Xerox Real-Time Batch Monitor (RBM)

Xerox 530 and Sigma 2/3 Computers

Real-Time and Batch Processing
Reference Manual

BXEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXERS
ROXEROXEROXEROXEROXEROXEROXE
EROXEROXEROXEROXEROXEROXEROXE
IXEROXEROXEROXEROXEROXEROXERO S

QOXEROXEROXEROXEROXEROXEROXERC
ROXEROXEROXEROXEROXEROXEROXER
ROXEROXEROXEROXEROXEROXEROXERR

KEROXEROXEROXEROXEROXEROXEROX

DXEROXEROXEROXEROXEROXEROXERO

YOXEROXEROXEROXEROXEROXEROXER(

ROXEROXEROXEROXEROXEROXEROXE:

RBEROXEROXEROXEROXEROXEROXEROXE
XEROXEROXEROXEROXEROXEROXEROX
OXEROXEROXEROXEROXEROXEROXERC

EROXEROXEROXEROXEROXEROXEROXER
B ROXEROXEROXEROXEROXEROXEROXE

;\ EROXEROXEROXEROXEROXEROXEROXE

5

Xerox Corporation)

701 South Aviation Boulevard X \OX
El Segundo, California 90245
213 679-4511

Xerox Real-Time Batch Monitor (RBM)

Xerox 530 and Sigma 2/3 Computers

Real-Time and Batch Processing
Reference Manual

90 10 371

February 1975

Price: $6.50

Printed in U.S.A.

REVISION

This publication is a major revision of the Xerox Real-Time Batch Monitor (RBM)/RT,BP Reference Manual for
Xerox 530 and Sigma 2/3 computers, Publication Number 90 10 37H (dated June, 1973). Technical changes made to
the text are for the GOO version of RBM. All technical changes from that of the previous manual are indicated by
a vertical line in the margin of the page.

RELATED PUBLICATIONS

Title : Publication No.
Xerox 530 Computer/Reference Manual . o 20 19 60
Xerox Sigma 2 Computer/Reference Manual - 9009 64
Xerox Sigma 3 Computer/Reference Manual s k 90 15 92
Xerox Real-Time Batch Monitor (RBM)/OPS Reference Manual 90 15 55
Xerox Real-Time Batch Monitor (RBM)/SM Referénce Manual 90 30 36
Xerox Real-Time Batch Monitor (RBM)/User's Guide 90 17 85
Xerox Real-Time Batch Monitor (RBM)/System Technical Manual 90 1153
Xerox Extended Symbol /LN,OPS Reference Manual 90 10 52
Xerox Symbol/LN,OPS Reference Manual , 20 10 51

‘ Xerox Basic FORTRAN and Basic FORTRAN IV/LN Reference Manual 90 09 67
Xerox Basic FORTRAN/OPS Reference Manual 90 10 61
Xerox Basic FORTRAN IV/OPS Reference Manual 90 15 25
Xerox FORTRAN/Library Technical Manual 90 10 36
Xerox ANS FORTRAN IV/LN Reference Manual 90 18 06
Xerox ANS FORTRAN IV/OPS Reference Manual 90 18 07
Xerox Sort/Reference Manual - : 90 17 87
Xerox Report Program Generator (RPG)/Reference Manual 90 18 41

Manual Content Codes: BP - batch processing, LN - language, OPS - operations, RP - remote processing,
RT - real-time, SM - system manogement, TS - time-sharing, UT - utilities.

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features
may depend on a specific configuration of equipment such as additional tape units or larger memory. Customersshould consult their Xerox sales representative
for details.)

GLOSSARY

1.

2.

INTRODUCTION

RBM Characteristics

CONTENTS

—

Resident Section

Nonresident Section
System Environment

Foreground (High~Level Priority Response)
Background (Low-Level, No Priority)
Secondary Storage Management

Overlay Capabilities

Task Dismissal

Checkpoint/Restart

Public Library

Reentrant Routines

Accounting and Elapsed Time
System Initialization and Creation
RBM Subsystems and Processors

Standard Subsystems

Language and Service Processors
Optional Foreground Facilities

RBM Terms and Processes

Task

Program

Foreground

Background

Job

Job Step

Monitor Service Routines

Temporary Stack

Floating Accumulator

RBM Control Task

Nonresident Foreground
Compressed RAD Files

NV VWOV OV OVOOOOONITOOODLOUOUVEDBDDARDWNN—~ ——

CONTROL COMMANDS 10
Job Control Processor (JCP) 10
Monitor Control Commands 10
ABS 10
ASSIGN N
ATTEND 13
C: 14
CC 14
DEFINE 14
EOD 14
FIN 15
FSKIP, FBACK, RSKIP, RBACK 15
HEX ' 15
JOB 15
JOBC 15
LIMIT ___ 15
MESSAGE 16
PAUSE 16

System Communication

Operator Control

PMD

PURGE

REL

REWIND

TEMP

UNLOAD

‘WEOF

XEQ

XED

Processor Control Commands '
. Extended Symbol Control Command Format

FORTRAN IV Contirol Command Format
RBM/Processor Interface

GO and OV Files

OPERATOR COMMUNICATION

/O Recovery Procedure

Solicited Control

Unsolicited Control

* Comment

BL

BR

C

CC

DA

DB

DC

DE

DF

DM

D(1]
DR

DS

DU

F

FG

FL

FR

H

KP

L
M

Q

R

RA

RE

RC

RD

S

SY

T

TO

UL

%

X

Z

16
16
17
17
17
17
18
18
18
18
19

- 2

20
20

22

22
22
26
26
26
27
27
27
27
27
27
27
27
28
28
28
28
28
28
28
28
29
29
29
29
29
29
29
30
30
30
30
30
30
30
30
30
30
30
30
30
30

iii

4.

MONITOR SERVICE ROUTINES

Branching to Service Routines

Service Routines

M:IOEX

TIO, TDV, HIO

SIO

/O CHECK

M:READ

M:WRITE

M:CTRL

M:DATIME

M:TERM

M:ABORT

M:SAVE
M:EXTT

M:-HEXIN

M:INHEX

M:CKREST

M:LOAD

M:OPEN

M:CLOSE

M:DKEYS

M:WAIT

M:SEGLD
M:DEFINE

M:ASSIGN

M:RES

M:POP

M:OPFILE

M:RSVP

M:DOW

M:COC

I/O OPERATIONS

Byte-Oriented System

1/O Initiation

End Action

Logical/Physical Device Equivalence
Logical Devices

RAD Files

Sequential Files

Random Files

Granules-

Blocking Buffers
RAD File Management

REAL-TIME PROGRAMMING

Foreground Programs
Resident Foreground Programs
Semiresident Foreground Programs
Nonresident Foreground Programs

Monitor Tasks

Power On Task

Power Off Task

Machine Fault Task
Protection Violation Task

Multiply/Divide Exception Tasks

31

31
32
32
35
35
36
36
42
46

49
49
49
50
50
50
50
51
52
53
54
54
54
55
56
59
59
60

62
62

68

68

68
69
69
70
70
71
71
71
72

73

73
73
73
73
73
73
74
74
76
76

Input/Output Task 76

Control Panel Task 76
RBM Control Task 77
Scheduling Resident Foreground Tasks____ 77
Loading Foreground Programs 77
Loading Nonresident Foreground Programs 80
Foreground Initialization 80
Task Control Block Functions 80
Foreground Priority Levels and 1/O Priority 84
Task Dismissal 84
AIO Receivers 85
CLOCK] Receiver 85
Checkpointing the Background 86
OVERLAY LOADERS 87
Overlay Cluster Organization 87
Core Layout During Loading 89
Overlay loader Operational Labels 89
Map 20
Calling Overlay Loader 92
COMMON Allocation in Foreground
Loading : 93
Control Command Format 93
Control Command Repertoire 93
BLOCK 93
BUFEND 95
LB 95
MS, ML, MP _ 95
TCB 96
ROOT 97
LD 97
18 97
INCLUDE 98
EXCLUDE 98
MD 98
RES 98
LCOM 98
SEG 99
PUBLIB 99
END 100
Loader Error Messages 100
RAD EDITOR » 101
Standard RAD/Disk Pack Area Organization 101
Data Files 102
Library Files 102
Algorithms for Computing Library File Sizes 102
RAD Editor Operational Labels 103
Calling RAD Editor 104
Control Command Format 104
Control Command Repertoire 104
ADD . 104
DELETE 103
FCOPY 106
DPCOPY 106
LADD 106
LREPLACE 106
LDELETE 106

LCOPY 106

LSQUEEZE

MAP

LMAP

DUMP

SAVE

VERIFY

RESTORE

SQUEEZE

CLEAR

BDTRACK

GDTRACK

INITIALIZE

MESSAGE

PAUSE

TRUNCATE

END

RAD Editor Messages

UTILITY

Introduction

Utility Program Organization
Control Routine Operational -Labels
Calling Utility

Control Command Format

Control Function Commands

FBACK

FSKIP

MESSAGE

PAUSE

PRESTORE

REWIND

RBACK

RSKIP

UNLOAD

END

WEOF

ASSIGN

COPY Routine

COPY Operational Labels
COPY Operating Characteristics
Calling COPY

COPY Control Commands

OPLBS

COPY

BCOPY

VERIFY

DUMP Routine

DUMP Operational. Labels

DUMP Operating Characteristics
Calling DUMP

DUMP Control Command

Dump

Object Module Editor Routine

Object Module Editor Operational Labels

Object Module Editor Operating -
Characteristics

Calling Object Module Editor
Object Module-Editor Control Commdnds
LIST ‘

MODIFY

106
107
107
107
107
108
108
108
108
109
109
109
110
110
110
110
110

111

i
111
112
112
113
113
113

_ 113

113
113
113
114
114
114

114

114
114
114
114
115
115
115
115
115
116
116
116
16
17
117

117

17

1z

117
118

118
19
119
119

119

MODIFY System 119

INSERT 120
DELETE 120
Record Editor Routine 120
Record Editor Operational Labels _____ 120
Record Editor Operating Characteristics 120
Calling Record Editor 120
Record Editor Control Commands —— 12]
LIST 121
MODIFY 121
DELETE 121
INSERT 121
CHANGE 121
Sequence Editor Routine 122
Sequence Editor Operational Labels 122
Sequence Editor Operating Characteristics 122
Calling Sequence Editor 122
" Sequence Editor Generate Control Command_ 123
SEQUENCE 123
Sequence Editor Update Control Commands____ 123
INDENT 123
DELETE 123
SUPPRESS 123
SEQUENCE 124
Utility Error Messages 124
10. PREPARING THE PROGRAM DECK 125
Extended Symbol Examples 125
Assemble Source Program, Listing Output
and Binary Output 125

