameters. If
illegal parameters are input, the Uti lity program aborts with
a code of UI. If this is an update (the GEN option was not
specified), the following message is output on OC and DO.

** LD INPUT UI, ddnn
!! BEGIN WAIT (if attend mode only)

SEQUENCE EDITOR GENERATE CONTROL COMMAND

SEQUENCE The ! *SEQUENCE command is used to
sequence columns 73 through 80 of the card images on UO.
Only one file can be sequenced with each! *SEQUENCE
command. The form of the command is

!*SEQUENCE sequence field, increment

where

sequence field contains the sequence number of the
first sequenced card image to be written on the
output tape.

increment is the sequencing increment number. If
omitted, an increment of 10 is used. It is the re­
sponsibi lity of the user to ensure that the sequence
number does not get incremented past the size of
the sequence number field. No warning is issued
if this overlap occurs.

SEQUENCE EDITOR UPDATE CONTROL COMMANDS

IDENT The! *IDE NT command defi nes the breakdown
of the sequence field into the ident and the sequence num­
ber. It applies to card images from UI and SI only. If used,
it should precede the update cards to which it applies. If
omitted, the ident field is considered empty and the se­
quence number is eight characters in length. The! *IDENT
control command is used whenever it is necessary for the
Sequence Editor to know the size and content of the ident
field (that is, when UI contains multi program fi les or single­
program files with nondecimal characters in the sequence
field). It is not to be used when files are being generated.
The form of the command is

! *IDENT [identJ[,sequence-number]

where

ident is an integer n 1 (0 $ n1 $ 6) that specifies
the number of characters in the ident subset of the
sequence field starting from column 73. If tlident tl

is omitted, the ident field does not exist.

sequence-number is an integer n2 (2 $ n2 :S 8) that
specifies the number of characters in the sequence
number subset of the sequence field ending in
column 80. If omitted, sequence number is set
equal to the difference (8 - ident).

The user should note that if a nonzero ident field has been
speCified on an ! *IDENT command, the idents on each card
image from UI must match exactly or resequenci ng wi II be
suspended when the first nonmatching ident is encountered.
Hence, if UI is known to have nonmatching idents (for ex­
ample, a fi Ie that has never been sequenced or one that has
been updated and contai ns some blank sequence fields), a
separate sequence operation should be performed (without
a simultaneous update) specifying an empty ident field.

Replacement. The update card itself, rather than a control
command, is used to replace a card image from UI. The
sequence number on the update card must equal the sequence
number on the UI card image to be replaced. The card im­
age for UI and the message tlDELETED tI

, followed by the
card image from SI and the message tlINSERTEDti are output
on lO.

Insert. The update card itself, rather than a control
command, is used to insert a card image on UO. The se­
quence number on the update card must be between the
sequence number of the two continuous UI card images
where the update card is to be inserted. The card image
from SI and the message tlINSERTEDti are output on LO.
Cards without sequence numbers are inserted immediately
following the sequenced card preceding them. Thus, a
large block of card images can be inserted by placing the
proper sequence number on the first card only. The nonse­
quenced cards will be written on the output tape without
sequence numbers. It is recommended that the tape be re­
sequenced as it is being updated if unsequenced cards are
inserted.

DELETE The !*DElETE command deletes one or more
card images from UI. Nonsequenced cards can only be de­
leted by deleting from the last sequenced card preceding
the nonsequenced card(s) up to and including the next se­
quenced card. Deleted card images are listed on lO. The
form of the command is

73 80

! *DELETE [sequence field
2
J sequence field

1

where

sequence field2 indicates that the images are to be
deleted from the ident and/or sequence number in
sequence field 1 up to and including the ident and/
or sequence number in sequence fieJd2.

sequence field 1 contains the ident and/or sequence
number of the first or only card image to be de­
leted from UI. This parameter is required.

SUPPRESS The! *SUPPRESS command is identical to the
! *DELETE control command except that no deletion and
images are listed on LO. The form of the command

73 80

! *SUPPRESS [sequence field21 sequence field
1

Sequence Editor Routine 123

SEQUENCE The ! *SEQUENCE command is used to
resequence columns 73 through 80 of the card images on
UO. Only one program can be resequenced with each
! *SEQUENCE command. Therefore, resequencing is sus­
pended when either a file mark or a card image with a
sequence number identifying a new program is written on
the output tape. Resequencing is also suspended when
another !*SEQUENCE command is executed; therefore,
parts of a program as weI I as entire programs can be rese­
quenced. The form of the command is

73 80

! *SEQUENCE seq. field
2

,increment seq.field
1

where

sequence field2 contains the ident and/or sequence
number of the first resequenced card image to be
written on the output tape and does not neces­
sarily have the same fields as defined in the
! *IDE NT command. (The! *IDE NT command
defines sequence fields for the input tape and
update data only.) If omitted, resequencing is
suspended.

increment is the resequencing increment number.
If omitted, an increment of 10 is used. It is the

124 Utility Error Messages

respons ibil ity of the user to ensure that the
sequence number does not get incremented past the
size of the sequence number field. No warning
is issued if this overlap occurs.

sequence field 1 contains the ident and/or sequence
number from UIatwhich'the ! *SEQUENCE command
becomes effective. If omitted, the! *SEQUENCE
next card image to be written on UO.

UTILITY ERROR MESSAGES

Table D-5 of Appendix D lists the error messages issued by
the Utility Subsystem. Unless otherwise noted, the follow­
ing definitions apply in these messages:

Code Explanation

oplb Operational label of the device.

device Device type or physical device number.

The operator response to a !! BE GI N WAIT message on OC
may be any valid, appropriate, RBM unsolicited key-in,
such as S to continue processing, or X to abort job. Other
appropriate key-in may precede an S key-in if desired.
The ! !BEGIN WAIT message is used only if attend mode
is in effect.

10. PREPARING THE PROGRAM DECK

The following examples show some of the ways program
decks may be prepared for RBM operati on. Unl ess stated
otherwise, standard default cases for device assignments
are assumed.

EXTENDED SYMBOL EXAMPLES

ASSEMBLE SOURCE PROGRAM. LISTING OUTPUT

AND BINARY OUTPUT

In this example, the symbolic input is received from the
51 device (always defaulted), the binary output is received
on the BO device, and the listed output is received on the
LO device. Note that although BO and LO are normally
default cases, they must be specified if output to the GO
file (also a default) is not desired.

ASSEMBLE IN BATCH MODE. LISTING OUTPUT AND

BINARY 0 UTPUT WITH SYMBOL CROSS-REFERENCE

In this example, the source decks are assembled in batch
mode (BA). In this mode, successive assemblies may be
performed with a single lXSYMBOL command until a
double !EOD command is encountered. The parameters
defined on the ! XSYMBOL command wi II hold true for
each assembly in the batch. Each assembly will be fol­
lowed by a Symbol cross-reference (CR).

ASSEMBLE. LOAD. AND GO fROM USER DEFINED
OV FILE. LISTING OUTPUT

!ASSIGN OV=USEROV,UP

In this example, the user is defining his own OV file
through a call to the RAD Editor. After assembly, the OV
file is assigned to the user defined file. The call to the
Overlay Loader (IOLOAD) causes it to load the module
defined on the !$ROOT command to the USEROV file for
execution. The advantage to assigning the program to a
user-defined OV file rather than using the RBMOV fi Ie is
that the program can be loaded into core for execution
repeatedly without reassembly. Conversely, the contents
of RBMOV cannot be guaranteed to be saved from one job
to another.

Preparing the Program Deck 125

!OlOAD

ASSEMBLE SOURCE PROGRAM.
umlG OUTPUT. lOAD AND 60

In this example, the binary object module is loaded into
the RBMGO file located in the System Data area. The call
to the Overlay loader (! OlOAD) causes it to load the mod­
ule definedon the !$R09T command to the RBMOV.file for
execut~on. The double comma o~ the !$ROOT command
informs the loader that the temp, exJoc parameter options
are defaulted.

BASIC FORTRAN IV EXAMPLES

COMPILE MUL nPLE PROGRAMS

126 Basic FORTRAN IV Examples

In this example, output to the GO fi Ie is not desired in the
first iob, so the GO oplb must be assigned to 0 (see Appen­
dix E and !ASSIGN comr'nand writeup in Chapter 2) •. An
obiect listing is desired (LO) and ext~nded precision real
data is specified.

The second iob will receive a source listing by default and
extended precision real data is again specHied. Since the
parameters are different on the two !FORTRAN control
commands, the iobs cannot be run in batch mode.

COMPILE. umNG OUTPUT. tOAD AND GO

In this example, the !ATTEND command specifies that
the Monitor is to go into a "wait" state instead of
aborting the iob in case of irrecoverable error (gener­
ally recommended for "load and go" iobs). Binary out­
put will be received on both the BO and GO devices
by default, and standard precision mode is also assumed
by default. The binary object module is loaded into
the RBMGO file located in the System Data area.

The call to Overlay loader (!OlOAD) causes it to
load the module defined on the !$ROOT command to
the RBMOV file for execution. The double comma on
the! $ROOT command informs the loader that the temp,
exloc parameter options are defaulted. The loader is

requested to output a LONG map (!$ML). The !XEQ
command causes the executable program to process the
data deck.

COMPILE AND EXECUTE FOREGROUND PROGRAM

This example would be used for debugging purposes only.

In this example, binary output to the BO device is
suppressed. The !FORTRAN control command specifies
that the binary output is to be received on the GO file
by default and standard precision mode is assumed. The
! PAUSE command permits the operator to key in FG, S
to access protected foreground memory. The program is
defined to the Overlay Loader as a foreground program
(!OLOAD, F) and the COMMON base is set to the
FWA of the background. The Loader is to create the
Task Control Block, the first two words of which are
defined on the !$TCB command. These two words spe­
cify that the task is to be connected to interrupt loca­
tion X1 10DI (Intergral interrupt number 2, priority level 8,
within group 0).

The ! $ROOT command specifies that the root is to be
loaded from the GO file, and will start execution at
location 1800 in foreground memory. The core image
form of the program is loaded on the OV file (RBMOV).
The !XEQ command loads the executable program into
core. When loaded, the task is armed, enabled, and
then triggered.

SEGMENTED PROGRAM EXAMPLES

ASSEMBLE SEGMENTED BACKGROUND PROGRAM,
LOAD AND GO

seg 1

Root (seg 0) seg 2

seg 3

!$SEG 1,0,GO, 1

Given fhe program tree structure shown above, the sample
deck setup illustrates a background program with a root and
three overlay segments. These are assembled and loaded
into the RBMGO file. The !OLOAD command specifies
that these three segments are to be loaded, and defines it

Segmented Program Examples 127

as a bo.ckground program (8). The $SEG commands specify
that segments- 1 through 3 are attached to the root, and the
modules are to be loaded from the RBMGO file to the
RBMOV file for subsequent loading into core for execution.
A load mop is output (! $MP).

LOAD AID EXECUTE MUl nPLE OBJECT MODULES

seg 4
I
I

segl

,Root seg 5
I

I I

seg 2
J

•
seg3

..I
I

128 RAD Editor Examples

Given the sample program tree structure shown above, the
illustrated deck would load and execute the segmented
program. The program is loaded from either the device or
fi Ie assigned to the Bl operational label. No load map is
requested (an !$Ml, !$MS, or !$MP comnxmd could be
inserted after the !OlOAD command if 0 map was desired).
Although the segments could be loaded in any order, the
proper carling sequence is the responsibility of the user.

RAD EDITOR EXAMPLES

BUILD PUBLIC UBRARY

The Public library is core resident. In this example, the
user must create two RAD files to set up the Public library:
the lIBSYM file and the PUBLIB fi Ie. The LIBSYM fife
contains the Symbol Table for the Public Library and is used
by the Overlay loader to satisfy references to the Public
library. The PUBLIB file contains the Public Library and
is booted in with RBM. (R8M must be rebooted to lood the
updated Public library.)

LOAD ROUTINES IN USER LIBRARY

In this example, the User Library requires the following
six files to be allocated in the User Library area (UL):
MODIR, EBCDIC, EDFRF, BDFRF, MDFRF, and MODULE.
The !#LADD command enters the routines into the defined
four files, depending on the I ibrary code parameter on the
!#LADD command: Basic (B), Main (M), or Extended (E).
The same basic method is used to set up the System Library.

UTILITY EXAMPLE

CREATE A CONTROL COMMAND FILE

In this example, the job stream will create the compressed
file CCFILE in the User Data area. Control commands will
be read from the SI device into fi Ie CCFILE. The job
stream on CCFILE may now be executed by assigning
CC = CCFILE, UD. Note that CCFILE must not have a
!JOB command on its first entry, since this would imme­
diately transfer CC back to the SYSGEN assignment. How-
ever, it is often convenient to end the control command
file with a !JOB command to initiate a return to the
SYSGEN assignment.

t A !JOB command must not be the first card in the control
command deck; !JOBC is permissible.

Utj IHy Example 129

11. SYSTEM STARTUP

The startup of an established RBM system (that is, subsequent
to system-generation time) is normally performed either by
"bootingfl from a self-loading 'system-save tape', or by
booting directly from the system diskt if the Jatter has not
been disturbed (e.g., used for another purpose) since the
previous shutdown of the system. As part of this startup
process, updating of the public library and the resident
foreground can be achieved, as well as absolute system
patching appJied to both core and RAD images.

Other forms of initial system fooding and system updating
are described in the RBM/SM Reference Manual, 90 30 36.

SYSTEM SAVE TAPE

A system save tape is produced by assigning operational
label BO to magnetic tape and using the #SAVE function of
the RAD Edifor, omitting the FILE parameter, while the
system is in an operationaJ state (e.g., prior to shutting
down). All RAD and/or disk pack areas necessary to sub­
sequent system operation should be specified to be saved.
The tape will contain a first block bootstrap routine, a
restore program, and the saved disk areas. After the restor­
ation of the system disk image, the restore program auto­
maticalfy initiates an RBM boot from the system disk device.

The restore program issues the following message:

RESTORING VERSION xx OF mm/dd/yy hrmn

As each area is restored, the message

RESTORING area TO dn (dn = device number)

is issued, unless DATA switch 2 is up. If the area is the
first area being restored to a disk pack or cartridge disk,
the message

IDLE, RUN TO WRITE

is issued. If it is permissible to write on the indicated de­
vice, the operator must move the COMPUTE switch to IDLE
and back to RU N in order to conti nue.

If an end-of-tape condition is sensed, the restore program
will rewind the tape off-line (i .e., set it to the manual
mode), output the message

MOUNT NEXT REEL

t RAD or disk pack.

130 System Startup

and attempt to read the orig ina I tape device number. The
restore operation will continue when the next reel is
mounted and the tape drive is placed in the automatic mode
(by pressing START on the tape drive control panef)O'

Tab Je 20 I ists the error messages that may be output whi Ie
restoring the system to the RAD/disk.

Table20. Save-Tape Restore Error Messages

Operator
Message Restore Program Action Action

..

WRITE PRO RAD Keep try ing to perform Reset RAD
write operation. write-

protect
switches.

SEQ ERR Keep try i ng to read Restart or
the tape successfu I'y. abortt.

CHECK WRITE Keep trying to per- Restart or
ERR form write/check- abortt.

write operation.

CHSM ERR Keep trying to read Restart or
the tape successfu II y • abortt.