Assemble in Batch Mode, Listing Output
and Binary Output with Symbol

Cross-Reference 125
Assemble, Load, and GO from User
Defined OV File, Listing Output _ 125
Assemble Source Program, Listing Qutput,
LOAD and GO : 126
Basic FORTRAN 1V Examples 126
Compile Multiple Programs 126
Compile, Listing Output, LOAD and GO_ 126
Compile and Execute Foreground Program 127
Segmented Program Examples ‘ 127
Assemble Segmented Background Program,
LOAD and GO 127
Load and Execute Multiple Object Modules __ 128
RAD Editor Examples ; : 128
Build Public Library 128
Load Routines in User. Labrqry_________ 129
Utility Example - 129
Create a Control Command File______ 129
11, SYSTEM STARTUP ' ‘ 130
System Save Tape 130
RBM Boot Procedure 130
Public Library Creation or Updatmg 13

Resident Foreground Creation or Updating 131
System Patching i : 132

12. DEBUG

Introduction

General Description

Foreground User's Capability

Overlay User Restrictions

RBM and Foreground User's Interface
Memory Requirement and Insertion Block
Definition

Debug Control
Debug Commands

OOMWZTRATVADXN~T

Debug Error Messages

Debug Expansion of Instructions
Debug Insertion Structure

Debug Snapshot Calling Sequence

13. BASIC SPOOLING SYSTEM

Purpose

Implementation Philosophy

Loading BSS
Allocating Spooling Files

Initiating BSS

BSS Operation and Control

Forms Control
Abort Codes

Assembly Options

INDEX

APPENDIXES
A. ADDITIONAL RBM PROCESSORS

Symbiont Plotting System

Unsoficited Operator Key-ins for PFor
Basic Plotter Contro! Subroutines
INDUMP

INDUMP Loading Techniques

INDUMP Operations
COMPRESS

EXPAND

B, RBM OPERATHONAL LABEL USAGE

C. SYSTEM ZERO TABLE AND CONSTANTS

.
Vi

133

133
133
133
133
133

133
133
134
134
135
135
136
136
136
137
137
137
137
137
137
137
138
138
138
139
139

141

141
141
141
142
142
144
144
145
145

171

147

147
147
147
148
148
148
149
149

150

152

D.

10,
11

12,

LN
.

Gt
.

ERROR MESSAGES, WARNING MESSAGES,

AND ABORT CODES 156
RBM Messages and Abort Codes 156
JCP Control Command Diagnostics 156
RBM Abort Codes 156
Overlay Loader Messages and Abort Codes 158
1/O Error Message 158
Loader Error Messages 158
Loader Abort Codes 159
RAD Editor Messages and Abort Code 159
Utility Subsystem Messages and Abort Code 164
Utility Error Messages 164
Utility Subsystem Abort Code 164

USASCII-8 TO EBCDIC-8 CORRESPONDENCE 168

LINE PRINTER VFCs (WRITE BINARY) 169
FIGURES
Operating System 1
Job Stack Example 19
Use of GO and OV Files 21
RAD AHocation 72
Foreground Priority Levels 78
Task Entrance Format 83
General Overlay Structure Example 88
Sample Overlay Cluster Configuration_____ 89
Long (Load) Map Format 90
Simplified Overview of Line Printer Spooler 141
Detailed Overview of Line Printer Spooler 142
Variations of Basic Spooling Systems______ 143
TABLES
RAD/Disk Areas 3
Standard Background Operational Labels 11
Standard Device Unit Numbers 12
RBM System Processors 18
Nonitor Messages ‘ 22
Transfer Vector for Monitor Services 31

14,
15.
16.

17.

. M:DOW Argument Lists

. Status Returns for M:COC

. Line Status

Return Status from M:IOEX

Return Status from M:READ, M:WRITE,
M:CTRL

1/O Completion Codes

Completion Codes

Line Mode

Summary of Editing Operations

Standard Device Unit Numbers

Machine Fault Classification by Severity
Levels

34

38

39

63

65

65

65

69

75

18.
19.

20,

D-3.
D-4.

D-5.

. Monitor Zero Table
. Standard Constants
. Monitor Constants
. RBM Abort Codes

. Loader Error Messages

Task Control Block (TCB)

Foreground Load Blank COMMON Allocation

Save-Tape Restore Error Messages

Spooling Volume Requirements

Overlay Loader Abort Codes

RAD Editor Error and Warning Messages

Utility Error Messages

81

94

130

144

152

153

154

156

158

160

I} |

165

vii

GLOSSARY

active foreground progrom: o foreground progrom is active
if it is resident in memory, connected to interrupts, or
in the process of being entered into the system via a
IXEQ control commond.

area: a contiguous portion of a random access device that
contains files of some related nature.

background area: that area of core storoge ollocoted fo
batch processing. This area may be checkpointed for
use by foreground programs.

background program: ony program executed under Monitor
control in the background area when no interrupts are
active. These progroms are entered through the batch
pracessing input stream.

batch processing: a computing technique in which similar
progroms are grouped together and processed or exe-
cuted in a single run so as to effect efficient utiliza-
tion of the computer.

channel status table: a table of eight words per SYSGEN-
defined 1/0O channel that reflects the hardware condi-
tion of each 1/0O channel.

checkpointed job: a partially processed background job
that has been saved in secondary storage along with
all registers and other ™environment” so that the job
can be restarted at its interrupted point.

clock counter: a memory location that records the progress
of real time or its approximation, by accumulating
counts produced by a {clock) count pulse interrupt.

close: terminating the use of an item (such as a file) and
performing certain clean up operations to provide for
its future reuse or the reuse of its resources.

control command: any control message other than a key-in.

A control command may be input via any device to
which the system command input function has been
assigned {normally o cord reader).

control message: any message received by the Monitor that
is either a control commond or a control key-in.

count zero interrupt: an interrupt level that is triggered
when an associated (clock) count pulse interrupt has
produced a zero result in a clock counter.

critical task: a task whose importance is high enough that
no attempt should be made to run without it in the
event of a serious error.

dedicated memory: core memory locations reserved by the

Menitor for special purposes, such as interrupts and
real-time programs.

viii

device—file number (DFN): a logical method of referring
both to o physical peripheral device and o o collec-
tion of information obout the device. The device file
number indicotes the order inwhich devicesare initially
defined ot SYSGEMN. For example, the first device
defined must always be a keyboard printer (DFN 1).

device nome: on identifier used ot SYSGEN fime for an
actual physical 1/O device that is composed of two
elements: a device type which is a two-character code
for a particular closs of peripheral devices, and a de-
wvice number which is a two-digit hexodecimal repre-
sentation of the physical unit number associated with
a device.

device unit number: an integer value coded into o
FORTRAN 1V progrom to reference peripheral devices.
Standard device unit numbers can be equated to device
file numbers {see above) either at SYSGEN time or
through 1ASSIGN commands.

directory: o table of names and addresses of files on a ran-
dom access device that enables the system fo locate a
file when given only its name and area.

disobled: the condition of an interrupt level wherein the
level may advance from the armed to the waiting state
when friggered by an interrupt pulse, but the level
cannot cause a program interruption until it is enabled;
it thus remains in the waiting state until it is allowed
to interrupt the program.

disarmed state: the state of an interrupt level that cannot
accept an interrupt input signal.

disk pack: a secondary storage system of removable rotating
memory. For most RBM purposes, disk pack and RAD
are synonymous unless otherwise noted.

enabled: the condition of an interrupt leve! wherein
the level is not inhibited from advancing from the
waiting state to the active state except for priority
considerations.

end action: that action that takes place at the completion
of an 1/O operation. This usually includes the entry
of a special routine that was specified when the re-
quest was made.

end record: the last record to be loaded in an object
module or load module.

error severity level code: a code indicating the severity
of error noted by the processor. This code is con-
tained in the final byte of an object module.

execution location: o walue replacing the origin of a
relocatable program that changes the address at which
program loading is to begin.

external interrupt: one of the class of interrupts that are
associated with special systems equipment. These
interrupts are "external" to the basic computer sys-
tem and are associated with functions that are de-
fined according to the requirements of a particular
installation.

external interrupt inhibit: the bit, in the program status
doubleword, that indicates whether (if 1) or not (if 0)
all external interrupts are inhibited.

external reference: a reference to a declared symbolic
name that is not defined within the module in which
the reference occurs. An external reference can be
satisfied only if the referenced name is defined by an
external load item in another module.

file control table: contains information about all device
" files in the RBM system and is indexed by device-file
number.

file name: a name for a permanent file that is defined
either at SYSGEN or later through the RAD Editor.

flawed track: a disk pack track that contains a flaw mark
in the header as well as the address of an alternate
track.

foreground area: that portion of memory dedicated speci-
ficially for RBM, service routines, and foreground
programs.

foreground program: a program that executes in the fore-
ground area of core and can utilize all privileged
services.

foreground task: a body of procedural code that is associ-
ated with (connected to) a particular interrupt.

GO file: a RAD file of Relocatable Object Modules
(ROMEs) formed by a processor. This is a default input
file when no file name is specified.

granule: a record beginning on a physical sector boundary,
used as a unit of allocation for random RAD or disk
pack files. A granule is usually synonymous with a
sector on a device, but may be defined (on a filebasis)
to be equivalent to a partial sector, one sector, or
several sectors.

idle state: the state of the Monitor when it is first loaded
into core memory or after encountering a |FIN ¢ontrol
command. The idle state is ended by means of an
S key-in.

inhibited interrupt: a condition of an interrupt that pro-
hibits it from entering the active state.

input/output interrupt: an interrupt triggered by the stan-
dard 1/O system of the computer.

installation input parameter: any input parameter used during
System Generation to direct the formation of an RBM
system,

internal interrupt: one of the class of interrupts that are
supplied with a standard computer system, or are op-
tional additions associated with dedicated functions
(such as power fail-safe). These interrupts are
"internal" to the basic computer system.

interrupt trigger signal: a signal that is generated, either
internal or external to the CPU, to interrupt the nor-
man sequence of events in the central processor.

1/O block: a contiguous amount of RAD or disk space that
contains records of blocked or compressed files. All
1/0 blocks are the same size (K:BLOCK) and always
begin on a sector boundary. K:BLOCK also specifies
the size of core blocking buffers.