TAPE TRANS. Keep try i ng to read Restart or
ERROR the tape successfu I'y. aborttO'

RAD TRANS. Keep trying to per- Restart or
ERROR form write operation. aborttO'

tTo restart, rewind tape and reboot; to abort, activate
PCP interrupt which causes loading of the current area
to be abandoned. Folfowing the abort, the tape is
searched for the next area to be restored.

RBM BOOT PROCEDURE

The RBM boot procedure is essentially the same whether the
system is loaded directly from the system disk or from a self­
loading save tape (of the form described above) via the disk.
The principal difference is that in the former case a standard
hardware-load operation is initiated from the system-disk
device; in the latter case, from the tape drive on which the
save tape is mounted (the subsequent load from disk is auto­
matic). In either case the actual boot process is effected
by the loading to memory and execution of the RBM boot­
strap record.

The RBM bootstrap wi II initially move itself to high core and
then read in RBM from the system processor area of the RAD.
The information necessary to read in RBM is contained in

the bootstrap and is supplied at system generation time
when the bootstrap is written on the RAD. After the resi­
dent portion of RBM is loaded, control is transferred to an­
other bootstrap that loads the remainder of the RAD. This
second bootstrap functions in the overlay region of the RBM.

The second bootstrap initially inputs the Transfer Vector
Table to complete the loading of the resident portion of
RBM. Next, if DATA switch 4 is not set, an attempt is
made to assign an operational label to the PUBLIB file in
the user processor area. If a Publ ic Library is present, the
assignment will be made and the bootstrap then inputs the
Public Library. If DATA switch 4 is set, the Publ ic library
will not be loaded. After the Publ ic Library is processed,
a Hex Corrector patching routine (see below) will be acti­
vated if DATA switch 1 is set. If DATA switch 3 is not set,
the bootstrap then searches the SP, UP, and FP area direc­
tories (in that order) for all files flagged as a resident fore­
ground file. All such files are loaded one at a time as they
are encountered in the file directory and their initializatjon
routine is executed if one exists. The initial ization routine
can do any required housekeeping (such as repositioning all
appropriate fi les), arm and enable the appropriate interrupts,
and then return control to bootstrap. (The initial ization
routine is linked by an RCPYI P, L instruction.) It expects
to have control returned to the address in the L register.
Hence, the bootstrap wi II read in the resident foreground
programs one by one and execute any in itia lization routine
unless DATA switch 3 is set.

The system is then completely loaded and the bootstrap sets
the protection registers, outputs the following messages (if
DATA switch 2 is not set), and enters a wait state:

! !AFTER I WAIT I SET PROTECT

! !SET PARITY

!! KEY-IN lSI TO BEGIN

If the computer enters a "wait .. state before the above mes­
sages are output, the bootstrap was not successful in loading
the required data. This would usually be caused either by
a parity error while reading the RAD or by a faulty fore­
ground program.

Note that if the above messages are inhibited by setting
DATA switch 2 prior to execution of the boot, the opera­
tionsindicated by the messages should still be performed,
however, in order to ensure system integrity.

PUBLIC LIBRARY CREATION OR UPDATING

The Public Library can be created and thereafter can be
completely regenerated any time the user desires. A file
with the name PUBLIB will have to be defined via the RAD
Editor in the User Processor area for the Public Library, and
a file named UBSYM must be defined in the System Data
area of the RAD. The relocatable binary decks of all rou­
tines to be specified as being in the Pub lic Library are
loaded by the Overlay Loader (via the! $PUBLIB control
command) and an absolute core image version is written by
the Overlay Loader on the RAD fi Ie defined as PUBUB.

Before executing the Overlay Loader, the operator must
key in SY so that the Loader can write in a protected RAD
file.

When a Public Library is successfully loaded, additional up­
dating of RAD files will be done by the Overlay Loader.
The Public Library Transfer Vector Table will be input from
the RAD and either created (for an initial load) or updated
for succeeding loads. This process consists of linking each
Public Library definition (DEF) in the Symbol Table to a
transfer vector and linking the transfer vector to the value
of the DEF. When the I inkage is completed, the Overlay
Loader writes the new Public Library Symbol Table into a
previously defined file (called UBSYM) in the system data
area of RAD. For an initial load, this file will be previ­
ously defined, via the RAD Editor, with the name LIBSYM.
The new Transfer Vector Table is then written on the RAD
(replacing the previous one), and the Loader exits to
M:TERM. (Note that RBM must be rebooted from the RAD
in order to load the Public Library into core memory.) The
Public Library should not be loaded into core (by rebooting
the system from the RAD) unti I the user has reloaded all
foreground and background routines that use the Public
library.

RESIDENT FOREGROUND CREATION OR UPDATING

Resident foreground program files must be defined via the
RAD Editor. These files may be in the System Processor (SP),
User Processor (UP), or Foreground Program (FP) area of the
RAD. Also, the parameter (RF) on the !#ADD command
specifying that this is a resident foreground file will have
to be set. One RAD file can be defined for each fore­
ground program, thus allowing an update to be done on a
program basis as opposed to the entire resident foreground
area. The Overlay Loader reads in a relocatable binary
deck of each foreground program and creates an absolute
core image version of the program in its predefined RAD
fi Ie. Foreground programs assembled as absolute sections
must be loaded with an ABS control command. Prior to ex­
ecuting the Overlay Loader, the user may key in SY to
specify that the protected RAD files can be written on.

For an update, only those programs being modified need be
reloaded. However, if a program exceeds its allocated core
space, other programs must be reloaded and relocated at a
new absolute address in a different area of core.

The Overlay Loader (or the Absolute Loader) will store in
the first sector of each file the appropriate header informa­
tion that the RBM bootstrap needs to load and initialize each
foreground program. The information needed by the boot­
strap consists of the following items:

1 • Load address.

2. Number of bytes in program.

3. Entry address of initialization routine (if present).

If no initial ization routine is specified, the RBM bootstrap
will initialize the taskls interrupt level from information in

RBM Boot Procedure 131

the TeB. The task may also be triggered at this point if
the TCB so specifies.

After a resident foreground program is created on the RAD
and is Ragged for automatic boot-time loading in its file­
directory entry, it is brought into core by manually reboot­
ing the system from the RAD. It can also be brought into
memory by inputting a !processor or !XEQ command with
oplabel OVassigned to its RAD file.

SYSTEM PATCHING

Patches to the Monitor or Public library may be loaded at
boot time if DATA switch 1 is set. Monitor patches will
also be written to the RAD, thus ensuring a permanent
change to all future boots. All patch cards have the form

aaaa,cccc 1 &cccc
2
,cccc n][*comments]

where

aaaa is the first (or only) absolute core memory lo-
cation to be modified.

CCCCi are the desired (hexadecimal) contents of
aaaa and the following n-1 locations.

Patches may also be loaded dynamically to user program
(or the Monitor) in either of two ways.

1 . Fa I low i ng a HEX contro I command.

2. Following an unconditional H key-in.

132 System Patchi ng

All patch decks are terminated by an EODcontrol command.
To patch relative to the start of program modules, a bias
card may be used. Its form is

{

bbbb I
+ ID{~~}

where

bbbb is the bias (foad origin of the program) and
the following correctors are loaded relative to
that location.

PA means that the foJlowing patches are to be
loaded relative to the RBM Patch Area.

xx is an RBM overlay ID; thus the corrections fol-
lowing the bias card are loaded relative to the
over lay base.

Note: All patches at boot time to the monitor or a monitor
overlay will be written to the RAD. At other times,
three cells of the RBM Patch Area are needed for
each overlay patch. The overlay length is a Iso ex­
panded to the next sector boundary (or maximum of
512 words) to allow use of the end of the overlay as
a dynami c patch area.

Any value on a patch card preceded by an R (Rcccci) will
have the current bias added to it. Any value on a patch
card preceded by a P (PCCCCi) wi" have the bias of the RBM
Patch Area added to it. Any value on a patch card preceded
by an 0 (Occcci) wi 1/ have the bias of the RBM overlay area
added to it. Any value on a patch card preceded by a
J (JccCCi) will have the bias of the JCP added to it.

The programmer must not modify the first and last cells of
the Patch Area, as the first contains the length of the Patch
Area and the last contains the number of temporary RBM
overlay patches. As mentioned previously, three words of
the Patch Area are needed for each overlay patch, taken
from the top of the Patch Area downward. When an RBM
overlay is read into core, the Patch Area is searched for
patches for that overlay. If any are found, they are ap­
plied before control is passed to the overlay.

12. DEBUG

INTRODUCTION

This chapter describes the use of Debug and its interface
with RBM.

GENERAL DESCRIPTION

The RBM Debug package is a debugging tool primarily de­
signed for nonoverlaid background programs, with limited
faci I ity for foreground programs. It provides the user with
the following capabilities:

1. To transfer control to the control device from a speci­
fied location in the user's program or through the Con­
trol Panel Interrupt.

2. To dump selected core and registers on the keyboard/
printer or the line printer.

3. To modify memory locations and registers.

4. To logically insert code at specified memory locations.

5. To begin or continue execution at a specified memory
location (i.e., selective execution).

6. To perform conditional memory dumps (snapshots) of
registers and selected core locations at a specified
location and optionally transfer control to the con­
trol device.

7. To step through a program.

FOREGROUND USER'S DEBUG CAPABILITY

Debug can be used to aid the checkout of a foreground pro­
gram operating at priority levels lower than the Control
Panel Interrupt level. To accompl ish this, Debug is moved
to the Control Panel Interrupt level, where it may be di­
rectlyentered by pressing the Control Panel Interrupt switch.
The Control Task remains at the lowest interrupt level.
Key-ins requesting Control Task functions may be made by
typing a "slash" (/) followed by NEW LINE (9) in re­
sponse to the DKEYIN message. 5napshotsmay be placed
in all tasks whose interrupt level is lower than the Control
Panel Task.

OVERlAY USER RESTRICTIONS

When a snapshot is inserted in a currently resident seg­
ment using a Debug control command, the snapshot is
val id only until the segment is overlaid, since Debug
operates only at execution time on resident programs.
This problem is reduced by allowing the user to assem­
ble Debug calls into his program.

RBM AND FOREGROUND USER'S INTERFACE

Debug is normally a subtask of the RBM Control Task with
a priority just below the IDLE subtask. Debug is triggered
by any of the three resident Monitor routines (D:5 NAP I
D:KEY, or D:CARD), by the KEYIN subtask, or by the Job
Control Processor (JCP). JCP triggers Debug when it re­
ceives an XED command, and the system loader transfers
control via D:KEY. When a foreground user wishes to use
Debug, he gives control to Debug by an !XED card or by
an unsolicited key-in of DE. After Debug has control, the
foreground user moves Debug to the Control Panel Task level
with a Define command. After debugging, the foreground
user issues the Debug command Q which restores Debug to
its original level.

MEMORY REQUIREMENT AND iNSERTION
BLOCK DEFINITION

The executive portion of Debug is a foreground program that
may be resident or nonresident. If the program is resident,
it must be so specified when the Debug file is created with
the RAD Editor. It is read into core when RBM is booted.
If the program is nonresident, it is loaded I ike any other
foreground program (see Chapter 6). Debug has the follow-
i ng core memory requi rements:

1. Executive

2. Zero table

3. Overlays

4. Insertion block

440 locations

35 locations

RBM overlay space

User-defi ned

The insertion block is an area of core that stores user­
inserted code, and the zero table cells are used to refer­
ence these insertions (see Appendix C).

DEBUG CONTROL

Control can be given to Debug in the following ways:

1. A di rect ca II to Debug.

2. The execution of a snapshot.

3. An unsoticited key-in of DE.

4. The Debug execution card (! XED).

5. Control Panel Interrupt (see Foreground Capabi lity,
above).

A direct calion Debug is a user-coded 'request for Debug to
read a command. The call has the form

RCPY-I

B

P,A

D:KEY or D:CARD

Debug 133

When the entry is D:KEY, Debug prints the message

!!OKEYIN

A Debug command will then be read from the proper device­
file number assigned at SYSGEN.

Note that after the initial direct call on Debug a foreground
task will have to exit in order to move Debug to a higher
interrupt.

D:KEY, D:CARD, D:SNAP (snapshot) are small reentrant
routines that actually trigger Debvg. An unsolicited key-in
during Debug will not harm the user's environment. The
lXED command performs the some function as the lXEQ
command except that Debug is called via D:KEY before
executi ng the user's program.

DEBUG COMMANDS

After Debug has control, it interprets the following
commands:

Code

D

S

X

R

T

P

C

K

M

B

E

Function

Define

Logically insert code

Insert snapshot

Step (move) snapshot

Remove snapshot or insertion

Perform selective dump on keyboard/
printer and Debug output device

Perform selecti ve dump on Debug output
device

Set Debug input device to the card reader

Set Debug input device to the keyboard/
printer

Modify memory

Branch (i.e., return control to program)

Exit from interrupt level

Q Terminate'Debug

G Global symbol table pointer

Debug uses M:READ and M:WRITE for input/output; and
hence the keyboard character NEW LINE terminates a line,
EOM deletes a line, and cent (¢') deletes the previous
character. Debug interprets the semicolon character (;)
(if not in the message field of a snapshot) as a continua­
tion character. The semicolon will terminate the I ine {or
card and continue the command to the next line (or card).
Blanks are ignored except within the message field of a
snapshot.

134 Debug Commands

Most Debug commands specify registers and memory loca­
tions. Registers are specified as follows:

RP Program address register

RL Link address register

RT Temporary register

RB Bose address register

RX Index register

RE Extended accumulator

RA Accumulator

RR AI I of the above

Locations are specified in one of the following forms:

1. One to four hexadecimal digits.

2. SNAME, where NAME is an IDNT and its value is the
load origin of such module. The Overlay Loader D
option must be invoked if the user is to use fDNT names
with Debug.

3. Sums or differences of values of either of the above two
forms.

Examples:

A14
SSQRT
ABC+SSUB1+1492
$SUB 1 - SSUB2

If the SNAME option is invoked, the user must define an in­
sertion block (see the Debug Define command, below), and
the last K:BLOCK words of the insertion block are used as
a buffer for the IDNT names.

o (Define)

The Define command is used to define an insertion block
when the Debug commands S or I or the SNAME option is to
be used.

The form of the Defi ne command is

(D [start ,end] [.CP]

where

start is the memory location of the first cell of the
insertion block.

end is the memory location of the last cell of the
insertion block.

CP is an optional request to move Debug to the
Control Panel Interrupt level. The default level
is the RBM Control Task level. An unsolicited
key-in of FG must be in effect when the level is
specified.

{Insert)

The Insert command designates the insertion of one or more
instructions logically before (lB), after (IA), or replacing
OR) the instruction at the designated location (Ioc).

The form of the Insert command is

loc,inst 1" .• ,inst
n

where

IB designates Insert Before

IA designates Insert After

IR designates Insert Replace

The instructions may be designated in one of the following
forms:

1. op*loc

where op isa two-digit hexadecimal value representing
the operation code and address modification. The sec-
0nd digit (i. e., address modification) must be one of
the following:

o
2

4

designating direct addressing

designating indexing

designating indirect addressing

6 designating indirect addressing and indexing

This instruction form rei ieves the user of creating the
actual address structure for Sigma 2/3. It does not apply
to the conditional branch instruction (operation code
6) nor to the register copy instructions (operation
code 7). Debug will actually expand an instruction
designated in this form into more than one instruction'
for example, 82* 1492 will expand into '

8E02
4802
1492

LOA
B
DATA

*$+2, 1
$+2
X' 1492 1

See "Debug Expansion of Instructions", later in this
chapter, for a description of the expansions.