1/O control table: a table containing the device-specified
input/output control doublewords and other information
necessary for RBM 1/O services. There is a one-to-one
correspondence between the 1/O control table and file
control table.

1/O control subtable: same as 1/O control table except
that the subtable is RAD specific.

~library input: input from the device to which the LI (li-

brary input) operational label is assigned.

library load module: a load module that may be combined
(by the Overlay Loader) with relocatable object mod-
ules, or other library load modules, to form a new ex-
ecutable load module.

link editing: the process of combining separately compiled
or assembled program modules, relocating them, link-
ing them to defined library routines, and producing an
absolute executable load module.

loading: the process of reading an executable program (see
link editing above) from secondary memory to absolute
locations in main memory.

load map: a listing of significant information pertaining to
the storage locations used by a program.

load module: an executable program formed by using
Relocatable Object Modules and/or library object
modules as source information.

logical device: a peripheral device that is represented in
a program by an operational label (e.g., Bl or BO)
rather than by a specific physical device name. Or,
a SYSGEN mechanism for reserving logical groups of
DFN's for a combination of foreground and background
use to accomplish information transmission between
tasks without the use. of any real peripheral device.

1. INTRODUCTION

RBM CHARACTERISTICS

The Xerox 530 and Sigma 2/3 Real-Time Batch Monitor
(RBM) is the major control element in the operating system.
It supervises and services simultaneous foreground programs
and background batch programs without interfering with the
real-time response capability of the foreground.

RESIDENT SECTION

The resident portion of RBM consists of the following parts:

o Several independent tasks that are connected to the
hardware interrupts (e.g., the real-time tasks). The
tasks are not reentrant. They can communicate with
each other and may use some of the monitor service
routines.

e Several reentrant monitor service routines that can be
used by any task in the system. These are described
in Chapter 4.

e Standard system constants and tables (see Appendix C).

e Input/output tables for constants and status information.

NONRESIDENT SECTION

The nonresident part of RBM consists of the system initiali-
zation portion that is loaded at the time the system is cre-
ated, monitor service routines, and device-dependent /O
routines for which a response is not critical. The initiali-
zation portion selects the optional features of RBM and
initializes the input/output constants.

SYSTEM ENVIRONMENT

In addition fo the Monitor itself, the hardware-software
environment of the operating system consists of the following
major elements:

e Xerox Model 530 or Sigma 2/3 computer system in-
cluding (a) the required system RAD, (b) the selected
number of hardware interrupts connected to various
foreground tasks in user—determined priority sequence,
(c) dedicated and commonly shared I/O devices.

e Partitioned core memory (see Figure 1) divided into

e A protected RBM area reserved for the RBM
monitor.

Control Panel Interrupt

RBM Overlay

RBM Control Task Subtasks

Job Control Processor

Monitor Service Routines

Resident Foreground

Resident

Background Processor

——— ——— —— ——— ittt s s | e et e e et e et st

Nonresident Foreground

Nonresident

Figure 1.

Operating System

Introduction 1

logical record: arecordthatisa fixed measure of contiguous
data (on a file basis), distinctive as being meaningful
to the user. For blocked RAD files, logical records
are contiguous within blocks but need not be integral
to a block. '

memory protection: the use of the optional protection
feature that keeps unprotected background memory
from altering protected foreground meaning.

memory write lock: a one-bit write-protect field option-
ally provided for each 256-word page of core memory
addresses.

Monitor: a program that supervises the processing, load-
ing, and execution of other programs.

nonresident foreground program: a foreground program ex-
plicitly called from secondary memory that resides in
the nonresident foreground area of core memory during
execution. The space thus occupied is considered
"active"” and is protected by the Monitor from infer—
ference by other activities.

object deck: a card deck comprising one or more object
modules and control commands.

object language: the standard binary language in which
the output of a compiler or assembler is expressed.

object module: the series of records containing the load
information perfaining fo a single program or sub-
program. Qbject modules serve as input to the Over-
lay Loader.

open: the preparing of an item (such as a file) for initial
use.

operational label: a symbolic name used to identify a
logical system device.

operational label table: there are two tables: one for
foreground and one for background. The tables con-
tain the two-character operational labels that are used
for reference by the RBM service routines and connect
an operational label to a device file number.

option: an elective operand in a control command or pro-
cedure call.

Overlay Loader: o processor that links and absolutizes
elements of programs.

overlay program: a segmented program in which the
segment currently being executed may overlay the
core storage area occupied by a previously executed
segment.

OV file: a RAD file that contains an executable program
formed by the Overlay Loader if a program file name
was not specified at load time. Used primarily to test
new programs or new versions of programs. This isa
default file when no output file is specified.

physical device: a pheripheral device that is referred to by
a "name" specifying the device type, /O channel,
and device number (also see "logical device").

postmortem dump: an optional listing of the contents of a
specified area of core memory, usually following the
abortive execution of a background program.

primary reference: an external reference that must be
satisfied by a corresponding external definition (capa-
ble of cousing loading from the system library).

priority level: priority level of a task is dependent on the
position of its associated hardware interrupt in the
priority chain.

RAD/disk areas: the allocation and definition of a RAD
into specific areas during SYSGEN, each of which is
labeled with a two~-character mnemonic to expedite
file management.

Rapid Access Data (RAD) storage system: a secondary stor-
age system of rotating memory. For most RBM purposes,
RAD and disk pack are synonymous unless otherwise
noted.

real-time processing: data processing designed so that the
results of the operations are made available in time to
influence some process being monitored or controlled
by the computer system.

reentrant: that property of a program or subroutine that
enables it to be interrupted at any point, employed
by another user, and then resumed from the point of
infterruption. Reentrant programs ore often found
where there is a requirement for a common store of
public routines that can be called by any user at
any time. The process is controlled by the Monitor
which preserves the routine's environment (registers,
working storage, control indicators, etc.) when it is
interrupted and restores that environment when the
routine is resumed for its initial user. A reentrant
routine never stores any intermediate values within
itself.

Relocatable Object Module: a program or subprogram that
may be relocated and link edited to operate anywhere
in core; that is, does not have absolute addressing.

resident foreground program: a foreground program that is
automatically loaded into a fixed area of foreground
core memory every time the system is booted in.

secondary reference: an external reference that 'may or
may not be satisfied by a corresponding external def-
inition (not capable of causing loading from the sys-
tem library).

secondary storage: any rapid access storage medium other
than core memory (e.g., RAD or disk pack).

segment loader: a Monitor routine that loads overlay seg-
ments from RAD storage at execution time.

semiresident foreground program: a foreground program
explicitly called from secondary memory that resides
in the resident portion of core memory during
execution.

service routines: Monitor-supplied services and opera-
tions that can be called by an executing foreground
program, or else by an executing background program
(except for certain privileged function dedicated to
foreground use).

source deck: a card deck comprising a complete program
or subprogram in symbolic EBCDIC format.

source language: o language used to prepare a source
program (and therefrom a source deck) suitable for
processing by an assembler or compiler.

symbolic input: input from the device to which the SI
(symbolic input) operational label is assigned.

symbolic name: an identifier that is associated with some
particular source program statement or item so that

symbolic references may be made to it even though
its value may be subject to redefinition.

system library: a group of standard routines in relocatable
object language format, any of which may be included
in a program being created.

Task Control Block (TCB): part of the load module that
contains the area required for context storage. The
TCB is task-associated.

temporary files: those files that exist only until the current
job step ends. They may, or may not, have existed
prior to the start of the job.

Temp Stack: an area of memory optionally created by
the Overlay Loader for a user program and used by the
Monitor and System Library routines.

unsolicited key-in: information entered by the operator via
a keyboard in response to a Control Panel interrupt.

e A protected resident foreground area reserved for
user foreground tasks.

e A protected nonresident foreground area feserved
for a single nonresident foreground program.

e A protected public library crea reserved for public
library routines shared by foreground and back-
ground tasks.

o An unprotected background area used by back-
ground (non-real-time) processors, translators, and
batch users' programs, and occasionally by fore-
ground programs requiring femporary use of addi~
tional memory. (In this case the foreground will
checkpoint the background.)

e The system RAD, ! allocatable into permanent and tem~
porary files. The permanent files contain all the back~
ground RBM processors such as Basic FORTRAN 1V or
ANSFORTRANT1V, Extended Symbol, RAD Editor, etc.,
plus RBM itself. They may also contain user data and
operational resident and nonresident foreground pro-
grams that can be called into protected memory for
processing. Temporary files are normally used as in-
termediate scratchareas by processors or user programs.

e A number of user foreground tasks that can be con-
nected to hardware interrupts. Examples of foreground
tasks are process control operations, real-fime data ac-
quisition and control, and low-speed telemetry applica-
tions. The RBM Control Task is connected to the lowest
priority hardware interrupt in the system so that no
background processing can delay foreground tasks.

e Overlay Loader for linking and absolutizing segmented
foreground and background programs that enables back-
ground processors and user programs fo overlay them-
selves in core storage, and thus permifting programs of
virtually unlimited size to be executed.

FOREGROUND (High-Level Priority Response)

Within the framework of the user-determined hardware
interrupt priorities, foreground programs or tasks operate as
independent entities, and the Monitor generally makes no
attempt fo interject itself between these tasks and their real-
time functions. The Monitor services the foreground only
on request, such as a call to one of the monitor service rou-
tines. The principal foreground services of the Monitor are to

e Respond to 1/O interrupts.

e Respond to an operator's console request (such as
queuing).

e Supervise RAD file activity.

e - Optionally, supply a software version of multiply/
divide functions for configurations without multiply/
divide hardware.

i.‘For RBM purposes, RAD and disk pack are synonymous
unless specifically stated otherwise.

2 RBM Characteristics

e load a foreground program into memory from the RAD
on request.

o Provide the foreground with standard constonts (see
Appendix C).

o Make available a "mailbox" area of 32 memory loca-
tions for communicafion between two or more foreground
programs.

The interrupt priority sequence (described in defail in the
respective computer reference monual) is the basis for the
priority level of tasks in the RBM system. That is, the pri-
ority level of a task is dependent on the position of the as-
sociated hardware interrupt in the interrupt priority chain.
Background jobs in the system all have the same priority
level. A background fob is not connected to any interrupt
level in the system, i.e., its priority is below afl hardware
interrupt levels and is processed serially.