2. 6x*loc

where x designates the desired conditional branch;
for example, 6E*1492 desig.nates a BAN 1492 and will
expand into

6E02
4803
4COl
1492

BAN
B
B
DATA

$+2
$+3
*$+1
X'1492 1

See "Debug Expansion of Instructions", later in this
chapter, for a description of the expansions.

3. hex value

which is inserted with no expansion.

4. Any mnemonic copy instruction in the Sigma 2 and
Sigma 3 Computer Reference Manuals. The comma
between the register specifications must be omitted.

The results of an insertion are defined in "Debug Expansion
of Instructions", later in this chapter.

An example of the insert command is as follows:

s

IB $SUB+lOOO, 80*$SUB+25, 75A1, 40*SSQRT+O,;

RCPYIPL,ROR*LT,REOR XB

(Insert Snapshot)

The Insert Snapshot command inserts (in the same manner as
the instruction Insert Before) a snapshot at the designated
location so that when control passes through loc, the fol­
lowing transpires prior to executing the instruction that was
at,loc:

1. The optional conditions are eval uated, and if false,
the snapshot is bypassed.

2. If the conditions are true ,(or if none are specified), the
following is output:

SNAP AT loc

message (if any)

followed by the designated dumps.

Such output is always transmitted to the Debug output de­
vice; and if any of the dumps designate the keyboard/
printer, then the SNAP and the message line also will be
transmitted to the keyboard/printer. A user can make a
maximum of 32 snapshot and instruction insertions (see "De­
bug Insertion Structure", later in this chapter, for the call­
ing sequence for a Snapshot command.) The form of the
Insert Snapshot command is

s[~] loc[/condi tions/][' message ,] [,dump requests]

where

5 is a request to snapshot and resume execution.

SK is a request to snapshot and transfer control to
the keyboard/printer for Debug input.

SS is the same as SK, but may be stepped (see
Debug command X).

conditions)
message
dump requests

are as described below.

Debug Commands 135

Conditions. The format of the conditions is

where r. is a relational expression of the form
I " "

loe Joe

<
constant [*] > constant

<=
>=

-register <> register

where constant is the same form as a loc preceded by a #;
for example,

#1492 or #SSUB+57

The meaning of the operations in hierarchical order are
as follows:

equal

< less than

> greater than

<= less thon or equal to

>= greater than or equal to

<> not equal

& logical and

f logical or

The comparison is arithmetic unless the operator is preceded
by an asterisk (*), in which case the comparison is logical.

Message. Message is a string of any EBCDIC characters ex­
ceptquote (').

Dump Requests. The format of the dump requests (if any) is

{

register }

[T] loc _ '"

loe ... loc
{

register }

[T] loc

loc ... loc

where T designates a particular dump to be output on both
the keyboard/printer and the Debug output device. If T is
absent, the dump wi II be output to the Debug output device
only. Only one dot (.) is necessary in specifying a block
of memory locations. Extra dots are ignored.

An example of the snapshot command is as follows:

SSSUB+505/RA=# 0&1492< 1496j'TAB1 FULL',
STABL •. $TAB1+256, RR

X (Step Snapshot)

If control is at the Debug input device as a result of a
stepping snapshot (SS), the X command moves the snapshot

136 Debug Commands

to memory location n, keeping the same conditions, mes­
sage, and dump fequests. Control is then transferred to the
bronch location.

The form of the Step Snapshot command is

(x [n[,branch]]

where

n is the memory location.

branch is the branch location.

If the snapshot was executed at location ALPHA, the de­
fault cases are branch ~ ALPHA and n cc ALPHA+ 1.

R (Remove Snapshot or Insertion)

The Remove command restores the displaced instruction to its
original memory location. The command releasesthe zero table
entry and, if the entry is the latest snap or insertion, re­
leases its space in the insertion block. Note that the space
in the insertion block is regained onl y if the Remove com­
mand affected the latest entry in the insertion block.

The form of the Remove command is

(R locI ~ loc2, ... , locn]

where loc is the memory location.

T (Selective Dump on the Keyboard/Printer and the
Debug Output Dev ice)

The T command outputs the contents of the requested loca­
tions and registers in hexadecimal on both the keyboard/
printer and the Debug output device. Console interrupt
will transfer control to the keyboard/printer after the cur­
rent line is output.

The form of the T command is

(T dumps

where dumps (i. e., dump requests) have the following forms
(there can be several dump requests in any order separated
by commas):

loc SSUB+3

loc loc $SUB ... 3FFF

register RA

all registers RR

p (Selective Dumps on the Debug Output Device)

This command is identical to the T command except that the
dumps go only to the Debug output device.

The form of the P command is

dumps

c (Debug Input Device)

The C command gives control to the Debug input device.

The form of the C command is

K {Keyboard/Printer}

The K command gives control to the keyboard/printer.

The form of the K command is

M (Modify Memory)

The M command modifies memory locations or registers.

The form of this command may be either of the following: r register,word

·where

loc is the first memory location to modify.

word i is the hexadecimal value (or mnemonic reg-
ister operation; see item 4 under the Debug I
command) to be stored in the designated register
or at location loc+i.

P if present, is a request to print the hexadecimal
value of the effective location, its previous value,
and its new value.

T rf present, is a request to type the hexadecimal
value of the effective location, its previous value,
and its new value.

Examples of the M command are

1. M$SUB+ 1, 4, 1, $SUB+2, RADDIZE

where the following cells are modified if SUB is lo­
cated at 100

16
:

loc

0101

0102

0103

0104

Value

0004

0001

0102

7C68

2. MRA, $SUB

This sets the A register to 0100. Note that an MRP
command will change the program address portion of
the program status doubleword.

3. MT 149A, RCPYIPA

This will produce the following output if the contents
of location 149A was FFFF prior to the command
149A: FFFF -75Fl.

B (Branch)

The Branch command allows the user to insert loc into the
program address portion of the program status doubleword
and to exit from Debug. If loc is not present, the user just
exits from Debug.

The form of the Branch command is

E (Exit From Interrupt level)

The E command allows the user to force an unusual exit from
the highest active interrupt level below Debug. Debug will
still have control after this command.

The form of the E command is

Q (Quit Debug)

The Q command causes Debug to reset its internal flags and
zero tabl e cells, restore RBMls original interrupt level,
trigger the Job Control Processor, and exit. If the X option
is present, Debug will also disconnect (i. e., unload) itself
from the system.

The form of the Q command is

Debug Commands 137

G (Global Symbol Table Pointer)

The G command specifies the first location of a symbol table
separately created at assembly time, or by the use of modify
(M}commands. The symbols may be used in any of the com­
mands in place of a location or a value by preceding the
symbol with an @ sign. The symbol is assigned its corres­
ponding value as part of command processing. The symbol
tabJe is composed of a set of five-word entries for each
symbol, foHowed by one word set equal to zero. Each sym­
bol must be left-justified and padded with blanks for a total
of eight characters. The value of the symbol is placed in
the fi fth word.

The form of the G command is

(G start

where start is the location of a symbol table.

DEBUG ERROR MESSAGES

Error messages are shown below:

Message

ERROR SY NT AX

ERROR COMMAND

ERROR FOREGRND

ERROR OVERFLOW

ERROR IN/OUT

Meaning

Syntax error

Command error

Command attempts to affect
foreground without a hard­
ware interrupt level specified
for Debug (see Debug D
command)

Either insertion block or zero
table overflow

Input/output error

When Debug encounters an error, it aborts a background job
if there is no !ATTEND card. Otherwise it requests further
commands from the keyboard/printer. At this time, Debug
will not have modified the environment, allowing the user
to attempt recovery. (It is assumed that the user will re­
spec i fy any erroneous commands.)

A KEYINerror message issued as the result of an unsolicited
key-in of DE, or an abort code of DE issued as the result of
a direct call on Debug, implies that Debug is not part of the
system. This can be corrected by queueing in Debug (i. e.,
an unsolicited key-in of Q DEBUG).

138 Debug Commands

DEBUG EXPANSION OF INSTRUCTIONS

EXPANSION OF INSERTED INSTRUCTIONS

Class 1 instructions that are inserted via the insert (I) com­
mand are expanded into more than one instruction if desig­
nated in the op *address form. (Note that expansions of
indirect instructions are not reentrant.)

Op is direct (O):

op
B
DATA

*$ + 2
$+2
address

Op is indexed (2):

op
B
DATA

*$ + 2, 1
$+2
address

Op is indirect (4):

STA $+6
LDA *$ + 7
STA $+5
LDA $+3
op *$ + 3
B $+4
DATA 0
DATA 0
DATA address

Op is indirect and indexed (6):

STA $+6
LDA *$ + 7
STA $+5
LDA $+3
op *$ + 3, 1
B $+4
DATA 0
DATA 0
DATA address

Class 2 instructions are expanded as foflows:

op
B
B
DATA

$+2
$+3
*$ + 1
address

EXPANSION OF MOVED INSTRUCTIONS

An instruction that is moved from the point of insertion to
the insert block will require expansion if its addressing is
relative or if it is a register copy instruction in which the
P register is the source.

The relative instructions are expanded the same as the
inserted instructions discussed in the first part of this ap­
pendix. In the case of Insert Before (IB) or snapshots,
register copy instructions in which P is the source and the
clear bit is set will be expanded in one of two ways:

1. If the destination is the A register:

2.

LDA
op
B
DATA

$+3
A,A
$+2
a+1

If the destination is not the A register:

STA $+5
LDA S + 5
op A,R
LOA $+2
B $+3
DATA 0
DATA a + 1

In the above expansions, a is the location (point) of the
insertion and op has the appropriate settings for the incre­
mentation and inversion bits.

Debug has no facil ity for expanding a copy instruction where
either (1) the P register is the source, the A register is the
destination, and the clear bit is reset, or (2) the P register
is the destination and the clear bit is reset. In this case a
Debug syntax error is generated.

DEBUG INSERTION STRUCTURE

An insertion at location a wi II result in the following:

a

y

B *f3

DATA y

moved instruction expansion if IA command

inserted instructions or snapshot call code

moved instruction expansion if IB or snapshot
command

B

DATA

*$ + 1

a + 1

where f3 is one of the Debug locations in the zero table and
r is an area in the insertion block.

DEBUG SNAPSHOT CALLING SEQUENCE

A snapshot inserted at location awill generate the following
call ing sequence (which_ is inserted in the insertion block
similar to a Debug IB command):

a1
a2

DATA
DATA

D:SNAP
block

instruction that was at location a
entry WD X'FC (foreground only)

STA *a2
RCPYI P,A
B *a1
DATA a
DATA key
conditions if any
DATA -1
message if any
DATA -1

dumps if any
DATA -1
expanded instruction from location a
B *$ + 1
DATA a+ 1

where

block is the address of the first word of the insertion
block and is used to save the A register.

key (bits 0-2) designates type of snapshot: setting
bit 0 designates stepping snapshot; setting bit 1
designates I ine printer snapshot output; and setting
bit 2 designates keyboard control requested.

message is the string of EBCDIC characters, if any.

condition is a string of relational expressions sepa-

where

rated by logical operators. A relational expression
occupies three words as follows:

loc, reg, or constant

M1 G

loc, reg, or constant

M 1 (bits 0- 1) designates the type of quantity in the
first word:

00

01

location

register

10 constant

M2 (bits 2-3) designates the type of quantity in the
third word.

C (bit 12) designates comparison where 0 = arith-
metic and 1 = logical.

Debug Commands 139

E (bit 13) designates equal comparison.

L (bit 14) designates less than comparison.

G (bit 15) designates greater than comparison.

A logical operator occupies one word:

o logical or

logical and

dumps are two-word or three-word items:

T

register number
register dump

140 Debug Commands

or

o T

foe 1 memory dump

foe 2

where

T = 1 designates keyboard/printer and I ine printer
output.

T=O designates line printer output.

A zero register number designates all registers.

13. BASIC SPOOLING SYSTEM

PURPOSE

The Basic Spooling System (BSS) provides the following:

1. Allows programs to execute at a speed not limited by
peripheral speeds by providing a disk buffering file
during periods of high peripheral util ization.

2. Through use of the disk buffer file, BSS will maintain
efficient peripheral utilization by smoothing the peaks
and valleys of peripheral usage thereby driving per­
ipheral devices at or near rated speed.

3. Resolves contentions for a peripheral device between
foreground and background or between foreground tasks
themselves such as XSP and IDEN by spool ing output
from one or all of the conflicting tasks.

4. A convenient point-to-point foreground utility utilizes
a disk buffer file to synchronize speed and avai lability
of peripheral devices.

IMPLEMENTATION PHILOSOPHY

A capabi I ity is provided whereby tasks may output through
conventional operational labels or FORTRAN device unit
numbers and merely through reassignment (or default assign­
ment), have the output directed to an intermediate spooling
file. No modification to foreground or background tasks is
required.

The disk buffering employed util izes conventional RBM ran­
dom files and standard RBM I/O to provide a low overhead,
high reliability spooling system. The disk allocation is
circular in nature with output occurring in a first in, first
out (F IF 0) fash ion.

User Task BSS

BSS itself operates as a resident, semiresident or nonresident
foreground task. Multiple copies of BSS may be used to
provide multiple concurrent spooled operations. A simpl ified
overview of BSS operating as a line printer spooler is shown
in Figure 10.

BSS is implemented as a foreground task which reads from a
foreground operational label and writes to a circular disk
spooling fi Ie. ConcurrentlyBSS reads from the disk fi Ie and
outputs through an operational label to a physical device.
It is through the use of RBM-16logical devices {Version GOO
and later} that the user task's output operational label is
connected to the BSS input operational label. A detailed
overview of a BSS line printer spooler is shown in Figure 11.

Since the flow of data is initiated and terminated by con­
ventional RBM operational labels, many variations of BSS are
possible as illustrated in Figure 12.

LOADING BSS

The control cards for allocating the file and loading BSS are:

!JOB
! PAUSE KEY-IN 'SY, S'
!RADEDIT
!#ADD UP,COPY,ALL"R,SY
!#END
!ASSIGN OV = COPY, UP
!OLOAD , F
!$TCB +C30C,+1200
!$ROOT "BI,3
!$END
!RADEDIT
!#TRUNCATE UP, COpy
!#END
!FIN

Li ne Pr inter

Figure 10. Simplified Overview of Line Printer Spooler

Basj~ Spooling System 141

Logical Device

User Task ~OPlabel -[~ dfo/'dfn }OPlabel BSS oplabel __ dfn

Li ne Printer

Figure 11. Detailed Overview of line Printer Spooler

With this job stack, BSS wi" be loaded into a permanent
file named 'COPY', in the 'UP' area. BSS, when invoked,
as with a Q COpy keyin, will run at interrupt level X'10C'
(interrupt level is user specified).

Note: The 'Q' keyin can only be used to load programs in
the' UP' area.