BACKGROUND (Low-Level, No Priority)

The primary function of the Monitor is to supervise and con-
trol all those operations that take place in the unprotected
background area by the following means:

1. Use only available foreground idle time for back-
ground processing.

2. Interpret control functions from control command card
images via the Job Control Processor.

3. Supervise the loading and execution of all back-
ground jobs and activities in unprotected memory.

4. Provide simple background scheduling (first~in,
first-out).

5. Provide 1/O services for the background job stack.

6. Inform the operator on the status of peripheral device
operations.

7. Test all background operations and processes for fore-
ground protection violations and prevent the background
from altering or delaying foreground response or from
using dedicated 1/O devices.

RBM processors and permanent user processors may be
loaded onto permanent RAD files and then executed by
control command. Programs may also be loaded onto tem-
porary RAD files for the duration of the present job.

All programs must exist on the RAD in absolute core image
form for execution. Relocatable programs, consisting of
a root and one or more overlay segments linked by ex-
ternal references, must be created by an Overlay Loader
to link all modules and create the proper overlay struc-
fure for execution.

It is possible o create programs consisting of a root and one
or more overlay segments through use of the Absolute Loader
if there are no external references (see the ! ABS command in
Chapter 2 for other restrictions).

Two levels of logical (rather than physical) device refer-
encing are provided, enabling system configurations to
change or expand without reprogramming. Further, through
many device-independent features and use of standard media
formats, input and output can be directed to card equipment,
paper tape equipment, or magnetic tape without changes in
the user's program.

For maximum flexibility and control of input/output, the
user can optionally specify his own I/O Control Double-
words and order bytes, perform independent error recovery,
and be informed by RBM when an 1/O operation has term-
inated. Alternatively, for greater ease of programming and
device independence, the RBM will create the IOCDs and
order bytes and perform standard error checking and recovery.

When multiprogramming with foreground tasks and back-
ground jobs, the foreground has access to all privileged in-
structions. The background is checked by both hardware
and software to provide complete protection of a foreground
program's use of core memory and peripheral operations.

SECONDARY STORAGE MANAGEMENT

The RBM operating system provides use of the RAD or disk
packs for

e Temporary and permanent files.
e User and system files.

e Sequential files (psevdo tape, where RBM performs all
file management).

e Random-access files (RBM performs 1/O transfer and con-
trols file limits, but user controls relative addressing).

RAD/DISK PACK AREAS

The concept of RAD/disk pack areas is a convention created
primarily to expedite file management. RAD and disk pack
areas are allocated during system initialization. Disk pack
areas may also be allocated after system initialization,
using the RAD Editor. The areas are labeled with two al-
phanumeric characters, from the following list:

SP BT BP Xn

SD CP up aa
SL FP UL

where n is a decimal digit and @ is any letter combination
except Xn, Note that the combination "SK" has a special
meaning (described in "SYSGEN" chapter of Reference

Manual 90 30 38) and is not an area mnemonic.

The labels have the special meaning given in Table 1.

Table 1. RAD/Disk Areas

Mnemonic

Meaning

sp!

spf

stt,uL

UP, FP, BP

Tt

CPp

aa

Xn

System Processor area. Contains RBM and
user-selected processors from the list given
in Table 5 (the Overlay Loader is a man-
datory processor). This area is searched
whenever either a system processor or user
processor is requested.

System Data area. Contains files neces-
sary for the execution of RBM.

System Library and User Library areas.
These are the only areas from which the
Overlay Loaders will load library routines.

User, foreground, background processor
areas. Contains resident foreground pro-
grams, foreground tasks, nonresident
programs, semi-resident programs, and
background programs. Area FP may only
contain files of foreground or no-write
protect codes and area BP may only con-
tain files of background or no-write pro-
tect codes. The UP area may have its
area write protection specified during
System Generation or RAD Editing.
These areas and the SP area are searched
when a processor is requested. SP, UP,
and FP are searched (in the order given)
for resident foreground programs, when the
system is booted from the RAD.

Background Temp area. Used for alloca-
tion of temporary files.

Checkpoint area. Used to store the back-
ground environment when a background
program is checkpointed by a foreground
process.

User data areas which contain any data
the user desires, including program files.

Xn areas are similar to @a areas except
that the user has the option to perform his
own management of the entire area, thus
allowing access to data arranged in non-
standard formats. Nodisk pack verifica-
tion is performed for an M (Mount) key-
in (see "M Key-Ins" in Chapter 3).

system

Mhese areasreceive defaultallocations during SYSGEN.
Note that the SP and SD areas must be present in the

RBM Characteristics 3

PROCESSOR FILES

Processor files are stored either as a single segment or as an
overlay structure. Overlay loaders store the files on
the RAD in core image form, ready for loading, and abso-
lutized for the space they will occupy at execution. The
processor files are loaded for execution via a processor con-
trol command.

LIBRARY FILES

Library files contain subprograms in a relocatable form.
The files have specified entry points and are in the form of
binary card images in Standard Object Language.

There is one library file for the system area mnemonic SL,
and one for the user area mnemonic UL. Overlay Loaders
can load selectively from one or both, in either order
or priority. Although records within o subprogram are
loaded sequentially, access to the individual subprogram
is on g random (direct access) basis.

DATA FILES

Permanent data files may contain any kind of data and may
be accessed sequentially or randomly, depending on how
they were created. The user is responsible for reading them
accordingly.

FILE NAME

Only permanent RAD files have a file name. Some names
are entered into the dictionary for the appropriate area at
System Generation; others are entered later by the RAD
Editor. After the name is in the dictionary, an 'ASSIGN
control command or a call to M:ASSIGN can equate either
an operational label or a FORTRAN device unit number to
this file nome.

OVERLAY CAPABILITIES

Under RBM, Overlay Loaders can be used to create over-
lay programs for later execution in either the foreground or
background.! The overlay programs can be permanently
entered (as a file) into either the System or User Processor
areas, or into a temporary overlay file (OV). Since they
are stored on the RAD in absolute core image format, they
can be quickly loaded into memory for execution.

Each segment is created by an Overlay Loader from one or
more object modules (assembly language, FORTRAN, or
library routines). The control commands required to create
the overlay segments are defined in the discussion of the
Overlay Loaders. During execution, the Monitor service

*For a complete description of the Overlay Loaders, see the
Overlay Loaders chapter.

4 RBM Characteristics

routine M:SEGLD is used to control both the loading and
the tronsfer of control between various segments.

TASK DISMISSAL

The dismissal option allows foreground tasks to be auto-
matically dismissed by RBM when they would otherwise be
waiting at a high level for on-going I/O to complete. This
feature allows automatic overlap of high level (i.e.,
foreground) 1/0 and low level CPU execution to the
enhancement of low level throughput. The feature is con-
trollable on a task basis or a system basis and requires very
little core space.

CHECKPOINT/RESTART

The checkpointing feature permits a partially processed
background job to be saved in secondary storage along with
all registers and other environment. The vacated back-
ground space is set to protected status and is then available
to the interrupting Foreground task for either instructions or
temporary data storage.

Checkpointing ensures continuity to the partially completed
background job by not repositioning any background periph-
eral devices, permitting all current background 1/O activity
to complete, and writing all of the background space onto a
prespecified RAD area.

Restart takes place when the previously checkpointed back-
ground program is reloaded from the RAD and continues
execution as though the interruption never took place.

PUBLIC LIBRARY

Most of the support on FORTRAN and mathematic routines
are reentrant, ! If an RBMsystem has several real-time fore-
ground tasks that use a number of the same subroutines, the
collectively-used set of subroutines can be loaded together
into what is termed a Public Library. Thereafter, whenever
the Overlay Loader processes a foreground or background
program that references one of the "public" routines, it sets
the appropriate branch to the Public Library. The Public
Library is loaded into core whenever RBM is rebooted from
the RAD,

When one of the Public Library routines needs temporary
scratch space, it requests space (via a call to M:RES) from
the temporary stack of the task that is calling the Public
Library routine, When the library routine exits, the space
is released via a call to M:POP,

fSee the ANS FORTRAN IV Library Technical Manual, Pub-
lication No. 90 18 35 for restrictions concerning library
routines in the Public Library.

REENTRANT ROUTINES

In RBM usage, “reentrant" means that a subprogram (never
a task) may be interrupted during execution, called again
by the interrupting task, and later reentered and continued
from the location of the former task. This is a last-in,
first-out kind of reentrancy in keeping with the computer's
priority interrupt system.

ACCOUNTING AND ELAPSED TIME

Background job accounting and provisions to limit the exe-
cution time of a background job can be accomplished by
specifying the JOBACCT option at SYSGEN. To correctly
calculate the elapsed time for the background, the Moni-
tor M:SAVE routine changes the charge index to foreground
at the first interrupting foreground task. M:EXIT restores
the charge index when return to background is sensed.

JOBACCT is also used to limit the execution time of a back-

ground program. The user may limit this execution time by
using the ILIMIT control command, and Clock 1 will pro-
vide watchdog services on the background program.

When a !JOB control command is read, an entry is created
in the accounting file (RBMAL,SD). The entry includes
the start time, user name, and account number. The
start time of the job is then logged on the LL device
as mm/dd/yr hrmn.

At the completion of each activity, the accumulated
elapsed time of background execution will be logged on
the LL device as

ET=mmm.mm (minutes)

At the completion of the job (i.e., o new 1JOB or IFIN
command) the current date and time and a job recap are
logged on the LL device as

mm/dd/yr hrmn BK=mmm.mm,

FG=mmm.mm, ID=mmm. mm

where

BK represents the total job time. The total time
for a job is defined as the time available to the
background from the time the 1JOB conirol com-
mand is read until the next 1JOB or IFIN com-
mand is encountered.

FG represents the amount of time used by inter-
rupting foreground tasks during the job.

ID represents the accumulated idle time incurred

within the job. This could be a result of an
M:WAIT request, a W key=in, IPAUSE command,
or an attended job being aborted,

The time for a background job is recorded in the accounting
file entry for that job. The IDLE account is updated fo re-
flect total idle time charges. After the IFIN control com-
mand is read, all idle time is charged to the IDLE account.

The following rules govern the operations of the Accounting
Log:

e A call to M:SAVE switches from the background to
foreground time accumulation.

o A call to M:EXIT switches from foreground accumula-
tion to background accumulation if a background job
is executing.

o A W key-in, M:WATIT request, or !PAUSE command
switches from foreground accumulation to idle time
accumulation. An abort from an attended job switches
the same way. An S key-in switches back to foreground
accumulation from the idle accumulation. The M:EXIT
to background switch charges to background.

e A 1JOB or 'FIN command writes out total accumulated
times and resets times to zero.

e The ET (elapsed time) is printed on LL each time JCP is
read into the background and represents the total elapsed
background execution time.