ALLOCATING SPOOLING FILES

A spool file must be allocated in the 'SO' area. Care must
be taken in naming the spool file. For example, if BSS will
'spool data to the CP foreground oplabel and the default
spooling file name is being used, the first two characters of
the file name must be 'CP'. The remaining six characters
must be 'SPOOL'. The control cards for allocating a CP
spool file and initiating the copy are:

!JOB
!RADEDIT
!#ADD SD, CPSPOOl, 100" R
!#END

Note: The spooling file must be in the 'R· format. Consult
Table 21 for spooling file size requirements.

142 Allocating Spooling Fi les/Initiating BSS

INITIATING BSS

BSS may be brought into core as a resident foreground task
at boot time, or as a semi resident or nonresident foreground
task through use of the background job stack, or through use
of the 'Q' keyin (assuming BSS resides in the 'UP' area).

BSS requires certain fundamental information in order to
initiate an operation, namely the source of the data, the
destination for the data, and the name of the intermediate
spooling file to be used. The relationship of the destination
operational label and spooling file nameis'opSPOOl', lSD'
where op is the destination operational label. The default
association can be overriden by supplying any spooling file
name through assembly or load time options.

If BSS has been assembled with the source, destination, and
spooling file defined, then no operator intervention is re­
quired to initiate operation once BSS is loaded.

lacking sufficient information, BSS will query the operator
for source and destination operational labels. If the source
has not been defined by assembly BSS will prompt with:

SPECIFY INPUT

to which the operator may respond with a two-character
foreground operational label to be used for BSS input.

If the destination has not been defined by assembly or if BSS
wi II prompt with:

SPECIFY OUTPUT

to which the operator may respond with a two-character
foreground operational label. BSS wi" inform the operator

0J-dfu -----.
Spooling file established byRADEDIT
known to BSS by assembly or derived
from destination oplb.

dfn = 0
(Drain only)

dfn __ ----'

dfn = 0
(Fill only)

..------ dfn -r:J
.---_ dfn { CP

,.----1- dfn

1---------- dfn
Source

O---------I .. -opl b BSS Destination dfn
oplb --:------0--..---

PT ~-l_ dfn

User Task

H.
iLOgi~al i
I Device I

dfn/dfn ________ ~ L __ ~

r-----I- dfn ------'

Oplb/dfn association by
SYSGEN
M:ASSIGN
IASSIGN
FL Keyin

Device/dfn association by
SYSGEN
DS Keyin

Figure 12. Variations of Basic Spooling Systems

r-- -,
I Logical I

Device
I dfn/dfn I L __ ...J

'--'------ dfn ---oof

User Task

Table 21. Spooling Volume Requirements

Sectors Required
Per 10 Minutes Operation

Rated Compo Char.
Device Model Speed Per 10 Minutes Model Model Model Model
Type Number (Rec/Min) Operation

Readers 7121 200 80K

7122 400 160K

7140 1500 600K

Printers 7450 225 106K

3451 350 175K

7440 800 400K

7445 1000 500K

Punches 7165 100 40K

7160 200 SDK

Assumptions: 1. 50% overall data compression.
2. 80-byte records.
3. 100-byte print records.

of its last word address, so that the first available address
for the loading of subsequent foreground programs may be
determined. However, the last word address will not appear
if Data Switch 2 is set.

BSS OPERATION AND CONTROL

The copy process will proceed immediately after BSS is ini­
tiated and the source, destination, and spool ing file are
known.

FORMS CONTROL

When a *FORM record is encountered in an output stream,
control wi II be transferred to the Forms Control Module.
Upon entry, the 'A' register will contain the return address
to BSS and the 'X' register will point to the following argu­
ment list

o
1

2

3

X'3005'

10C'

Address of 'FORM' record

Byte length of 'FORM' record

144 BSS Operation and Control

7204 7242 7250 32xx

225 79 225 310

450 160 450 625

1700 580 1700 2350

295 100 295 415

490 170 490 680

1100 390 1100 1550

1400 490 1400 1950

110 390 110 155

225 79 225 310

Upon exit the X-register has the following significance:

X =-1

X =-2

Other

ST OP the stream

SKIP the stream

CONTINUE the stream

The delivered Forms Control Module will output the *FORM
record to 'OC' and exit with X = -1 to STOP the stream.

The purpose of isolating this code is to allow installation to
conveniently add installation dependent code (e.g., special
forms routing).

BSS can be controlled with the following keyins:

#GO xx

#STOP xx

#LOCK xx

Start operation to foreground oplabel
xx. Normally, this keyin wi II only
be required after a #STOP or #LOCK
keyin.

Suspend operation to foreground op­
label xx. Handy for verifying output.

Same as #ST OP, but takes effect at
the conclusion of the current file
being output. Furthermore, if a
#STOP is in effect, this keyin is an
implied #START. LOCK only appl ies
to the output oplabel.

#SKIP

#BACK

#TERM

#EBC

#IVFC

*fllV

xx

xx

xx

xx

xx

xx

Skip forward to next EOF in output
stream. Data skipped in this fashion
will remain in the spool file.

Restart output for operational label xx
at the backup point. The backup point
is the spool ing fi Ie holdback point
(defaults to five granules or previous
E OF, wh ichever is greater).

Term inate the BSS task assoc iated with
output operational label xx. BSS wi II
automatically terminate a copy opera­
tion when two consecutive EOFs are
read. A" operations are ceased, the
spooling file directory is updated and
an M: TE RM is pe rformed.

Perform "write binary" to output
oplabel.

Perform "write EBCDIC" to output
oplabel.

Append single space vertical format
byte to output oplabel.

If the spool file cannot be found, BSS will abort with
code #F.

If any fatal errors occur, BSS will abort with the following
codes:

Error on input

Error on output

Error on spool ing file

BSS wi II not abort if operator intervention is requi red ~n the
output or input oplabel. Instead, BSS will output

##STOPPED xx

and simulate a #STOP keyin. The operator may correct the
problem and then keyin #ST ART.

ASSEMBLY OPTIONS

Various options can be included in BSS at assembly time,
once the source deck is extracted from the standard release
tape. These options are described in the Technical Manual
(and the source listing) and control such items as default
input and output oplabels as well asspool filename and area.

The cost for each concurrent spooled operation is as follows:

lK core for BSS + 2* spooling file block size + 2*
record size (defaults to 140 bytes).

3

2

foreground DFNs for spooling file access, input
and output.

foreground operational labels.

spool ing file (R format). See Table 21 for fi Ie
size requirement.

foreground interrupt level lower in priority
than 10.

foreground or background DFN for user task.

foreground or background operational label for
user task.

Abort Codes/Assembly Options 145

APPENDIX A. ADDITIONAL RBM PROCESSORS

A set of subsystems and processors is distributed with RBM
on the transmittal tape. The Overlay Loader, RAD Editor,
Utili ty, and Debug processors are described in Chapters 7,
8, 9~ and 12 respectively. XSYMBOL, FORTRAN, ANS
FORTRAN, and the FORTRAN library are described in their
own individual manuals (see the Related Publications page
of this manual).

The following additional processors are available on the
transmittal tape and are described in this appendix:

Name Purpose

PLOT A symbiont subsystem for the 7530 or 7531
graph plotter. (Catalog No. 705780.)

INDUMP A stand-alone DUMP program to be used in
conjunction with RBM.

COMPRESS A processor for creating blocked compressed
EBCDIC fi les on tape, used in preparing the
source and listing fi les on the transmittal
tape.

EXPAND A processor for expanding the blocked, com­
pressed fi les created by COMPRESS to fi les
composed of either 80-byte source records or
134-byte line printer listing records.

REPLACE A processor for rep lacing monitor overlays,
useful in system maintenance (described in
the RBM/SM Reference Manual, 903036).

SYMBIONT PLOTTING SYSTEM

The symbiont plotting system performs circular buffering of
plotter commands in a RAD or disk fi Ie (PLSYMB). A set of
background subroutines in the FORTRAN subroutine library
is provided to build the fi Ie. The background subroutines
trigger a foreground task that reads the fi Ie and drives the
plotter. The trigger is accomplished via a public library
subroutine. A set of unsolicited operator key-ins permit
the operator to supervise the plotting operation.

Key-in

UNSOLICITED OPERATOR KEY-INS FOR PLOT

Effect

PLPR (INIT)

PLHA (LT)

PLAB (ORT)

Report the amount of RAD space left in
the plot fi Ie. (Unti I the end-of-fi Ie is
encountered, the amount of space used
will be reported.) After the plot data
have wrapped around, the amount of
unused space wi II then be reported.

Stop plotting immediately.

Stop plotting immediately and discard
plot data to the beginning of the next
plot and halt.

PLST (ART)

PLSU (SPEND)

Effect

Stop plotting.

Stop plotting at the end of the current
plot.

These key-ins have no effect on the background job.

BASIC PLOTTER CONTROL SUBROUTINES

This group of four subroutines in the FORTRAN library gives
the assembly language programmer all of the functions nec­
essary to draw a plot. They are used by other programs that
give the programmer more sophisticated functions to simplify
the task of making a plot. The subroutines generate plotter
control data and transmit it to the RAD by a call to the
Moni tor I/O. A foreground program is then started that
reads the data from the RAD and wri tes it on the p 10 tter.

If a call is executed that would move the pen off the paper,
the call is ignored. It is assumed that the pen starts one-half
inch from the minus-Yedge of the paper (the right border of
the paper roll.)

ENTRY POINTS

RCPYI P, L

B PENUP (register T is changed)

This entry will cause the pen to be raised if it is down.

RCPYI P, L

B PENDN (register T is changed)

This entry wi II cause the pen to be lowered if it is up.

RCPYI P, L

B INITIAL (on Iy regi ster B is saved)

The current pen position is set to X=O, Y=O, and this posi­
ti on wi II now be the new plotter reference point. Accumu­
lated data is output at this time. Note thatatanytime there
may be a partial buffer of plot data that has not been trans­
mitted to the device. Therefore, IIINITIAL" must be en­
tered at the end of the plot job to ensure the completion
of the plot.

RCPYI P, L

B MMVE (register T is changed)

X is in register E and Y is in register A. The pen is moved
along an approximation to a straight line from its current
position to the new location X, Y. X and Yare fixed

Appendix A 147

points, the number of increments from the reference point
that is normally the lower left corner of the plot.

See the FORTRAN library description for a description of
FORTRAN calls to higher-level PLOT subroutines.

INDUMP

INDUMP is a "stand alone" dump faci lity that provides a
printed record of the contents of memory when the RBM
postmortem dump, operator key-in dumps, or the DEBUG
dumps cannot be used.

IIDUMP LOADING TECHNIOUES

RESIDENT FOREGROUND

INDUMPmay be loaded into the resident foreground area by
the usual techniques. It requires 60016 memory locations.
The last 20016 memory locations may be overwritten if the
command to display the file control tables in expanded form
is not to be used.

RESIDENT HIGH MEMORY

If the memory size in SYSGEN is indicated to be other than
a multiple of 8192, INDUMPwill automatically be moved
to K:UNAVBG (beginning of "unavailable" background
memory) when loaded into the foreground. The space ini­
tially occupied by INDUMP in the foreground area may
then be overwri tten •

SELF-LOADING

A version of IN DUMP may be prepared that can be loaded
using the hardware bootstrap from cards, magnetic tape, or
paper tape. To do this, the REL version of INDUMP is
loaded and executed with a !XEQ card with the following
parameters, which will generate the self-booting version
on the BO device:

!XEQ la,ma,fa,ba,cc,oc,lo,nl,ls

where

la is the load address.

rna is the RBM last word address.

fa is the foreground last word address.

ba is the background last word address.

cc is the channel and device number of the boot
device (format: ccdd).

oc is the channel and device number of the key-
board printer (format: ccdd).

148 Appendix A

10 is the channel and device number of the line
printer (format: ccdd).

nl is the number of lines per page (37 or 52).

Is is FFFF for a low-speed line printer and 0 for a
high-speed line printer.

All parameters are four-character hexadecimal quantities
except nl, which is decimal.

If only la is given, the other parameters wi" be picked up
from the RBM system, which punches the self-booting
version.

IIDUMP OPERATIONS

INDUMP may be used to provide snapshots of the registers
and core when DEBUG cannot be used. The call has the form

RETURN

RCPYI
B
DATA
DATA

P,L
INDUMPFWA + 1
LOWUM
HIGH LIM

{
FWA = first word

address

INDUMP may be called to permit the operator to type in
commands to it using the calling sequence

RETURN

RCPYI
B

P,L
INDUMPFWA

RETURN ON GO
command

INDUMP may be started from the console in the event of
system fai lure. The procedure is as follows:

1. Move the COMPUTE switch to the IDLE position.

2. Copy the values of the P register and PSW (these wi II
be input later using the PI command).

3. Place the start address ofiNDUMP in the data switches.

4. Select the S register with the register SELECT switch.

5. Move the CLEAR;1:NTERswitch to CLEAR; then enter.

6. Place the STORE/FETCH switch in the FETCH posi­
tion and the ADDRESS HO LD switch in the HOLD
position.

7. Momentari Iy move the COMPUTE switch to the STEP
position (3 only).

8. Move the STORE/FETCH and ADDRESS HOLD switches
back to NORMAL.

9. Move the COMPUTE switch to RUN.

After IN DUMP is started, it will type out the message
EN TER LIMITS. The operator can then respond with a
command of the form

command [hex-value, hex-value] 8

where command may be

DM Dump RBM area.

DF

DB

DA

Dump Foreground area, including Public
Library.

Dump Background area.

Dump all of core up to K:UNAYBG.

ZM Zero RBM area, including Public Library.

ZF

ZB

ZA

PI

Zero Foreground area.

Zero Background area.

Zero a II of core up to K:UN AYBG •

Place the first hex value in the stored P regis­
ter location and the second in the stored PSW
location.

GO Restart operation of RBM with values given by
PI command or obtained from call.

DT Dump fj Ie control tables.

After a dump or zeroing between limits, the ENTER LIMITS
message wi II be retyped and a new c,ommand may be entered.
If hex values are specified on any command, they wi II over­
ride the command's implicit limits.

COMPRESS

The COMPRESS processor reduces the leng.th of the RBM
distribution tape. COMPRESS reads records from the 51
file or device, expands them to 134 bytes by filling with
blanks on the right, then blank-compresses and blocks those
records into l024-byte blocks. It then outputs those blocks
to the CO device fi Ie.

EXPAND
EXPAND takes the blocked records from CI formed by
COMPRESS and generates either 80-byte source records

or 11O-byte listing record on the EO device file. The
EXPAND processor is invoked by

!EXPAND {~},ident[,n]

where

S indicates that the source records are to be writ-
ten on the EO operational label.

L indicates that the listing records are to be writ-
ten on the EO operational label.

ident is a 1-8 character ide'ntifi er that exists be-
ginning in column 73 of the source file.

n i ndi cates the number of fi I es to be expanded.

The operational labels CI (Compressed Input) and EO (Ex­
ternal Output) must be assigned to the appropriate device
file numbers before executing EXPAND.

The EXPAND processor searches the CI device until it finds
the specified ident. If a double EOF is encountered, the
tape wi II be rewound and a second search made. If the
ident is not found on the second search, an appropriate
message is output on OC.

When the selected ident is located, the file is decompressed
and output on the EO device according to the selection
parameter S or L.

For example, the command

(EXPAND L, TOC

will cause the EXPAND processor to list the TOC (Table
of Contents file on EO. Similarly, the command

(!EXPAND L,EXP,3

will cause the EXPAND processor to list three files, be­
ginning with EXPAND.