SYSTEM INITIALIZATION AND CREATION

The RBM system is created for a particular installation
through a nonpermanent system generation (SYSGEN) pro-
gram (see System Management Reference Manual 90 30 36).

The user defines RAD areas, optional routines, peripheral
devices, and operational labels. This is followed by a def-
inition of the exact bounds on the foreground, monitor, and
background memory areas, and the size of the RAD areas.

Once the system is completely defined, the required routines
are loaded and a rebootable version is written onto the
RAD.

If the system must be restarted later, the rebootable version
is loaded from the RAD. A completely new system initiali-
zation is necessary only if the above mentioned definitions
must be changed.

When the system is created, a version number is specified
that will be printed on LL af the beginning of each job for
reference.

Most of the Xerox disk devices have manual switches that
may be used to permanently protect certain areas.

RBM Characteristics 5

RBM SUBSYSTEMS AND PROCESSORS

RBM supports the subsystems, processors, and foreground
facilities described below. The subsystems and processors
execute in the background area of core memory.

STANDARD SUBSYSTEMS

OVERLAY LOADERS

The Overlay Loaders form absolute binary overlay segments
for later execution in either foreground or background
areas. If a resident or nonresident program can tolerate
a loading delay of 20 to 100 ms, foreground or background
programs of virtually unlimited size can be constructed
with the Overlay Loader despite limitations in available
core storage.

RAD EDITOR

The RAD Editor performs RAD allocation for permanent files
and generates and maintains directories for the permanent
RAD areas: System Processor orea, System Library area,
System Data area, User Processor area, User Library area,
User Data area, and any aa areas and Xn areas. It allows
dumping of files and mapping of all RAD areas, including
checkpoint and temporary areas.

UTILITY SUBSYSTEM

The RBM Utility subsystem provides a universal media copy
routine, object module editor, dump routine, and record
editing by line or sequence number.

LANGUAGE AND SERVICE PROCESSORS

EXTENDED SYMBOL

The Extended Symbol assembly language processor {as-
sembler) provides upward compatibility with basic Symbol
plus extended capabilities that include using the RAD for
overlay to reduce core residence requirements.

The processor accepts as input a source program coded in
either Symbol or Extended Symbol, processes it, and out-
puts an object module, diagnostic messages, an optional

assembly listing, and an optional cross-reference listing.

6 RBM Subsystems and Processors

BASIC FORTRAN TV

Basic FORTRAN IV is a one-pass compiler with caopabilities
extended beyond Basic FORTRAN. ¥ can compile large
source programs by using the RAD for overlay to minimize
core residence requirements, and has two Hoating-point
modes: standard precision and extended precision.

ANS FORTRAN

The Xerox ANS FORTRAN 1V compiler provides a full
FORTRAN 1V capobility. ANS FORTRAN IV is designed
for real -time reentrant usage, as well as for normal botch
processing. It is upwards compatible with the Basic
FORTRAN 1V language compiler. It meets ond exceeds the
specifications given in the ANSI FORTRAN X3.9-1965.
This expanded version of the compiler adds language syntax
sophistication that both simplifies problem solving and
allows for greater programming flexibility than earlier ver-
sions of FORTRAN 1V compilers. {Not available with
Sigma 2 systems.)

RPG

RPG allows users to perform batch data processing tasks
using simplified programming technigues. Xerox RPG is an
expanded version of conventional RPGs that accepts and
processes IBM 1130, 1800, and 360/20 RPG specifications.
RPG is useful for any installation with a need to

o Create reports. The fixed program logic of RPG is
ideally suited for those installations that require one-
time reports, since elaborate coding is not required for
generating those reports.

® Process inventory, payroll, or other commerical
applications.

Under Sigma 3, RPG requires the Extended Arithmetic
(8119) feature. (Not available with Sigma 2 systems.)

SORT

The Xerox Sort processor offers a generalized file sorting
capability. Xerox Sort is a disk-oriented multiphase pro-
gram that is overlayed to reduce memory requirements. The
sorfing technique used is a replacement-selection tourna-
ment with a balanced merge of intermediate strings. (Not
available with Sigma 2 systems.)

COBOL

Xerox 530 ANS COBOL offers o powerful and convenient
programming language for implementation of business or
commercial applications. Xerox 530 ANS COBOL isa
subset of the X3.23 - 1973 ANS COBOL Standard and con-
tains the following modules implemented at the first level:

o Nucleus

e Table Handling

e Sequential 1/O

e Relative 1/0

e Indexed 1/0

e Inter-Program Communication
e Library

o Debug

Additional features such as in-line diagnostics optional
data map, procedure map, object listingand cross reference
are included.

The Xerox 530 ANS COBOL compiler is a two~pass pro-

cessor using a segmented structure to minimize the core

required for operation. The compiler runs in the back-
ground under control of RBM.

Sequential, Relative and Indexed files produced by 530
COBOL are compatible with those produced by 530 RPG 11
Version COO.

Under Sigma 3, COBOL requires the Extended Arithmetic
(8119) feature (not available with Sigma 2 systems).

OPTIONAL FOREGROUND FACILITIES

DEBUG

The RBM Debug package provides the user with a debug-
ging tool designed primarily for nonsegemented background
programs but with a limited capability for debugging fore-
ground programs. The Debug functions and commands are
described in Chapter 12.

COC HANDLER

The character-oriented communications (COC) handler pro-
vides communication between real-time programs and
various terminal devices. The COC hardware consists of

a controller and from one to eight transmission-line inter-
face units. RBM can accommodate one COC controller.
See Chapter 4, M:COC, for a more complete discussion

of the COC handler.

PLOTTER SYMBIONT

The plotter symbiont is a foreground program that drives a
Xerox 7530 or 7531 graph plotter via a symbiont file on
disk. The FORTRAN subroutine library provides background
program subroutine calls for building the plotter-symbiont
command file.

XSP

The Xerox Satellite Processor (SP) provides Xerox 530 or
Sigma 3 computer sites with a capability for high-speed
telecommunications with other host remote computer systems.
Operating under either a Xerox 530 or Sigma 3 operating
system, the Xerox Satellite Processor permits communication
with any host Xerox computer running under the Control
Program-Five (CP-V) operating system and non-Xerox host
computers in accordance with the HASP Multileaving
Protocal.

The basic function of the Satellite Processor is to move
streams of sequential data from source devices or files to
destination devices or files at the request of the operator,
which provides the Xerox 530 or Sigma 3 user a highly con-
venient means for utilizing the full resources of a larger
host system or exchanging data with another HASP compat-
ible workstation. Remote activities may take place concur-
rently with local foreground and background processing,
subject to device and resource availability. Spooling of
remote data using magnetic tape is supported. (Alternately,
a sequential disk file may be substituted for magnetic tape.)

A Satellite Processor site can communicate with three gen-
eral classes of remote sites:

1. CP-V host.
2. IBM host.

3. Another Xerox workstation or IBM HASP compatible
workstation.

Support for up to four 7605 communications controllers is
provided. A single HASP host may regard the Xerox
Satellite Processor as one to four workstations. Or, one
to four HASP hosts or HASP compatible workstations may
each regard the Xerox Satellite Processor as a single work-
station. Any combination thereof concurrent with a single
spooled playback operation is also allowed.

The Xerox Satellite Processor will address a data set con-
troller exclusively in half-duplex mode in order to realize
the increased line-driving efficiency provided by software
command chaining. The 7605 controller is used by Xerox
Satellite Processor in either two-wire or four-wire mode.
Line speeds supported are 2000 - 19, 200 bits per second.

BSS

A low overhead Basic Spooling System is provided for RBM.
The Basic Spooling System is intended to provide minimum

core resident support for RBM users. Basic Spooling System
functions are as follows:

® Spools to circular direct access disk file.

e Unspools to a physical or logical device.

e Operctor may start, stop, suspend, skip, or backspace.

RBM Subsystems and Processors 7

¢ Overflow threshold alerts operator when critical low
available space conditions occur.

e Core resident control information is periodically check-
pointed to disk resident information table to prevent
loss of data.

e If anyrecord with the characters *FORMS in column 1
through 6 is detected, the *FORMS record is diverted
ta the Operator’s Console and an automatic STOP
accurs. :

TERMS AND PROCESSES

The following items are either unique to the RBM system or
have specific meaning within the RBM context, Other
terms and processés not defined below are explained in an
appropriate chapter.

TASK

A “task" is an entire set of foreground operations performed
independently of other tasks in the system. It must be
connected to one and only one hardware interrupt. A task
may use Monitor service routines but must never branch to
another task. One task may trigger the interrupt level of
another task by means of a Write Direct instruction. The
prescribed entrance and exit procedure for all real-time
tasks in the system is described in Chapter 6.

A task logically consists of three parts (that may or may not
be contiguous in core storage):

1. A Task Control Block (TCB) that contains status infor-
mation ond the contents of the registers from the inter-
rupted task (see Table 18). The TCB is normally the
first loadable item in the object module.

2. A task body, consisting of a sequence of instructions
executed in response to the task interrupt.

3. A task temporary storage area for use by the Monitor
service routines (and other reentrant library routines)
to provide reentrancy for these routines.

Examples of foreground tasks are

e Real-time foreground tasks connected to external
interrupts.

e Monitor 1/Q interrupt routine.

8 RBM Terms and Processes

e Monitor Control Panel interrupt routine.
e Monitor machine fault and protection violation routines.
e RBM control routine (for foading, abort, etc.}.

A background program can also operate as a single task but
without foreground privileges.

A “program” is one or more tasks {and optionally, some
data storage) that are loaded and controlled as a unit. Four
types of programs exist under RBM:

1. Resident foreground programs consisting of one or more
tasks, perhaps some special routines for receiving I/O
inferrupt responses (see "End Action"), and any com-
mon storage that may be needed.

2. - Semiresident foreground programs that are explicitly
called in from secondary memory and reside in the
resident portion of core memory during execution.

3. Nonresident foreground programs.

4. Background programs, consisting of a single task.

FOREGROUND

"Foreground” refers to real-time or Monitor tasks executed
in protected memory on a real-time basis. Since the num-
ber of foreground tasks is limited by the number of in-
ternal and external interrupts availoble in the system, the
fundamental limitation is the amount of core space avail -
able. However, the use of overlays and nonresident fore-
ground programs makes the amount of effective foreground
space virtually unlimited, depending only on the severity
level of required response times.

BACKGROUND

"Background" refers to a non-real-time program executed
in available nonprotected memory. The purpose of back-
ground programming is to achieve higher efficiency in the
system by using the CPU time not needed by real-time tasks
to maintain foreground programs, or to perform other data
processing functions.

Background operations may be assemblies, compilations,
data processing, or utility operations. The two fundamental
restrictions in using background programming are

1. A background program is never allowed to interfere
with real-time foreground tasks, it must operate in
nonprotected memory and use the Monitor service
routines for all 1/0O and other privileged operations.

2. Since a background program uses only the CPU time
available after the real~time foreground is satisfied, it

may not be guaranteed any CPU time when foreground
is very active. The background cannot inhibit inter-
rupts or do anything else that might interfere with real-
time foreground responsiveness.

JOoB

A "job" is defined as consisting of all background activities
or processes that take place between a 1JOB command and
the next 1JOB command or a IFIN command (whichever
is encountered first).

JOB STEP

A "job step" is defined as the operations performed insetting
up and processing a single program within a job stack. A
job step is initiated by calling in a background processor
and ends when the processor exits.

MONITOR SERVICE ROUTINES

RBM service routines can be used by real-time foreground
tasks, a background task, or RBM tasks. All routines are
coded in a reentrant manner, and those that require tempo-
rary storage use the temporary stack space associated with
the task that calls the routine (see Chapter 4).

TEMPORARY STACK

The temporary stack (temp stack) is a block of core storage
associated with a particular task and is used by Monitor ser-
vice routines for temporary storage to achieve reentrancy.
An entry in the TCB for a task points to the temp stack
space. When a task is active and using either Monitor ser-
vice routines or the floating accumulator (defined below),
the beginning of the temp stack space for the active task
must be set into core memory location 6 (after the previous
contents of location 6 are saved). Monitor service routine
M:SAVE will set this pointer.

When Monitor service routines or Public Library routines
need temporary space, they can call M:RES toreserve space,
and M:POP must then be called to release the space when it
is no longer needed. Thus, the total temp stack is a func-
tion of the deepest nesting of calls to Public Library routines
and RBM service routines and of the space required for
these routines.

FLOATING ACCUMULATOR

This soffware convention is used extensively by mathematics
library routines and can also be used by any user's program.
The floating-point accumulator is assumed to occupy the
first six locations of the temporary stack space. It is used

like a hardware accumulator, i.e., to build up a cumulative
result from single-precision or double-precision real
{(floating-point) calculations.

As a convenience in referencing the floating accumulator,
core locations 1 through 5 are set with pointers to the actual
core locations. This is done when entry is made to the ac-
tive task (by M:SAVE when the routine is used). Therefore,
indirect addressing through locations 1 through 5 will result
in storing, loading, or modifying the actual floating accu-
mulator. The sixth cell of the floating accumulator is used
by the FORTRAN-formatted 1/O routine.

RBM CONTROL TASK

The RBM Control Task encompasses a number of subtasks
that control the reading of control commands, loading back-
ground programs, interpreting unsolicited key-ins, and
aborting or terminating a background job. During system
initiolizotion, the RBM Control Tosk must be ossigned to the
lowest priority hardware interrupt.

The RBM Control Task uses the same entrance and exit pro-
cedure and the same type of TCB as a real-time foreground
task. Since its main function is to control background
activity, it has a lower priority than any real-time task.
It is necessary that this be a separate task (and not part of
the background priority level) so that effective and respon-
sive control can be made through key-ins. All RBM func-
tions associated with this level operate as subtasks to the
RBM Control Task and are non-reentrant.

NONRESIDENT FOREGROUND

Nonresident foreground progroms ore real-time progroms
not needed in core on a continuousbasis. They are created
like resident foreground programs and are then written on
the RAD in the user processor (UP) area. An operator or o
resident real-time program can later call one of these non-
resident programs, and it will be loaded and executed like
a permanently resident real-time foreground program with
all the protection and priority privilege characteristics of
the foreground.

COMPRESSED RAD FILES

EBCDIC character codes do not use all possible bit combi-
nations of an eight-bit byte, and some combinations (X'DC'
and X'EC') are therefore available for special coding bytes.
Since EBCDIC information often contains a large number

of "blank" byte strings, a code and a word count are used
to replace an entire string of blanks. Thus, several 80-byte
source cards (usually about 12) can be compressed and
blocked into a 360-byte RAD sector. The RBM Read and
Write routines provide the compression or decompression
feature, and the user program can read or write as fhough
the file contained 80-byte card images. Compressed files
are always blocked; that is, several records are transferred
with one RAD access.

RBM Terms and Processes 9

2. CONTROL COMMANDS

The Monitor is controlled anddirected by control commands
that initiate loading and execution of programs and provide
communication between a program and its environment.
The environment includes the Monitor, background proces-
sors, the operator, and peripheral equipment.

Control commands have the general form:

Imnemonic specification

where

! is the first character of the record and identifies
the beginning of a control message.

mnemonic is the mnemonic code name of a control
function or the name of a processor. It must
immediately follow the | character without inter-
vening spaces.

specification is a listing of required or optional

specifications. This may include labels and nu-
meric values appropriate to the specific command.
In the specification field, hexadecimal values
must be shown as +xxxx and EBCDIC values must
begin with a letter; any other values are assumed
to be decimal values. Specification fields are
separated by a comma or an equals sign.

In this manual the options that may be included in the
specification field of a given type of control command are
shown enclosed in brackets although brackets are not used
in actual control command format.

One or more blanks separate the mnemonic and specifica-
tion fields, but no blanks may be embedded within a field.
A control command is terminated by the first blank after

the specification field. Annotational comments detailing
the specific purpose of a command record may be written
following the specification terminator, but not beyond col-
umn 72. Only columns 1-4 are examined fo determine con-
trol functions; only the first eight nonblank characters fol-
lowing the ! are used to locate processors,

The user may insert comment lines within a job stack at any
point where a Monitor control command would be recognized.
A comment line contains an asterisk as the first character of
the line. The comment line is listed on the LL device.

Communication between the operator and the Monitor

is accomplished via control commands, key-ins, and
messages. Control commands are wvsually inpui to the
Monitor via punched cards; however, any input device(s)
may be designated for this function (see IASSIGN com-
mand). Control key-ins are always input through the
keyboard/printer. All control commands and Monitor
messages are listed on the output device designated as

10 Control Commands

the listing log (normally a line printer) to provide a
hard-copy history of a job.

JOB CONTROL PROCESSOR (JCP)

Monitor conirol commands are read from the background
operational label CC unless the operator hos requested a
keyboard /printer override through an unsolicited KP key-in.
All such commands are read by the Job Control Processor
(JCP), a special processor loaded into the background by the
RBM and reloaded into the background following each
job step within @ job. When a control command is en-
countered by the JCP, the order of search is

1. Monitor control commands.

2. System processor names.

3. User processor names.

4. Foreground processor names.
5. Boackground processor names.

A 1JOB command sets all background operational labels to
their standard assignments. All temporary RAD space is set
"unused" and is then available for following job steps.

As the JCP encounters 1ASSIGN and !DEFINE commands
between job steps, it makes appropriate entries in the oper-
ational label tables and continues to do so until it encoun-
ters a request for a processor. When the requested processor
is read into the background and attains control, this marks
the beginning of a job step.

At the end of each job step (i.e., when the JCP begins
reading control commands at the completion of the previous
job step), all background operational labels associated
with temporary RAD space are set to an undefined status
and all temporary background space is reset to an "unused"
status unless a ITEMP S control command is in effect, which
saves temporary files until a ITEMP R, 1JOB, or !IFIN com-

mand is encountered.

MONITOR CONTROL COMMANDS

ABS The 1ABS control command causes the Absolute
Loader to read absolute binary programs from the Al device
and write core image copies onto the OV file. The last
{or only) segment to be read must be followed by an 1EOD
command. The binary program(s) following the !ABS com-
mand must contain only those load items that are part of the
standard absolute object language. The program can be
a background program, a processor for the background, or
a real-time foreground program.

A subsequent 1XEQ command causes the RBMsubtask S:LOAD
to load the core image of the root segment (segment number 0)

from OV into core storage. Subsequent segments (1 - n)
are loaded by the root through the use of M:SEGLD.

When an 1ABS control command is encountered, the
Absolute Loader reads the absolute deck that follows (ter-
minated by an 1EOD) from the Al device and writes the core
image copy onto the file to which the OV operational label
is currently assigned. If OV has not been assigned, it will be
assigned by default to the RBMOV file on the RAD. The
program can be executed from a permanent SP (system pro-
cessor) or UP (user processor) file either by inputting a
“Iname" command (where "name" is the name of the file on
which the program was written), or an !XEQ command.

If a multisegment program is loaded, the Absolute Loader
creates an OV:LOAD table at the end of the root. The root
must always be the first load module and each succeeding
load module is assigned a consecutive segment identifica-
tion number, with the first succeeding segment starting

at "1". In the OV:LOAD table, each segment's load ad-
dress will be at its origin location and its entry address will
be the transfer address generated by the END card image.

The form of the 1ABS control command is

1ABS [size][,oplb]][,oplbz]. ..[,oplbn]

where

size is an optional parameter for background pro-
grams only. It specifies the temp stack size
required for the background program being
loaded. If size is omitted, a temp stack size
equal to the maximum size needed for all Monitor
service routines (80) will be used. The temp stack
will always be allocated at the start of back-
ground, and it is the user's responsibility to origin
his program above the temp stack. For foreground
programs, the size parameter is ignored and the
temp stack pointers must be assembled as part of
the program (i.e., in the TCB).

oplby,0plby ... are operational labels used by the
program that requires blocking buffers (i.e. ,those
labels that may be assigned to blocked RAD files).
A maximum of 10 operational labels may be speci-
fied. When the program is loaded from the RAD
for execution, the Monitor will ensure that enough
blocking buffers are available for these specified
labels assigned to blocked files.

Programs loaded under the Absolute Loader are subject to
the following restrictions:

e No external references are permitted.

e The program must be in absolute form.

o Relocatable code may not be imbedded.

ASSIGN The TASSIGN control command causes either a
new or standard operational label to be equated with a
specified (or temporary) file number. Since operational

labels for the background are reset to the standard values
at the beginning of a job by the Job Control Processor, an
operational label assignment is in effect only until the next
1 JOB command is encountered or until itisagain reassigned.

An operationa! label is a two-character name that is used
as a label in referring to a device-file number. The con-
vention of operational labels is used for the processors or
any other program to make them device-independent, and
also to give some mnemonic value to the input/output opera-
tions associated with the processors.