To obtain a source magnetic tape, assign EO to a magnetic
tape and input

(EXPAND S,EXP

which will produce a source file acceptable as symbolic
input to XSYMBOL.

Appendix A 149

The following table should be used to determine the standard assignments for an installation's background operotionClI lab.I, and to determine which
operational labels, if any, should be suppressed by being assigned to file O. The standard operatfonal labels are defined under the IASSIGN cQrnm(2nd
in Chapter 2.

~ Device Label CC 51 UI AI BI BO UO LL DO Processor Number J

RBM (Job Control Read/Write Read Read Read Object Write Control
Processor) unsolicited Control Absolute modules with Command

key-in Commands Binary ! RE L command ImCl9(1S

XSYMBOL
t Read Source

Read
Writ. Reloc. U ... d for CC Update Write XSYMBOL

Statements Records Binary Diggno$t-lc. grror Messagfl$tt

Concordance Read Source Write ConcordClnce
Statements I Error MessClgesttt

I

Belsic FORTRAN IV or Read Source Write Reloc.
ANS FORTRAN IV Statements Binary i

Math Library
Write LlbrClry

I Error Mea.Clg ••

Overlay Loader Read
I I Control Log Control Write Loader error

Commands

I

!
Commands

I
<Menages ttt

I I
RAD Editor Read

I
Obj ect Modu I e Output Copies of Ob- ! I I

Control
I

Input to System iect Modules from Sys- I Log Control I Write Error Mes-

Commands and User tem and User Librories Commands I sages and

I Libraries I
operator key-Ins

Utility Executive Read ;

Control Log Control Wrl te Utili ty Error
Commands I Commands

I
Message ttt

Uti lity Copy tttt Read Control Read
I

Commands Input

Utility RECEDlT
Read Control

I Commands and Read Write
Modific Input Input Output

I

lJtility OMEDIT Read Control Read Read Binary Write
! Commands Input Modiflc. Input Output

Utility DUMP Read Control Read
Commands Input

Utility SEQEDIT Read Update Read Write
Data Input Output

tUses oplabel SO to output source stQtements (updQted, If applicable). ttt Suppressed if assigned to same devi ce as OC.

ttSuppressed if assigned to sgme device as LO. ttttMQY use any oplabel for output.

~ I Label LO LI PM OC Xl PI OV X2 X3 S2 GO X4 X5
Processor

,

RBM (Job Control Write Abso- Write Proces- I Read RBM Write Pro- Write Ob-
Processor) lute Binary sor ond Mon- I Overlays I gram Loaded i ject Mod-

MooUo' ISYS-I itor Abort I by !ABS i
I ule with

GEN only) Messages I
! Command I !REL ! i I command

XSYMBOL I I
:

WRITE Listing

I
Operdtor Intermediate Read ! Output Output

I
Output Output

Output and Commu· Output XSYMBOL i Encoded Program
I

Standard Execution I
XSYMBOL

1
nications Overlays , Text Locals I Proce- Object I

Error Messages dures Language

Concordance Write Listing
I
I

Output and
!

Concordance

I Error Messages I

! I

Basic FORTRAN IV or Write Listing i Intermediate Read Output
ANS FORTRAN IV Output and ~ Output I FORTRAN I Execution

FORTRAN Overlays I Object I
Error Messages Language

Moth Library Write Library Operator I I
Error Messages Commu- I I

I nications I
Over! ay Loader Write Maps Read Reloc. I Operotor Contains Sym-

I

Read Write Read I Read

Binary I Commu- bol T obi e for OLOAD Core MODIR

I
Relot.

Library File : nications each segment Overlays Images File Binary

RAD Editor ! Replace Files
!

Read RAD Reploce I Write Maps Operator Maintain Li- Maintain
and Dumps Commu- and Maintain i Editor Files and braries and i Libraries
of Files nications Libraries

I
Overlays Maintain Update Oi- I

I Libraries rectories

Uti I ity Executive Write Utility Operator I Read Prestore
Error Messages, Commu- Utility Commands
Control Com- nications Overlays From 51
mand Images and
other Output

Utility Copy Input
for
Verify

Utility RECEDIT Write Modi-
fication Log

Utility OMEDIT Write Module Log Prestore BI

Utility DUMP Write Dump

Utility SEQEDIT Write Listing j

APPENDIX C. SYSTEM ZERO TABLE AND CONSTANTS

Table C-l. Monitor Zero Table

Address

Dec. Hex. Name Purpose and Assignment

0 0 Reserved for Monitor Use.

1 1 K:AC Pointer to Current Floating Accumulator.

2 2 K:AC1 Pointer to Current Floating Accumulator (1).

3 3 K:AC2 Pointer to Current Floating Accumulator (2).

4 4 K:AC3 Pointer to Current Floating Accumulator (3).

5 5 K:FFLG Pointer to Current Floating Flags.

6 6 K:BASE Pointer to Current Task Reentrant Temp Stack.

7 7 K:TCB Pointer to Current Task TCB.

8 8 Reserved for Monitor use.

9 9 Standard Constants for Foreground, Monitor, and Background
· Use (see Table C-2 for complete list). · . ·

63 3F

64 40 IOCS Pointers and Constants.

· ·
99 63

--

100 64 Reserved for Monitor Use.

· ·
132 84

133 85 Debug Transfer Vector D: KEY.

134 86 Debug Transfer Vector D:CARD.

135 87 Debug Transfer Vector D:SNAP.

136 88 Reserved for Debug Use.

·
167 A7

168 A8 Real-Time Foreground User Storage (reserved for foreground
communication between foreground and background or for

198 C6
address literals or constants).

152 Appendix C

Table C-1. Monitor Zero Table (cont.)

Address

Dec. Hex. Name Purpose and Assignment
~

199 C7 Monitor Service Routines Transfer Vectors (see Table 7 for list).

225 El

226 E2 Monitor Constants (see Table C-3).

-- .
.

251 FB

252 FC Counter Interrupt Locations (optional).

255 FF

Table C-2. Standard Constants

Address Value Address Value

Dec. Hex. Dec. Hex. Dec. Hex. Dec. Hex.

9 9 32768 8000 20 14 16 10

10 A 16384 4000 21 15 8 8

11 B 8]92 2000 22 16 4 4

12 C 4096 1000 23 17 2 2

13 D 2048 800 24 18 1 1

14 E 1024 400 25 19 0 0

15 F 512 200 26 1A -1 FFFF

16 10 256 100 27 1B -2 FFFE

17 11 128 80 28 1C 3 3

18 12 64 40 29 10 -3 FFFD

19 13 32 20 30 lE ":4 FFFC

Appendix C 153

Table C-2. Standard Constants (cont.)

Address Value Address Value

Dec. Hex. Dec. Hex. Dec. Hex. Dec. Hex.

31 IF 5 5 48 30 14 E

32 20 -5 FFFB 49 31 -14 FFF2

33 21 6 6 50 32 15 f

34 22 -6 fFFA 51 33 -)5 Fffl

35 23 7 7 52 34 -16 FFfO

36 24- -7 FfF9 53 35 32767 7FFF

37 25 -8 FFF8 54 36 32512 7FOO
,

38 26 9 9 55 37 33023 80FF

39 27 -9 FFF7 56 38 65280 FFOO

40 28 10 A 57 39 255 OOfF

41 29 -10 FFF6 58 3A 61440 FOOO

42 2A ' 11 8 59 38 3840 OFOO

43 28 -11 fFF5 60 3C 240 OOFO

44 2C 12 C 61 3D 49152 COOO

45 20 -12 FFF4 62 3E 31 IF

46 2E 13 0 63 3F 127 7F

47 2F -13 FFF3

Table C-3. Monitor Constants

Address

Dec. Hex. Name Purpose

226 E2

} Reserved for Monitor use.
227 E3

228 E4 K:MASTD Pointer to Master Dictionary.

229 E5 K:PAGE Number of Lines/Printer Page (SYSGEN Parameter).

230 E6 K:BACBUF Background I/O Buffer Pool FWA.

231 E7 K:BACKP Protected Background FWA (Start of TCB).

232 E8 Reserved for Mon HOT use.

154 Appendix C

Table C-3. Monitor Constants (cont.)

Address

Dec. Hex. Name
t

Purpose

233 E9 K:PlFWA Public library FWA.

234 EA K:RFFWA Resident Foreground FWA.

235 EB K:NFFWA Nonresident Foreground FWA.

236 EC K:BACKBG Unprotected Background FWA.
•

237 ED K:UNAVBG Unavailable Memory FWA.

238 EE K:BlOCK Size of Blocking Buffer in Words (180 or 512).

239 EF K:FEF FORTRAN Background Error Severity (1).

240 FO K:TVECT Pointer to Transfer Vector Table.

241 F1 K:FWA legal TVECT Entries to FGD-FWA.

242 F2 K:lWA legal-TVECT Entries to FBD-lWA+1.

243 F3 F:FWAl TVECT FWA for T Register Check.

244 F4 K:lWA1 TVECT lWA+1 for T Register Check.

245 F5 K:OlOAD Pointer to RBM OV:lOAD Table.

246 F6 P:CST9 Reserved for RBM use.

247 F7 K:CCBUF Address of Control Card Buffer.

248 F8 K:NRFQ Pointer to Nonresident Foreground Queue Table.

249 F9 K:NEXT Next Available Sector in BT Area.

250 FA K:PROTCT Pointer to Protection Register Table.

251 FB K:PMDTBl Pointer to Postmortem Dump Table.

405 195 K:CPU CPU Type and Hardware Options.

t These names are as defined in the RBM Monitor and are not system definitions. Any references to these locations by
these names must be defined in the user program (e.g., K:PAGE EQU XIE5 1

).

Relationships for Monitor Constants:

1. (K:PlFWA) = lWA+ 1 of RBM. 4. (K:BACKP) = lWA+1 of Nonresident Foreground.

2. (K:RFFWA) = lWA+1 of Public library. 5. (K:BACKBG) = (K:BACKP) + 39.

3. (K:NFFWA) = lWA+1 of Resident Foreground 6. (K:CCBUF) = (K:UNAVBG) - 62.

Appendix C 155

APPENDIX D. ERROR MESSAGES, WARNING MESSAGES, AND ABORT CODES

RBM MESSAGES AND ABORT CODES

JCP CONTROL COMMAND DIAGNOSTICS

The following error messages may appear on the background
DO device as a result of an error condition detected by
JCP. These diagnostics supplement the abort or attend­
mode error codes printed by JCP.

Message
Comments/
Associated Commands

· BK OPLBjDFN TBL FULL ASSIGN, DEFINE, default
assignments for system
processors

• FG OPLBjDFN TBL FULL ASSIGN

• ILL C:CODE C: (Connect)

• ILL C:TCB C: (Connect)

.ILL RAD SEQUENCE WEOF, REWIND, UNLOAD,
FBACK, FSKIP, RBACK, RSKIP

• INV COMMAN D Command not recognized as
a Monitor service command,
system processor, or user
processor.

.INV OPLB OR DFN

.INV OPTION

ASSIGN, DEFINE, WEOF,
REWIND, UNLOAD, FBACK,
FSKIP, RBACK, RSKIP

An invalid option has been
encountered on a Monitor
servi ce command

Comments/
Message Associ ated Commands

.NO 'FG' KEY-IN ASSIGN, XEQ, C:

.NO 'SY' KEY-IN WEOF, ABS, REl

.OP NOT MEANINGFUL WE OF, REWIND, UNLOAD,
FBACK, FSKIP, RBACK,
RSKIP

• RAD TEMP OVERFLOW DEFINE, default assignments
for sys tem processors

R8M ABORT CODES

The codes listed in Table D-1 are the standard background­
job abort codes issued by RBM for abort conditions detected
by the Monitor, JCP, RAD Editor, and Utility, and also
by the Basic FORTRAN IV compiler and the Extended Sym­
bol assembler. Note that the codes for abort conditions
detected by the Overlay Loader are listed separately in
Table D-3 •

The abort codes appear ina standard abort message of the
form

! !BKG xx ABORT loc ZZZZ

where

xx is the abort code.

ZZZZ is the location at which the abort occurred.

Table D-1. RBM Abort Codes

Code Meaning

AE Assignment error during loading; improper I/O assignment or invalid format.

AI Irrecoverable I/O error on device assigned to operational label AI.

BI Irrecoverable I/O error on BI devi ce.

BO Irrecoverable I/O error on BO device.

CC Error in control cards or in sequence of job sta"s:~;.

CK Irrecoverable error whi Ie checkpointing.

CS Checksum error from absolute or relocatable binary input.

DE Debug not resident when requested.

156 Appendix D

Code

ER

ES

FC

FS

FX

GO

HX

IE

10

LO

MF

NA

NP

OP

OV

PE

PO

PU

PV

RE

RS

51

sa
TL

TS

TV

UT

XE

XS

Table D-l. RBM Abort Codes (cont.)

Meaning

Operator-recognized error condition.

FORTRAN library abortt.

Illegal FORTRAN control card.

FO RTRAN abortt.

A control card was encountered in the FORTRAN source deck.

Irrecoverable error on output to the GO file when using a fREL command.

H legal hex parameter.

Error in input deck. (UsuaUy, a negative ORG item has been input.)

Irrecoverable I/O error.

Irrecoverable I/O error on LO device.

Machine fault interrupt has occurred.

Nonexistent address used by background program (530 systems only).

No patch area has been allocated.

Operator abort, from unsolicited key-in.

Problem with device assigned to operational label OV. (Normally, OV is assigned to the RAD.)

Parity error in background (perhaps attempting to read from unavailable memory).

The patch area has overflowed.

Number of argument greater than temporary storage in M:PUSH t .

Protection violation.

RAD Edi tor abortt.

Irrecoverable error during restart.

Irrecoverable input error in SI device.

Sequence error in absolute or relocatable binary deck.

Background program time limit exceeded.

Temp stack overflow.

Invalid load type in ABS deck.

Uti Ii ty subsystem abortt.

Fatal error in loadi n9.

Extended Symbol abortt.

t After the abort code i s output, the processor ~i II exi t vi a the RBM routi ne M:ABORT.

Note: The processing of the job stack is discontinued following any abort. If an "ATTEND" control command
was in effect, the Monitor will enter an "idle" state. Tnis will allow the operator to correct the prob­
lem and restart the job. If not in "attend", the Job Control Processor will read commands until a
!JOB or !FIN command is encountered. All control commands encountered prior to the !JOB or !FIN
command will be logged with an indication (">" will precede the command) that they have been
ignored.

Appendix D 157

OVERLAY LOADER MESSAGES AND ABORT CODES WRITE PROTECTED

VO ERROR MESSAGE
BEGINNING OF TAPE

The I/O error message has the following format. It is
followed by a "! !BKGD 10 ABORT ••• " message

ILLEGAL RAD SEQUENCE

BLOCKING BUFFER UNAVAILABLE

** oplb device type and number diagnostic An example of the I/o abort message is given below:

where
$$ BI MTDO END OF TAPE

$$ identifies Overlay Loader as the message source.
! !BKGD 10 ABORT, LOC 3F4C

oplb is the operational label of the device or file
where

on which the error occurred. BI is the oplb~

device type and number identify the device.
MTDO is the device name and number.