Device-file numbers are a logical means of referring both
to a physical peripheral device and to a collection of in-
formation about that device; that is, the current file of
information. Device file numbers are defined sequentially
in the DEVICE FILE INFO parameter during SYSGEN,

Standard operational labels can be reassigned to different
device-file numbers during SYSGEN or through TASSIGN
and ! DEFINE control commands. Two tables of operational
labels are maintained by the system; one is used for back-
ground (see Table 2) and the other for foreground. Device
unit numbers (see Table 3) are also stored in the same two
tables in the form of binary integer values.

Table 2. Standard Background Operational Labels

Operational | Explanation

Label of Reference I/O Device

Al ABS binary input CR, PT,MT,RD

BI Binary input CR, PT, MT,RD

BO Binary output CP, PT, MT,RD

CcC Control command KP,CR, PT, MT,
input RD

DO Diagnostic output Same as LO

Go' Execution input (GO) | CR,MT,PT,RD

o' Debug ident file RD

LI Library input Same as BI

LL Listing log Same as LO

LO Listing output LP, KP, MT,RD

OC Operator's console KP

ov' Overlay (temporary) RD

PIﬁ Processor input RD

Monitor Control Commands

11

Table 2. Standard Background Operational The foreground operational labels reserved for use by RBM .

Labels {cont.) are as follows:
Operational | Explanation : Label Usage Device
1 Label of Reference 1/O Device
‘ AL Accounting log
St Symbolic input KP,CR, PT, MT, CK Background checkpoint
RD DP Mount/remove key-ins RD
+ EF Error fog
52 Sigma 2/3 procedures | RD ML Program loading
: A RM Overlay input
jul Update input CR,PT,MT,RD
Uo Update output PT, MT,RD An assignment to file zero means that the operational label
’ is not effective, and all references to this operational label
xiHt Overlay Loader, MT, CR, RD result ina no-operation until it is reassigned. Note that some
| Extended Symbol background processors (e.g., Utility } do not allow use of
active operational labels assigned fo file zero. See Appen-
xottt Overlay Loader, RD dix B for a complete description of operational label usage.
Extended Symbol
HE TASSIGN commands can appear anywhere within the con-
X3 Extended Symbol RD trol command stack (except within a job step) and take ef-
fect immediately. That is, if the CC operational label is
X4 Utility (verify) RD,MT, CR, PT reassigned, the very next control command is read from the
b : newly assigned device (unless the KP override has been im-
X5 Utility (prestore) RD posed by an unsolicited key-in). The !ASSIGN command
Ly is used for both foreground and background operational labels,
These operational labels, if required by a processor, (The operator must key in FG before assigning a foreground
are automatically assigned to permanent files in the operational label.)
system data area by the Job Control Processor.
H There are four forms of the IASSIGN command. Form 1 is
" The Pl operational label is assigned to files in the
System Processor and User Processor areas by the Job IASSIGN oplb=device-file-number{,F]{, (opt1)][, (opt2}]
Control Processor.
tt . . .
These operational labels are automatically assigned h
to background temporary RAD files, with the file defi- where
nition appropriate to the background processor being .. .
executez‘.) 'F)hese definitions ogre mad: from a table in oplb. h's either a two-character alphonum.eruc name
the Job Control Processor that is selected by the first in fhe forfzground or back.ground operational label
three characters of the processor name. table (or ' fo be. placed in fhe.fable), or @ FOR-
TRAN device unit number, indicated by the pre-
fix F: preceding the device unit number (see
Table 3).
s e . . . i the
Table 3. Standard Device Unit Numbers devu;:n;lele] r;zn;l;)e.r s a decimal integer in
Device Unit
Number Standard Assignment F when present, declares that the assignment is fo
be included in the foreground operational label
101 . Keyboard/printer input table, Otherwise, it is assumed to be in the back-
. ground operational label table, and the file num-
102 Keyboard/printer output ber must also be a background file number,
103 Paper tape reader
104 Paper tape punch opt 1 and opt 2 are device specific options which
may be one to four characters. If more than four
105 Card reader characters are specified, only the first four will
106 Card punch be used. Note that the device specific options
are meaningful only for certain devices. Use of
108 Line printer an unrecognized option for a device results in an
error return of INVALID OPTION.

12 Monitor Control Commands

The following options are recognized for

Model 3325/33 tape drives:

800 for 800BPI; NRZI recording

1600 for 1600BPI; phase encoded
recording

AscCIfi] for ASCI! code conversion

EBCD{IC] EBCDIC data {ASCII code con-

version "off")

Form 2 of the ASSIGN command is

1ASSIGN oplb=filename,area(,F]{,S]

where

oplb is an operational label or a device unit num-
ber identified by the F: prefix,

filename is the name of an existing RAD file. The
RAD fileis rewound if it isblocked or compressed.

Only permanent RAD files can have a filename,
Once the filename is entered in the dictionary
by SYSGEN or RAD Editor, an IASSIGN control
command or call to M:ASSIGN can equate either
an operational label or FORTRAN device unit
number in this filename,

area specifies the area to search for the filename
from the areas listed in Table 1.

F indicates that the assignment is to be included
in the foreground operational label table.

S indicates that this file (if packed format) may
use the sharable blocking buffer if provided by
the Task Control Block.

F and S are not order dependent.

Form 3 of the 1ASSIGN command is

IASSIGN oplb=opl!b[, F][, (opt][, (cpt2)]

where

oplb is as defined above,

F if present, indicates that both operational labels
are foreground; otherwise, both operational labels
must be background labels,

opt1 and opt2 are as defined for form 1,

Form 4 of the !ASSIGN command is

IASSIGN oplb = area, area, F]

where
oplb is as defined above.

area identifies the disk area to which the oplb is
to be assigned (must be specified twice).

F if present, indicates that the operational label is
for the foreground; otherwise, it is assumed to be

a background label,

This form of the ASSIGN command allows access to an area
as if it were a file with the following characteristics:

Format: random
sector size in bytes

Logical record size:

Write protection: area write-protect code

BOT: BOT of area

EOF: none

EOT: EQT of area
Examples:

Form 1: IASSIGN SI=3

IASSIGN F:105 =3

Form 2: IASSIGN OV = ROOT, UP
Form 3: TASSIGN LI = B!
Form 4: IASSIGN SI = CP, CP
ATTEND The IATTEND control command indicates that

RBM is to go into a wait condition on any abort from the
background, and then read and process the next confrol com-
mand encountered when background processing continues
after an unsolicited key-in. Its primary purpose is to offer
improved recovery procedures. If an abort occurs without
this control command being specified, JCP will reset the
CC operational label to the standard value, skip all con-
trol commands, binary records, or data until it finds a
new !JOB, !PURGE or !FIN command, and will not pause
for operator intervention, In this "skip" mode, all EBCDIC
records beginning with | will be listed on the LL device,
with an indication (*>' preceding the command) that they
are ignored. This is the normal mode for closed-shop batch
processing, without halts between jobs after aborts,

Monitor Control Commands 13

The form of the command is

TATTEND

It exists for one job only, and usually immediately follows
the 1JOB command.

c: The !C: control command connects the designated
real-time foreground task to a specified interrupt location,
optionally armed and enabled as specified by the control
code. The task may also be triggered by means of this con-
nect operation if the code is equal to seven, providing that
the task has previously been armed (i.e., with a previous
1C: command, an IXEQ or "lname" command, or by a
Q key-in).

The form of the IC: control command is

IC: tcb[, code]

where

tcb is the oddress of the Task Control Block for
this task. If the value is hexadecimal, it must be
shown as +xxxx. If the Overlay Loader initializes
the TCB by means of the TCB parameters, it does
so completely, using load information and values
on the TCB and BLOCK cards. No partial initiali-
zation of a TCB is allowed with the exception of
the blocking buffer pool. If a user builds his own
TCB, the TCB must begin at the execution location
plus the "temp" value specified on the Overlay
Loader I$ROOT command.

code when present, is the interrupt operation code,
It overrides the initial TCB task code; a code of -
7 triggers the task if it is armed.

Note: If “code" is not specified, the code given
in the TCB will be used.

The IC: command does not change the contents of the TCB,

cC The 1CC contro! command returns conirol to the cur-
rently assigned CC device and nullifies the effect of a
previous KP key-in. The control command is honored
regardless of whether or not the "skip" mode is in effect.
The "skip" mode is cleared following this command. The
form of the command is

1ICC

DEFINE The IDEFINE control command ollocates a
portion of the background temporary RAD space for a spe-
cific operational label or device unit number by assigning

14 Monitor Control Commands

the operational label to an unused device-file number,
which in turn is linked to the specified portion of the RAD.
Since temporary RAD files are not maintained by the Moni-
tor, they have no name and are identifiable only by the
operational label for which each file was created. The
IDEFINE control command must precede the specific pro-
cessor or user program fo which it applies, since this tem-
porary space is reset at the beginning of each job and at
the subsequent reloading of the JCP (unless a ITEMP S
control command is in effect). That is, the files are de-
stroyed and the RAD space and all device-file numbers
linked to it may be used by the next job.

The form of the !DEFINE control command is

IDEFINE oplb["Pe'],srec ,
, nrec

where

oplb is an operational label or a FORTRAN device
unit number (with a prefix of F:).

nrec is the number of logical records in the file.

. per indicates the percentage of remaining back-
ground temporary space to be allocated for this
oplb.

srec is the logical record size, in bytes.

R defines the file as an unblocked random-access
file.

defines the file as an unblocked file.
defines the file as a compressed EBCDIC file.

U

C

B defines the file as a blocked sequential file.

P defines the file as a blocked random-access file.
S

flags the desire to use a shared blocking buffer if
provided with the program task. It is meaningful
only for packed (blocked random) files.

If neither R, P, U, B, nor C is specified, the file is defined
as a blocked file (B). If R is input, srec is used as the
granule size.

EOD Sections of data may be defined in a user's deck

by inserting 1EOD control commands at the end of each sec-
tion. When an IEOD command is encountered, the Monitor
returns an EOD status (when using the M:READ I/Oroutine).
This is similar to a tape-mark on magnetic tape. Any num-
ber of IEOD control commands may be used in a job wher-
ever required by the user or by a processor.

The form of the IEOD control command is

IEOD

FIN The IFIN control command specifies the end of a
stack of jobs. When the IFIN control command is encoun-
tered, the Monitor writes it on the listing log fo inform the
operator that all current jobs have been completed and also
writes !!1BEGIN IDLE on the OC device, The Monitor then
enters the idle state,

The form of the !FIN control command is

IFIN

FSKIP,FBACK,RSKIP,RBACK The file positioning con-
trol commands, !FSKIP and IFBACK, forward or backspace
the specified device (magnetic tape or RAD file) immedi-
ately past the next file mark, or past the nth file mark if

n files are specified (n = 1 for RAD files). IRSKIP and
IRBACK perform similar functions but act on records rather
than files. IRBACK and IRSKIP do not apply to compressed
RAD files.