END OF TAPE is the diagnostic.
diagnostic is an error diagnostic (listed below) cor-

3F4C is the I/O abort location.
responding to an I/O completion code. t

The following diagnostics may occur:

UNRECOVERABLE I/O ERROR

CALLING SEQUENCE ERROR

INVALID OPERATIONAL LABEL

OL = 0, OR OPERA T MEANINGLESS

ILLEGAL END OF FILE

END OF TAPE

INCORRECT RECORD LENGTH

ILLEGAL BUFFERING

LOADER ERROR MESSAGES

The Overlay Loader loading error messages are listed in
Table D-2.

The type of message is indicated as follows:

A

R

Error causing an Overlay Loader abort, i. e. ,
error message is followed by an abort message.

Error or condition causing an operator response
to be sol icited, i. e., the message is followed
by an RBM II ! ! BE GI N W AITII message.

tSee Table 10, II I/o Completion Codes", in Chapter 4. W Warning message only; loading proceeds.

Message

$$ L1BSYM UNDEFINEDt
(OLOAD only)

$$ ERR BU

$$ ERR CC

$$ ERR CS

$$ ERR CO

$$ ERR C1

158 Appendix D

Type

A

W

R

R

W

w

Table D-2. Loader Error Messages

Meaning

There was no fi I e entry on the system Data area of the RAD or di sk pack
for the L1BSYM table. Overlay Loader aborts with code PL.

Sufficient blocking buffer space unavailable. Severity level is set.

A control command card has a format or parameter error. An S key-in
causes the next control command to be read in from CC. This may be
a corrected command to replace the one in error. tt

There was a checksum error on a binary record. An S key-in causes the
record to be reread. tt

Foreground COMMON, based below root, overlaps root. Warning only,
no severi ty I eve I set.

The Loader has encountered COMMON allocation in the root of a non­
resident foreground program with the R option specified but without cmn
specified on the !OLOAD command. The R specification is ignored and
COMMON base is set =K:BACKP minus the size of COMMON.

Message

$$ ERR IB

$$ ERR ID

$$ ERR IS

$$ ERR RC

$$ ERR sa

$$ ERR TA

$$ ERR URt

$$ TOO MANY DEFSt
(OLOAD only)

$$ PUBLIB NOT LOADED
(OLOAD only)

$$ ERR US

$$ ERR XL

Type

R

R

RorA

w

R

w

W

A

A

W

W

Table D-2. Loader Error Messages (cont.)

Meaning

Illegal binary format (that is, the first word was not IFF' or 19FI) was
detected. An S key-in causes the record to be reread. tt

The indent on the binary module just loaded does not compare with the
indent specified on the I$LD command. On an S key-in, the Loader
accepts the binary module as is and continues processing.

Control commands were improperly sequenced in the control command
stack. An S key-in causes the next control command to be read. How­
ever, if the sequence error was due to a SE G command, the Loader aborts. tt

Trailing reserve overlapped COMMON; no error severity level is set.

There was an incorrect sequence number on a binary record. An S key-in
causes the record to be reread. tt

No transfer address was encountered in the loading of the root program
portion. The Loader sets a default transfer address as the first word of the
program and generated an error severity level of one.

There were unsatisfied references in the path.

There were more DEFs in the Publi c Library than were allocated at sys­
tem generation. Overlay Loader aborts with code Pl.

Severi ty I eve I greater than zero was encountered or generated during
Public library loading. Overlay Loader aborts with code Pl.

A symbol table entry was not recognized.

Exloc of program is outside the appropriate area.

tThis message (OLOAD only) may be written on DO during writing of the Public Library, LIBSYM, or NECT table onto
the disk. If the alarm occurs, the Publ ic library was not completely written and will have to be reloaded after the
error is corrected.

ttThe Loader does not reposition the record for rereading. If paper tape or cards are repositioned, the record is reread;
if they are not repositioned, the next record is read. If the record is on disk or magneti c tape, the Monitor I/O error
recovery procedures positions to the beginning of the next record. However, the WAIT permits the taking of dumps,
etc., before changing the environment.

LOADER ABORT CODES

Table D-3 lists the abort codes specific to conditions de­
tected by the Overlay Loader during the loading process.
The codes appear in the standard abort message of the
form

! !BKG xx ABORT LOC zzzz

where

xx is the abort code.

zzzz is the location at which the abort occurred
(if signifi cant).

RAD EDITOR MESSAGES AND ABORT CODE

The RAD Editor error and warning messag.es are listed in
Table D-4. The type of message is indicated as follows:

A Error causing a RAD Editor abort, i.e., error
message is followed by an abort message.

R Error causing an:operator response tobe solicited.
(usually only if attend mode is in effect, abort
otherwise), i.e., error message is followed by
an RBM I\! !BEGIN WAIT" message.

W Warning message only; RAD editing proceeds.

AC Error causing RAD Editor to abort the current
command processing; reads next command.

Appendix 0 159

Table 0-3. Overlay Loader Abort Codes

Code Meaning

Al Error in accessing the RBMSYM file.

A2 Error in accessing the LIBSYM fil e.

A3 Error in accessing the EBCDIC I ibrary file.

A4 Error in accessing the DEFREF library file.

AS Error in accessing the MODIR I ibrary file.

A6 No blocking buffer is available for the RBMID file.

AS Error in accessing the TYECT file.

A9 Error in closing the RBMID file.

BB Cannot assign blocking buffer for input.

These codes are frequentl y caused by an i nsuffi ci ent
allocation of RAD Device File Numbers at SYSGEN.

CM
t

A COMMON displacement or size larger than that stipulated on the !OLOAD command or in a start
item was detected. (Background abort only.)

DStt The same identifier was used to name two different segments.

EFtt An i"egal end-of-file was detected.

El Excessive Length. The run-time size of the program being loaded has exceeded the specified or defau It
timit (see Chapter 7, Table 19).

IT An illegal item type was detected.

LI The library files cannot be loaded because of incorrect construction of the library.

L2t Labeled COMMON data (subtype 2) is for a block outside the current segment.

L3
tt

The number of Labeled COMMON indicies allowable per module has been exceeded (currently
limited to 40).

L4tt Block size prescribed (subtype 0) is greater than that already allocated.

L5
tt

Labeled COMMON symbol is defined as a program symbol within the current path.

L6
t

Labeled COMMON data from a Library Module (root) is intended for a block allocated in the program
section of the root.

LStt An external DEF was encountered with the same label as a prior labeled COMMON block.

LS Library search overflow. The number of unique library defi nitions and references along a program path
exceed 300.

On An Overlay Loader function that prevents proceeding has occurred. The number of the overlay in which
the malfunction occurred is indicated by n.

PL OlOAD was unable to write the Public Library, the LIBSYM, or the TYEeT files onto the RAD.

RL Root of excessive length.

RS Overlay Loader unable to correctly read the RBMSYM fi Ie from the SO area.

SAtt Not enough segments were allocated for the task. The segments parameter of the !OLOAD command
should be larger.

160 Appendix D

Table D-3. Overlay loader Abort Codes (cont.)

Code Meaning

SD Next segment of the Overlay loader cannot be loaded.

SE Input ROM had an error severity level greater than zero.

Format or parameter error was detected on a !$SEG command.

Sl The length of a segment was excessive, (see! $ROOT and! SSE G commands for maximum segment size).

TOtt There was a table overflow. Decrease the size of the program (OlOAD only) or reduce the number of
external symbols.

The number (on the !$SEG card) of the segment to which this one is attached has not been defined.

t loading wi" continue until terminated but the load program wi II not be generated and exit wi II be through M:ABORT.

ttloading will be terminated and, if a map has been requested, it will follow to the point of termination, after which
the exit will be through M:ABORT.

Table D-4. RAD Editor Error and Warning Messages

Message Type Meaning

ASSIGN ERR: area, A The RAD Editor was unable to assign an operational label to a filename because
filename the number of available RAD or disk pack device-fj Ie numbers is insufficient or

because the specified file does not exist.

BAD IDENT A The object module on BI does not have the same "identification II in the start
modu I e item.

##BTl DOES NOT EXIST A The disk pack does not have a bad track list written in sector 2 which is
ON DEVICE necessary for !#GDTRACK or !#BDTRACK processing.

##BTlOVERFlOW W There are more flawed tracks on the disk pack than there are available alternate
tracks.

CAll SEQ ERR oplb A A calling sequence error occurred for input/output on the device having the
operational label oplb.

CAN I T FI ND area, W An attempt was made to save, clear, truncate, or delete a file whose name
filename does not exist in the specified area, or the specified area does not exist.

CHCK WRITE ERR A A check write error occurred (that is, data recorded on the di sk cou Id not be
verified).

CKSM ERR RorA The last record in the object module being read from BI has a checksum error.
If the job is in attend mode, operator response is solicited; an operator response
of S causes the Editor to read the next record from BI.

UU CLEARING] R
DELETING These messages (followed by ! !BEGIN WAIT) are output w~enever the indicated
SQUEEZING area operation is started. A key-in of S allows the operation to proceed.
TRUNCATING

CORE OVERFLOW A The last command cannot be processed for lack of background space.

DONE W Message is output when the operation is completed.

Appendix D 161

Table 0-4. RAD Editor Error and Warning Messages (cont.)

Message Type Meaning

DUP IOENT A The last object module read from BI cannot be added to the I ibrary with a
!#LADO command because it is already in the library.

DUPLICATE: area, W An attempt was made to add a file whose name already exists for this area.
filename

EDIT ERR A File directory data on the disk has been rendered invalid.

H# EMPTY oplb R The device assigned to the operational label is in manual mode.

EOF oplb A An unexpected end-of-file was encountered on the device having the
operational label oplb.

EOF READ FILE W An EOF has been encountered on the input file. Copying wi II continue until
EaT on the read file or EOT on the write file is encountered.

EaT oplb A An unexpected end-of-tape was encountered on the device having the
operational label oplb.

EaT WRITE FILE W An unexpected EOT occurred on the file currently receiving data. This is a
warning to the user that the output file is smaller than the input file (as in
!#FCOPY) but that the data already written is correct. The RAD Editor reads
the next command.

{~~} PROTE.CTEO:
R The specified area or filename has an SY or FG write protect code and an SY

area, filename key-in is not in effect. This message will be followed by !BEGIN WAIT.

FORMAT CONFLICT: W The filename being restored to the area conflicts in format or record size with
area, filename the existing filename in the area.

xxxx HAS ALT W An alternate track already exists in the bad track list for track xxxx.

IDENT NOT FOUND W The identification in start module item is blank, or there is no object module
on BI.

IlLEG BIN A An illegal binary record (first byte not X'FF ' or X'9F ') has been read in an
object module on BI. RAO Editor aborts.

INV CTRl W Control command is invalid. It cannot be recognized by RAD Editor or has
incorrect syntax.

INV I/O OP oplb A An invalid input/output operation was attempted on the device having the
operational label oplb.

LENGTH ERR oplb A A record of incorrect length was read from or written on the device having the
operational label oplb.

LOAD ERR A The required RAO Editor overlay cannot be loaded.

LaC pppp ERR:OOOl A During the !#GDTRACK- !#BDTRACK processing, the device number specified
was 1) not found in the system tables or, 2) was found to be a RAD rather than
a disk pack.

LaC pppp ERR:0002 A An end-of-tape was detected while writing the bad track I ist on sector 2.

LOC pppp E RR:0003 A An end-of-tape was detected while reading the bad track list on sector 2.

LOC pppp ERR:001O A An error was detected while assigning the operational label Xl to the device
number specified in the !#GOTRACK or !# BDTRACK command.

162 Appendix D

Table D-4. RAD Editor Error and Warning Messages (cont.)

Message Type Meaning

LOC pppp ERR:OlOO AC A !#GDTRACK or !#BDTRACK command requires a minimum of two fields
(e.g., 0 < DN ~ FF plus a track number or IALLI).

LOC pppp ERR:0102 A The device number field on the !#GDTRACK or !#BDTRACK command is a
null field or zero.

LOC pppp ERR:OllO AC The track number on a !#GDTRACK or !#BDTRACK command must be numeric
and 0 < track # ~ maximum track number for the device.

LOC pppp ERR:Olll AC User tried to !#GDTRACK or !#SDTRACK track zero.

LOC pppp E RR:0120 A An I/O error occurred during the write headers on the disk pack.

D

LOC pppp ERR:0130 A A RAD device number was used on a !#GDTRACK or !#BDTRACK command.

LOC pppp ERR:0140 AC User tried to create a bad track I ist on an inappropriate disk pack (Model 7242
and 7246).

LOC pppp ERR:0150 A An I/O error occurred during the read headers on the disk pack.

Lac pppp ERR:0170 AC User tried to use command !#BDTRACK -tdn, ALL on an inappropriate disk pack
(Model 7251 or 7252).

LaC pppp E RR:0200 A RAD Editor cannot find the device number specified on the ! #INITIALIZE
command in the system tables.

LOC pppp ERR:0210 A The device number on the !#INITIALIZE command specifies a RAD.

LOC pppp E RR:0230 A The bad track I ist for the specified device number does not exist in the system
tables.

LOC pppp E RR:0260 A No device format exists for the specified device number.

Lac pppp E RR:0261 A An undefined device format code was found in the system tables.

LOC pppp E RR:0300 A During the !#DPCOPY processing, no device format code was found for the
specified disk pack.

LOC pppp ERR:031O A The device number specified in the !#DPCOPY command was not found in the
I/O Control Subtable.

MAX TRACK W User has tried to !#GDTRACK or !#BDTRACK using a track that does not exist
EXCEEDED on the disk pack.

NO ALTERNATE W An alternate track is not available for execution of the !#BDTRACK command.

NO BLOCK oplb A No blocking buffer is available for the fi Ie assigned to the operational I abel
oplb.

NO GD/BD TRACK W User cannot !#GDTRACK or !#SDTRACK track zero.
ON TRACK 0

OVE RF LOW: area, W Allocation of the amount of storage indicated by the file parameter on the
filename !# ADD command or restoration of a file not currently allocated would cause

the permanent area to overflow, or a I ibrary file has overflowed during execu-
tion of a !ULAOD command.

PARAM ERR W Control command has a parameter error. A parameter has incorrect content,
has been omitted, or is not consistent with the other parameters.

Appendix D 163

Tabre D-4. RAD Editor Error and Warning Messages (cont.)

Message Type Meaning

#11 OPEN FILE,. NO W The file has an operational label assigned to it when a !#DElETE, !#TRUNCATE,
CHANGE: area, file fi¥ClEAR or !HSQUEEZE command is executed and the position of the file

changed. The file must be reassigned before it is used by another processor.

Ifff SAVE TAPE NOT R The save tape was not at load point when the r#SAVE command was encoun-
AT LOAD POINT tered and execution commenced.

#11 SEQ ERR RorA The last record in the object module being read from BI has a sequence error.

SZ ERR A The obiect module on BI cannot be placed in the library because it has more
than 61 external definitions and references.

11# TRACK ZERO BAD W During construction of a bad track list, track zero is found to be Hawed.

11# TRK xxxx NOT IN W User has tried to !#GDTRACK a track that does not exist in the bad track list.
BTL

If# TRUNCATED OPEN W The user truncated an active file.
FILE: area, filename

UNRECOVE R I/O A An irrecoverable I/o error occurred on the device assigned to the operational
oplb labeloplb.

WRITE PRO opJb A The file name assigned to the operational labef oplb is SY or FG write pro-
tected and an SY key-in is not in effect.

#/1 DO NOT ABORT W SQUEEZE in process.
DURING SQUEEZE

For RAD Editor aborts initiated by the RAD Editor itself
(i.e., not due to an X key-in by the operator), thefol­
lowing abort message is issued:

messages wiH be forrowed by a !! BEGIN WAIT message on
the OC device (abort otherwise). Only a few of the
messages are followed by an unconditional abort (code UT)
as indkated in Table D-5.

! ! BK G RE ABORT LOC zzzz

where

RE is the RAD Editor abort code.

zzzz is the location at which the abort occurred
(if significant).

UTILITY SUBSYSTEM MESSAGES AND ABORT CODE

UTILITY ERROR MESSAGES

The error messages issued by the Utility subsystem are listed
in Table D-5. If attend mode is in effect, most of these

164 Appendix D

UTILITY SUBSYSTEM ABORT CODE

Aborts of Utility Subsystem processing are indicated by the
folJowing form of abort message.

! !BKG UT ABORT LOC zzzz

where

UT is the UTILITY abort code.

zzzz is the location at which the abort occurred
(if s.ignificant).

Table D-5. Utility Error Messages

Message Meaning

** BOT oplb, device An attempt has been made to backspace over the magnetic-tape load
point or the beginning of a disk fi Ie, i. e., BOT was encountered be-
fore the required number of records or files had been passed.

** CAL SEQ ERR The Uti lity Executive has encountered a calling sequence error on a re-
turn from M:READ/M:WRITE. One reason may be an attempt to copy a
record with an odd byte count onto disk (may occur with BCD 7-track
tapes). See M:READ status returns in Chapter 4 of this manual.

** CKSM ERR oplb,device A checksum error was detected on a record read from UI or BI.

** CORE OVFLO The avai lable memory area used for prestoring commands or storing in-
put records (when the CORE option on the lUTILITY COpy command
is used) has overflowed. The Uti Ii ty program aborts.

** DELETE ERR No UI card images were found in the block to be deleted (for l*DELETE
and !*SUPPRESS commands). Message on DO only unless in attend mode.

** DEOF oplb,device Two consecutive fi Ie marks were encountered before the required num-
ber of records or fi les had been passed, i. e., ski pped, compared, etc. ,
or before the progr~am to be updated had been encoun tered.

** EMPTY oplb,device Manual intervention is required (the device is in the manual mode or no
devi ce is recognized).

** EOF oplb,device An unexpected tape mark, end-of-fi Ie (disk), or ! EOD has been read
from magneti c tape, cards, paper tape, keyboard/printer, or di sk fj Ie,
e.g., before a required number of records was passed.

** EOT oplb,device The end-of-tape or end of disk file was encountered before the required
number of records or fi les had been passed.

** ERR AREA An invalid RAD area name has been used.

** ERR FRGD An attempt has been made to assign a background operational label to
a foreground operational label, device-file number, or RAD file.

** ERR OPLB 1 The operational label to be assigned is invalid.

** ERR OPLB2 An attempt has been made to assign one operational labe I to an invalid
or undefined operational label or RAD fi Ie.

** IL RAD SEQ oplb,device The operational label was invalidly assigned to a random-access or
compressed EBCDIC disk file, or an attempt was made to skip, read,
or write more than one disk file.

** ILLEG BIN oplb,device The fi rst byte of a record read from UI or BI did not contain X'FF'
or X'9F'.

** INV CTRL A ! *MODIFY control command was interpreted from 51 when the Rec-
ord Editor was not in the modify mode.

** INV OPLB oplb,device The operational label is not val ide The "oplb,devi ce" portion of the
message may contain invalid data if input/output is attempted for an
operational label not recognized by the Monitor.

** INV I/O OP oplb,device An input/output operation is not meaningful for the requested
device.

Appendix 0 165

Table D-5. Utility Error Messages (cont.)

Message Meaning

** I/O ERR oplb,device The input/output calling sequence is in error, incorrect length is
specified, or no input/output is pending for a check operation.

** LD INPUT UI,device The modify mode was entered and updating is to be performed. The
operator responds by mounting the tape to be input and keying-in an
S response on OC to continue.

** LD LIST UI,device Both SI and UI are assigned to the same device. The operator responds
by mounti ng the tape to be I isted and changes the state of the devi ce •

** NO SPARES An attempt has been made to define a new background operational
label but no room is available in the corresponding table.

** NO name oplb,device Two consecutive !EODs or tape marks on UI, or one IEOD or tape
mark on BI were encountered during the editing process before the de-
sired number of modules had been copied (where "name" is the pro-
gram name not found).

** NO name UI,device Two consecutive !EODs or fi Ie marks (one end-of-fi Ie for a sequential-
access RAD file) are read from UI before the Object Module Editor has
inserted, replaced, or deleted a" requested modules.

** OP LB TABLE OVFL An attempt has been made to assign or input more than eight operational
labels. Only the first eight unique labels on an !*OPLB card will be
entered in the operational label table.

** PARAM ERR Case 1. Update data from SI contains an i "egal sequence number;
that is, a nonnumeric character. An error alarm is also
Ii sted on LO.

Case 2. A necessary control command parameter was omitted, or was ---
of invalid form (e.g., oplb), or was greater than 32,767.

Case 3. The ident parameter (on an !*IDENT card) is greater than 6,
the sequence number parameter is less than 2, or the sum of
the two parameters is greater than 8.

** PRE ERR The ! *PRESTORE command did not follow immediately after the
! *UTILITY command.

** PRE OVFLO The RAD prestore fi Ie on X5 has overflowed. The Uti lity program aborts.

** SEQ ERR oplb, devi ce A sequence error was detected in a record read from SI, UI, or BI. An
error alarm may be listed on LO also. (Message occurs on OC on Iy if
attend mode is in effect.)

** UNRECOV I/O oplb,device An irrecoverable input/output error has occurred after the maximum
number of retries has been unsuccessfully attempted.

** UNRECOV I/O UI,device An irrecoverable read error has occurred on UI. The partial card image
input and the message "UI IGNORED RECORD FOLLOWS xxxxxxxx"
(when xxxxxxxx is the previous nonblank UI ident and/or sequence
number) is output on LO.

** UN RECOV I/O UO,device An irrecoverable write error has occurred on UO. The card i mage to be
output, and the message "UO RECORD OMITTED" or "UO FILE MARK
OMITTED", are output on LO.

166 Appendix D

Table D-5. Utility Error Messages (coot.)

Message Meaning

** VERIFY ERR oplb,device An error has been found by the verification process. When a
verification error occurs, the COpy routine terminates execution
of the ! *VERIFY command for that device, but continues verifi-
cation on other input devices. If an error is detected on every
input device, the VERIFY function is terminated.

** WRITE PRO oplb,device An attempt has been made to write on a write-protected magnetic
tape or RAD fi Ie.

Appendix 0 167

APPENDIX E. USASCII-8 TO EBCDIC-8 CORRESPONDENCE

~ ROW 0 I 2 3 4 5 6 7 8 9 A B C D E F

NUL DLE KO K16 SP & - N26 N35 N24 N49 N56 { } \ 0
a

0/0 1/0 8/0 9/0 2/0 2/6 2/3] 1/12 12/3 12/10 13/1 13/8 7/11 7/13 5/12 3/0

SOH DCl Kl K17 NO N9 / N27 a j -- N57 A J K31 1
1

0/1 1/1 8/1 9/1 10/0 10/9 2/15 11/11 6/1 6/10 7/14 13/9 4/1 4/10 9/15 3/1

STX DC2 K2 SYN N1 NlO NJB N28 b k s N58 B K 5 2
2

0/2 1/2 8/2 1/6 10/1 10/10 11/2 11/12 6/2 6/11 7/3 13/10 4/2 4/11 5/3 3/2

EXT DC3 K3 K19 N2 Nll N19 N29 c I t N59 C L T 3
3

0/3 1/3 8/3 9/3 10/2 10/11 11/3 11/13 6/3 6/12 7/4 13/11 4/3 4/12 5/4 3/3

K28 K29 K4 K20 N3 N12 N20 N30 d m u N60 D M U 4
4

9/12 9/13 8/4 9/4 10/3 10/12 11/4 11/14 6/4 6/13 7/5 13/12 4/4 4/13 5/5 3/4

HT K5 LF K21 N4 N13 N21 N31 e 0 n v N61 E N V 5
5

0/9 8/5 0/10 9/5 10/4 10/13 11/5 11/15 6/5 6/14 7/6 13/13 4/5 4/14 5/6 3/5

K6 BS ETB K22 N5 N14 N22 N32 f 0 w N62 F 0 W 6
6

8/6 0/8 1/7 9/6 10/5 10/14 11/6 12/0 6/6 6/15 7/7 13/14 4/6 4/15 5/7 3/6

DEL K7 ESC EOT N6 N15 N23 N33 9 P x N63 G P X 7
7

7/15 8/7 1/11 0/4 10/6 10/15 11/7 12/1 6/7 7/0 7/8 13/15 4/7 5/0 5/8 3/7

K23 CAN K8 K24 N7 N16 N24 N34 h q y GO H Q y 8
8

9/7 1/8 8/8 9/8 10/7 11/0 11/8 12/2 6/8 7/1 7/9 14/0 4/8 5/1 5/9 3/8

K13 EM K9 K25 N8 N17 N25 \ i r z Gl I R Z 9
9

8/13 1/9 8/9 9/9 10/8 11/1 11;9 6/0 6/9 7/2 7/10 14/1 4/9 5/2 5/10 3/9

K14 K18 K10 K26 [] I : N36 N43 N50 G2 G8 G14 G20 G26
A r

8/14 9/2 8/10 9/10 5/11 5/13 7/12 3/10 12/4 12/11 13/2 14/2 14/8 14/14 15/4 15/10

VT K15 Kll K27 $ # N37 N44 N51 G3 G9 GI5 G21 G27 ,
B

0/11 8/15 8/11 9/11 2/14 2/4 2/12 2/3 12/5 12/12 13/3 14/3 14/9 14/15 15/5 15/11

FF FS K12 DC4 < *
% Ceil N38 N45 N52 G4 GlO G16 G22 G28

C
0/12 1/12 8/12 1/4 3/12 2/10 2/5 4/0 12/6 12/13 13/4 14/4 14/10 15/0 15/6 15/12

CR GS ENQ NAK () - I N39 N46 N53 G5 Gll G17 G23 G29
D

0/13 1/13 0/5 1/5 2/8 2/9 5/15 2/7 12/7 12/14 13/5 14/5 14/11 15/1 15/7 15/13

SO RS ACK K30 + ; > = N40 N47 N54 G6 G12 G18 G24 G30
E

0/14 1/14 0/6 9/14 2/11 3/11 3/14 3/13 12/8 12/15 13/6 14/6 14/12 15/2 15/8 15/14

51 US BEL SUB I 1 ?
II N41 N48 N55 G7 G13 G19 G25 EO

F
0/15 1/15 0/7 1/10 2/1 5/14 3/15 2/2 12/9 13/0 13/7 14/7 14/13 15/3 15/9 15/15

168 Appendix E

APPENDIX F. LINE PRINTER VFCs (WRITE BINARY)

Print Data Chained to Printer
Pseudo YFC Print with Format Defin ition Real YFC Order Text (Yes/No) Model

X'60' Pri nt, su ppress upspace X'60' PF Yes A, B, C

X'80' Pri nt, suppress upspace X'60' PF Yes A, B, C

X181' Pri nt, then space 1 line X'CO' PF Yes A, B, C

X'82'-X'SF' Pri nt, then space n lines (2-15) 1) X'60' PF Yes A, B, C
2) X'CO' +n F No

X'90'-X I 9F' Print, then skip to channel n 1) X'601 PF Yes A, B, C
2) X'FO' +n F No

X'AO'-X'AF' Space n lines, print and inhibit 1) X'CO' +n F No A
upspace 2) X'60' PF Yes

X'EO' +n PF Yes B, C

X' BO'-X' BF' Skip to channel n, print and 1) X'FO' +n F No A
inhibit upspace 2) X'60' PF Yes

X'DO' +n PF Yes B, C

X'CO'-X'CF' Space n I ines, print and upspace X'CO' +n PF Yes A, B, C

X'DO'-X'DF' Skip to channel n, print and 1) X'FO' +n F No A
inhibit upspace 2) X'60' PF Yes

X'DO' +n PF Yes B, C

X'EO'-X'EF' Space n lines, print and inhibit 1) X'CO' +n F No
upspace 2) X'60' PF Yes A

X'EO' +n PF Yes 8, C

X'FO'-X'FF' Skip to channel n, print and "lrl'\l , ~ nr Yes A, B, C A rv -n rr
upspace

Notes: PF - Pri nt wi th format
F - Fonnat
A - Printer models 3451, 7440, 7445
B - Printer models 7441, 7442, 7446, 3461, 3463, 3464, 3465, 3466
C - Printer model 7450
n - Number of lines to skip or channel number. N is I imited by line printer capabil ities (e. g., a skip

to channel> 1 for the 7450 I ine printer will result in a skip to channell).

Invalid YFCs result in a single space«X'CO') operation.

Appendix F 169

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

A
abort codes, 145, 156, 159, 164
ABS control command (Monitor), 10
accounting and elapsed time, 5
AD D control command, 104
Ala Receivers, 85
allocation

core memory, 73,87
RAD, 72, 101
spooling fi les, 142

ANS FORTRAN IV, 6
ASSIGN control command (Monitor), 11
ASSIGN control command (Utility), 114
ATTEND control command (Monitor), 13
automatic dialing (COC), 67

B
B (branch) Debug command, 137
background, 8,2
Basic FORTRAN IV, 6
Basic Spooling System, 141-145
BLOCK control command, 93
blocking buffers, 71,93
branching to servi ce routines, 31
BSS, 7
BUFEND control command, 95

c
C (debug input devi ce) Debug control, 137
C: control command (Monitor), 14
calling COPY, 115
calling DUMP, 117
calling Object Module Editor, 119
ca II i ng Over I ay Loader, 92
calling RAD Editor, 104
call ing Record Editor, 120
call ing Sequence Editor, 122
calling Utility, 112
card punch, 45
ca rd reader, 40
CC control command (Monitor), 14
CHANGE control command, 121
Character-Oriented Communi cations (COC)

equipment handler, 62-67
checkpoint, 4
checkpointing background, 86
CLEAR control command, 108
COMPRESS processor, 149
compressed RAD fj les, 9
computing library file sizes, 102
control command diagnosti cs, 156

control command, Extended Symbol format, 19
control command, FORTRAN IV format, 20
control commands, Monitor, 10-18
control commands, Processor, 18-20
control commands, Uti lity, 113
Control Panel Task, 76
COpy control command, 115
COpy operational labels, 115
COpy routine, 114
core layout, Overlay Loader, 89

o
D (define) Debug command, 134
data files, 4
data files, RAD, 102
Debug commands, 134

B, 137
C, 137
D, 134
E, 137
G, 138
I, 135
K, 137
M, 137
P, 137
Q, 137
R, 136
S, 135
T, 136
X, 136

Debug control, 133
Debug error messages, 138
Debug expansion of instruction, 138
Debug insertion structure, 139
Debug processor, 133-140
DEFINE control command (Monitor), 14
DELETE control command (RAD Editor), 105
DELETE control command (UtIlity), 120
DPCOPY control command, 106
DUMP control command (RAD Editor), 107
DUMP control command (Uti lity), 117
DUMP operational labels, 117
DUMP routine, 116

E
E (exit from interrupt level) Debug command, 137
editing operations, M:COC, 66
END control command (Overlay Loader), 100
END control command (RAD EditoD, 110
END control command (Uti lity), 114
EOD control command (Monitor), 14
EXCLUDE control command, 98

Index 171

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

EXPAND processor, 149
Extended Symbol, 6, 19

F
F key-in, 28
FBACK control command (Monitor), 15
FBACK control command (Utility), 113
FCOPY control command (Editor), 106
file name, 4
fi les, computing I ibrary size, 102
files, data, RAD, 102
files, GO and OV, 21
files, library, RAD, 102
files, random RAD, 71
fi les, sequential RAD, 70
files, special editing random-access, RAD, 42
files, special editing sequential, RAD, 41
files, write on random-access, RAD, 46
FIN control command (Monitor), 15
floating accumulator, 9
foreground, 8,2
foreground initialization, 80
foreground I/o queuing, 4,68,85
foreground priority levels, 78
foreground priority levels and I/o priority, 84
foreground programs, 73
foreground user's Debug capability, 133
FORTRAN control command (Processor), 20
FSKIP control command (Monitor), 15
FSK IP control command (Uti lity), 113

G
G {global symbol table pointer}, 138
GDTRACK control command, 109
GO and OV files, 21
Granules, 71
graph plotter, 147

H
HIO, 35
hardware requirements, (see also RBM/SM Reference

Manual, 90 30 36)
HEX control command (Monitor), 15, 132
hexadecimal patch cards, 132

I (insert) Debug command, 135
I/O check, 36
I/o completion codes, 39
I/O end action, 68
I/O initiation, 68
I/O operations, 68-72
I/o queuing, 4,68
I/O recovery procedure, 22
I/o wait, 85,4

172 Index

IDENT control command, 123
INDUMP processor, 148
INCLUDE control command, 98
INITIALIZE control command, 109
initiating BSS, 142
input/output task, 76
INSERT control command, 120, 121

J
job, 9
JOB control command (Monitor), 15
Job Control Processor (JCP), 10
job step, 9
JOBe control command (Monitor), 15

K
K (keyboard/printer) Debug command, 137
key-ins, 24, 176,26-30, 147

BL, 27
BR, 27
C:, 27
Ce,27
D, 28
DA, 27
DB, 27
DC, 27
DE, 28
DF, 28
DM, 28
DR, 28
DS, 28
DU, 28
F, 28
FG, 29
FL, 29
FR, 29
H, 29
KP, 29
L, 29
M,29
Q,30
R, 30
RA, 30
Re, 30
RD, 30
RE, 30
S, 30
SY, 30
T, 30
TO, 30
UL, 30
W,30
X, 30
Z, 30

keyboard/printer, special editing, 41
keyboard/printer, write, 44

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

L
LADD control command, 106
language processors, 6
LB control command, 97
LCOM control command, 98
LCOPY control command, 106
LD control command, 97
LDE LETE control command, 106
LIB control command, 95
libra ry files, 4, 102, 131
library files, RAD, 102
LIMIT control command (Monitor), 15
line printer, write to, 45
LIST control command, 119, 121
LMAP control command, 107
Loader error messages, 158, 100
Loader II 0 abort messages, 158
loading BSS, 141
loading foreground programs, 77
loading nonresident foreground programs, 80
loading RBM, 130
loading resident foreground programs, 77
logical/physical device equivalence, 69
Long (load) map format, 90
LREPLACE control command, 106
LSQUEEZE control command, 106

M
M (modify memory) Debug command, 137
M:ABORT, 49
M:ASSIGN, 56
M:CKREST, 50
M:CLOSE, 53
M:COC, 62-67
M:CTRL, 46
M:DA TIME, 48
M:DEFINE, 55
M:DKEYS, 54
M:DOW,62
M:EXIT, 50
M:HEXIN, 50
M:INHEX, 50
M:IOEX, 32
M:LOAD, 51
M:OPEN, 52
M:OPFILE, 60
M:POP, 59
M:READ, 36
M:RES, 59
M:RSVP, 60
M:SAVE, 49
M:SEGLD, 54
M:TERM, 49
M:WAIT, 54
M:WRITE, 42
machine fault task, 74

magnetic tape, special editing, 41
MAP, 90
MAP control command, 106
MD control command, 98
memory requirement, DEBUG, 133
MESSAGE control command (Monitor), 16
MESSAGE control command (RAD Editor), 110
MESSAGE control command (Utility), 113
messages to the operator, boot-time, 130
messages, Debug error, 138
messages, loader error, 158
messages, Monitor, 22
messages, RAD Editor, 161
messages, Utility, 165
ML control command, 95
MODIFY control command, 119, 121
Monitor constants, 154
Monitor control commands, 10

ABS, 10
ASSIGN, 11
ATTEND, 13
C!, 14
ce, 14
DEFINE, 14
EOD, 14
FBACK, 15
FIN, 15
FSKIP, 15
HEX, 15
JOB, 15
JOBC, 15
LIMIT, 15
MESSAGE, 16
PAUSE, 16
PMD, 16
PURGE, 16
RBACK, 15
REL, 17
REWIND, 17
RSKIP, 15
TEMP, 17
UNLOAD, 17
WEOF, 18
XED, 18
XEQ, 18

Monitor loading, 130
Moni tor messages, 22
Monitor service routines, 31-67
Monitor tasks, 73
Monitor zero table, 152
MP control command, 95
MS control command, 95
multiply/divide exception tasks, 76

N
nonresident foreground, 9
nonresident foreground creation or updating, 131
nonresident foreground programs, 73

Index 173

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

nonresident foreground programs, loading, 80
nonresident section, Monitor, 1

o
Object Module Editor control commands, 119
Object Module Editor operational labels, 118
Object Module Editor routine, 117
OlOAD control command (Overlay), 92
operational labels, 11
operational label usage, 150
operator communication, 22,30
operator control, 26
OPLBS control command (Utility), 115
OV file, 20
overlay capabi Ii ties, 4
overlay cluster configuration, 89
overlay cluster organization, 87
Overlay control commands, 92-100

BLOCK, 93
BUFEND, 95
END, 86
EXCLUDE, 98
INCLUDE, 98
lB, 97
LCOM,98
LD, 97
LIB, 95
MD,98
Ml,95
MP,95
MS,95
PUB LIB, 99
RES, 98
ROOT, 97
SEG, 99
TCB, 96

Overlay loader, 87,6
Overlay loader abort codes, 158
Overlay loader operational labels, 89
overlay structure example, 88

p

P (selective dumps) Debug commands, 137
paper tape, special editing, 41
paper tape, write to, 44
patches, 132
PAUSE control command (Monitor), 16
PAUSE control command (RAD Editor), 110
PAUSE control command (Utility), 113
PLOT processor, 147
plotter, 147
plotter symbiont, 7
PMD control command (Monitor), 16
Power Off Task, 74
Power 0 n Task, 73
preparing the program deck, 125-129

174 Index

PRESTORE control command, 113
procedures, I/O recovery, 22
Processor control commands, 18
Processor files, 4
Processor, system, 6
program, 8
Protection Violation Task, 76
PUBLIB control command, 99
Pub Ii c Library, 4, 131
Pub Ii c library creation or updating, 131
PURGE control command (Monitor), 16

Q
Q (qu it) Debug command, 137
queuing, I/O, 64

R
R (remove snapshot or insertion) Debug command, 136
RAD allocation, 101
RAD area mnemoni cs, 3, 110
RAD Editor, 101-110,6
RAD Editor control commands, 104

ADD, 104
BDTRACK, 109
CLEAR, 108
DELETE, 105
DPCOPY, 106
DUMP, 107
END, 110
FCOPY, 106
GDTRACK, 109
INITIALIZE, 109
LADD, 106
lCOPY, 106
lDELETE, 106
LMAP, 107
lREPLACE, 106
LSQUEEZE, 106
MAP, 107
MESSAGE, 110
PAUSE, 110
RESTORE, 108
SAVE, 107
SQUEEZE, 108
TRUNCA TE, 110
VERIFY, 108

RAD Editor messages, 161
RAD Editor operational labels, 103
RAD Editor warning messages, 161
RAD file management, 72
RAD files, 70
RAD/disk areas, 3
RAD/disk pack area organization, 101
RADEDIT control command, 104
random access RAD files, write on, 46
random files, 71

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

random-access RAD fj les, special editing, 41
RBACK control command (Monitor), 15
RBACK control command (Uti lity), 114
RBM abort codes, 156
RBM and foreground user's interface, 133
RBM boot procedure, 130
RBM characteristics, 1
RBM Control Task, 9,77
RBM subsystems, 6
RBM system processors, 6, 18
RBM/processor interface, 20
RCOC, 66
read automatic, 40-42
read binary, 40-42
read binary from keyboard/printer, 41
read binary from paper tape, 41
real-time priority, M:READ, 41
real-time programming, 73-85
rebooting the system from RAD, 130
Record Editor operational label, 120
Record Editor routine, 120
reentrant routines, 5
REL control command (Monitor), 17
RES control command, 98
resident foreground creation or updating, 131
resident foreground programs, 73
resident foreground programs, loading, 77
resident foreground, schedul ing tasks, 77
resident section, Monitor, 1
restart, 4
RESTORE control command, 108
return registers, M:READ, 37
return registers, M:WRITE, 44
return status from M:IOEX, 34
return status from M:READ, M:WRITE, M:CTRL, 38
REWIND control command (Monitor), 17
REWIND control command (Uti lity), 114
ROOT control command, 97
routines, monitor service, 31

Abort, M:ABORT, 49
Absolute Core Image Loader, M:LOAD, 51
Allocate Temp Storage without Transfer, M:RES, 59
Assign RAD Files, M:ASSIGN, 56
Character-Oriented Communi cation, M:COC, 62
Checkpoint/Restart, M:CKREST, 50
Close RAD File, M:CLOSE, 53
Convert OPLB to DFN, M:OPFILE, 60
Date and Time-of-Day, M:DATIME, 48
Diagnostic Output Writer, M:DOW, 62
General Control, M:CTRL, 46
General I/O Driver, M:IOEX, 32
General Read, M:READ, 36
General Write, M:WRITE, 42
Hex to Integer Conversion, M:HEXIN, 50
Integer to Hex Conversion, M:INHEX, 50
Interrupt Restore, M:EXIT, 50
Interrupt Save, M:SAVE, 49
Load Overlay Segments, M:SEGLD, 54
M:COC Service, 62
Normal Exit from Background, M:TERM, 49

Open RAD Fi Ie, M:OPEN, 52
RAD File Definition, M:DEFINE, 55
Read Data Keys, M:DKEYS, 54
Reserve or Release Peripherals, M:RSVP, 60
Simulated Wait Instruction, M:WAIT, 54
Temp Storage Release, "M:POP, 59

routines, reentrant, 5
routines, SYSGEN optional, 147
RPG,6
RSKIP control command (Monitor), 15
RSKIP control command (Utility), 114

s
S (insert snapshot) Debug command, 135
SAVE control command, 107
save tape, system, 130
scheduling resident foreground tasks, 77
secondary storage management, 3
SEG control command, 99
semiresident foreground program, 73
SEQUENCE control command, 123
Sequence Editor control commands, 122
Sequence Editor operational labels, 122
Sequence Editor routine, 122
sequential files, 70
sequential RAD files, special editing, 41
sequential RAD fi les, write on, 45
servi ce processors, 6
service routines, 32
SIO, 35
sol icited control, 26
SORT, 6
special editing for card reader, 45
special editing for magnetic tape, 41
special editing for paper tape or keyboard/printer, 41
special editing for random-access RAD files, 42
special editing for sequential RAD files, 41
spool ing system, 141-145
SQUEEZE control command, 108
standard background operational labels, 11
standard foreground operational labels, 12
standard constants, 153
standard device unit numbers, 12',69
startup, system, 130
status returns for M:COC, 65
SUPPRESS control command, 123
symbiont plotting system, 147
system communication, 22
system equipment, 1
system initial ization and creation, 5
system patching, 132
system save tape, 130
system startup, 130-132

T
T (selective dump) Debug command, 136
tape, system save, 130

Index 175

Note: . For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

task, 8
Task Control Block (TCB) functions, 80
task dismissal on wait I/O, 84
task entrance format ,83
TCB control command, 96
TEMP control command (Monitor), 17
temporary stack, 9
transfer vector for monitor services, 31
TRUNCATE control command, 110

u
UNLOAD control command (Monitor), 17
UNLOAD control command (Utility), 114
unsolicited control, 26
UTILITY control command, 112
Uti lity Control commands, 113

ASSIGN, 114
BCOPY, 116
CHANGE, 121
COPY, 116
DELETE, 120, 121, 123
DUMP, 117
END, 114
FBACK, 113
FSKIP, 113
IDENT, 123
INSERT, 120, 121
LIST, 119, 121
MESSAGE, 113
MODIFY, 119, 121
MODIFY SYSTEM, 119
OPLBS, 115
PAUSE, 113
PRESTORE, 114
RBACK, 114
REWIND, 114
RSKIP, 114
SEQUENCE, 123, 124
SUPPRESS, 123
UNLOAD, 114
UTILITY, 111

176 Index

UTILITY COPY, 115, 116
UTI LIlY DUMP, 117
UTILITY OMEDIT, 119
UTILITY RECEDIT, 120
UTILITY SEQEDIT,]22
VERIFY, 116
WEOF, 114

Uti Iity Control Function processor, 113
Utility error messages, 165
Utility executive program, 112
Utility I/o error messages, 165
Utility operational labels, 115, 117, 118, 120, 122
Utility program organization, 111
util i ty programs, 111-124
Uti Iity source input interpreter, 111
Utility subsystem, 6, 111

v
VERIFY control command (Editor), 108
VERIFY control command (Utility), 116

w
wait I/o, 85,4
WEOF control command (Monitor), 18
WEOF control command (Utility), 114

x
X (step snapshot) Debug command, 136
XED control command (Monitor), 18
XEQ control command (Monitor), 18
XSP, 7
XSYMBOL control command (Processor), 19

z
zero table, 152

Corporation
)1 South Aviation Boulevard

EI Segundo, California 90245

.Reader Comment Form
We would appreciate your comments and suggestions for improving this publication.

XEROX

Publ ication No. I Rev. Letter I Title I Current Date

How did you use this publication? Is the material presented effectively?

o Learning o Installing 0 Sales o Fully Covered DWell o Well Organized o Clear III ustrated o Reference o Maintaining 0 Operating

What is your overall rating of this publication? What is your occupation?

o Very Good o Fair o Very Poor

o Good o Poor

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

Your Name & Return Address

2190(12172)
Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mai led in U.S.A.)

Staple

Fold

Attn: Programming Publications

Fold

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Xerox Corporation
701 South Aviation Boulevard
EI Segundo, California 90245

First Class
Permit No. 229

EI Segundo,
California

701 South Aviati on Boulevard
EI Segundo, California 90245
213679-4511

-

(

XEROX"-,,,

XEROXB Is a trademark of XEROX CORPORATION .

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	0010
	0011
	0012
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	replyA
	replyB
	xBack