The forms of the control command are

{FSKIP
IFBACK .
IRSKIP device[,number][,F]
IRBACK
where
device specifies the device to be positioned and

is one of the following:

1. A device-file number, shown as a decimal
integer.

2. A FORTRAN device unit number, shown as
F:n

where n is a decimal integer equal to the de-
vice unit number,

3. An operafional label, shown as two alpha-
numeric bytes, the first of which isalphabetic,

number is the number of operations to be performed;
if absent, one operation is assumed.

F indicates a foreground device/fife. This indica-
tion is not required if a device-file number (DFN)
is specified directly, Operations on a foreground
device or file require that an FG key-in be in
effect.

HEX The IHEX control command (SYSGEN optional)
may be used to patch either the Monitor itself or any fore-
ground program.

The form of the 'HEX control command is

THEX

The format of the patch record is described in Chapfer 11
under "System Patching".

JOB The 1JOB control command signals the beginning
of a new job. The background operational labels and
FORTRAN device unit numbers are set to their default as-
signments, All RAD temp files are closed.

This command always causes a page to be ejected on the
LL device before the command is listed. The version of the
RBM being utilized will be inserted following the last field
on the !JOB command.

The form of the 1JOB control command is

1 JOB [name, account]

where
name has a limit of 12 characters,
account has a limit of six characters.
JOBC The !JOBC control command indicates a con-

tinuation of the current job. 1JOBC closes all RAD temp
files and resets all background operational labels to their

default assignments (with the exception of "CC"), The

I JOBC command does not clear the "attend" flag or the
"skip" mode, nor does it terminate the effect of an FG or
SY key-in. (A useful application of the 1JOBC command
is given in the Utility job deck example in Chapter 10.)

The form of the 1JOBC control command is

1JOBC

LimT The ILIMIT control command (SYSGEN optional)
is used to set a maximum on the execution time of a back-
ground program. This command is effective only if the job
accounting option has been selected at SYSGEN. If the
job exceeds the time limit, the job is aborted (TL) and is
terminated with a postmortem dump (if that option was
specified).

Monitor Control Commands 15

The form of the FLIMIT confrol command is

TEIMIT [N]

where N is the maximum allowable execution time in min-

utes (0 < N < 600},

MESSAGE The !MESSAGE control command is used to
type a message to the operator. It is useful for messages
conceming mounting tapes or setting certain device or
Control Ponel condifions. The command is listed on the
OC device. There is no response.

The form of the IMESSAGE controf command is

IMESSAGE message

where message is any comment to the operator, up to the
full-card image size (total of 72 columns per card).

PAUSE The !PAUSE control command temporarily sus-
pends background operation to allow the operator time to
complete the job setup. Background operations resume when

the operator performs an unsolicited S key~in. The command
is listed on the OC device.

The form of the 'PAUSE control command is

IPAUSE message

where message is a comment to the operator, up to the full-
card image (total of 72 columns per card).

PMD The 'PMD (postmortem dump) command causes the
Monitor to dump the registers, plus selected areas of mem-
ory, at the end of a job step. The dumps are always onto
the background DQ device in specified format. The IPMD
commond is only effective for one job step.

The form of the 1PMD command is

1PMD [UI[ALLL formatJ][,fwa,iwe[, format]] —l

l— - [,fwc,fwo[,formai‘}l

where

U indicates that PMD is to be entered regardless of
the manner of background termination. Otherwise
PMD is entered only if background terminates
abnormally.

16 Monitor Control Commands

ALL indicates that all of background is to be
dumped. If ALL is not specified and no other
limits are specified, only the CPU registers are
dumped.

fwa, lwae specifies the dump starting and ending
focations. These values are hexadecimal if pre-
ceded with a plus (+) character.

format specifies the dump format as follows:

H Hexadecimal (default, if format -

unspecified)
M Mnemonic
I‘ Integer
E EBCDIC

When o format of E is specified, each dump line
will consist of hexadecimal values followed by
EBCDIC translations, at the end of the line. Four
limit pairs(fwa, lwa} may be specified. The
CPU registers are always dumped, regardless

of the limits.

An X (abort) key-in will terminate all postmortem dumps if
performed whife PMD is active,

PURGE The FPURGE control command (SYSGEN optional)
is used to output the contents of either the job accounting
file or error-log file, and optionally to reset (i.e., clear)
the respective file. By use of the reset option and an as~
signment of the appropriate background operational labet
(see below) fo a "hard copy" device (card punch, paper
tape, or magnetic tape) a periodic off-line copy of the
chosen file can be obtained and the corresponding RAD/
disk space freed for further entries. (Operator messages
will indicate the need for such action; inthe error log case,
a prompt response is necessary in order to prevent loss of
records in this file.)

A IPURGE command will always be acknowledged whether
in "skip" or “attend” mode.

The form of the IPURGE control command is
AL
I
'PURGE[{EL }}{R]

where

AL specifies the job accounting file (default).

EL specifies the error log.

R specifies that the indicated file is to be reset
(i.e., cleared).

If neither AL nor EL is specified, AL is assumed. If R is
specified, use of the command must be preceded by an
{unsolicited) SY operator's key—in.

Accounting File Output. The contents of the accounting
file are output, via background operational label LO, in
the following format:

mm/dd/yy hhmm name account mmmm. mm

where mmmm. mm indicates job execution time to the nearest
hundredth of a minute, e.g., 0003. 85 minutes,

Error Log Output. The contents of the error log file are
output via background operational iabels DO and LO. The
output via DO is an exact restorable copy of the error log,
record by record, followed by two IEOD records. The
output via LO is a readable representation of each record.
If DO and LO are both assigned to the same device, the
DO form of output is suppressed, i.e., LO predominates.
If DO output is to be assigned to a magnetic tape contain-
ing previous log output, the recommended procedure is

1JOB

IPAUSE KEYIN SY, S
IASSIGN DO = MT
IFSKIP DO

IFBACK DO
'PURGE EL,R
TUNLOAD DO

IFIN

REL Relocatable binary program modules to be loaded
onto the GO file are preceded by an IREL control command
The binary modules that follow must be in Xerox 16-bit
Standard Object Language (see RBM/System Technical Man-
val 90 11 53), The modules may constitute a complete pro-
gram, a root, or segments of a program. Checksum and se-
quence checks will be performed.

The form of the !REL control command is

IREL

The modules are copied onto the file to which GO is cur-
rently assigned. If GO has not been assigned, it will be
assigned by default to the RBMGO file on the RAD, which
is rewound before the modules are copied. Several modules
may be copied through the use of one IREL control command
by stacking the modules. The final module must be fol-
lowed by an 1EOD control command that will cause the
JCP to write an end-of-file (EOF) onto GO and then
backspace one file. In this manner the GO file is
positioned to accept additional input, but is always
terminated by an EOF. The relocatable binary decks are
loaded from operational label Bl.

The IREL control command is a convenient method of
obtaining additional hard copies of object modules pro-
duced on GO by Extended Symbol or FORTRAN. By
assigning Bl to GO and then reassigning GO fo BO, modules
will be copied from the original GO onto BO up to and in-
cluding the EOF. BI should be rewound before each IREL
command,

REWIND The IREWIND control command rewinds a mag-
netic tape or a RAD file and has no effect on other devices.
The operation takes place immediately after the command

is interpreted.

The form of the IREWIND control command is

IREWIND device[,F]

where
device specifies (asin IFSKIP)the device to bere-
wound, by oplabel, fdun (FORTRAN device unit
number), or DFN.
F indicates a foreground device/file. This indica-

tion is not required if a device-file number (DFN)
is specified directly. Operations on a foreground
device or file require that an FG key-in be in
effect,

TEMP Nommatlly, the temporary background space on
the RAD is reset at the completion of each step within a
job, so that a separate assembly and compilation can each
have full access to this temporary area for scratch space
as needed. The !TEMP control command is a means of
altering this standard procedure. When used with the
save (S) option, temporary files are not released after any
job step within a job stack until either a ITEMP command
is encountered with a reset (R) option or the next !JOB,
1JOBC, or IFIN command is encountered.

The form of the ITEMP control command is

S
ITEMP {R
T

where either S or R is required

S means fo save RAD temporary files between job
steps within a job (e.g., between an assembly
and a concordance).

R means to reset the RAD temp files after each job
step.
T means truncate the previous file so that it will

only be as long as the end-of-file. If no EOF has
been written the shortened file will be one record
long. Space recovered in this fashion can be
reallocated by subsequent use of the IDEFINE
command. '

UNLOAD The IUNLOAD control command causes a
specified magnetic tape or RAD file to be rewound in man-
val mode, Operator intervention is required to use the de-
vice again. If the device is a RAD file, the file is rewound
to BOT and released by a call to M:CLOSE.

Monitor Control Commands 17

The form of the ITUNLOAD control command is

TUNLOAD device[,F]

where
device specifies (as in IFSKIP) the file to be re-
wound off-line.
F indicates a foreground device/file. This indica-

tion is not required if a device-file number (DFN)
is specified directly. Operations on a foreground
device or file require that an FG key-in be in
effect,

WEOF The IWEOF command writes the appropriate end-
of-file mark on the output device. For magnetic tape, it

is a tape mark; for the card punch or paper tape punch, it
is an IEOD command; and for RAD files, it is a logical file
mark.

The form of the IWEOF control command is

IWEOF device[,number][,F]

where

device specifies (as in IFSKIP) the device that is
to have an end-of-file written on it.

number is the number of end-of-files to be written.
If absent, one end-of-file is written,

F indicates a foreground device/file. This indica-
tion is not required if a device=file number (DFN)
is specified directly. Operations on a foreground
device or file require that an FG key-in be in
effect,

XEQ The IXEQ control command loads the root module
from whatever file the OV operational label is currently as-
signed to. For foreground programs, the command must be
preceded by an FG key-in.

The form of the IXEQ command is

IXEQ

XED The IXED control command performs the same
operations as the IXEQ control command except that ! XED
transfers control to RBM Debug through the entry point
D:KEY when the root segment has been loaded. The mes-
sage !!DKEY-IN will appear on the keyboard/printer and
the user can then input Debug control commands. (See

18 Processor Control Commands

Chapter 12 for a discussion of RBM Debug.) The IXED con-
trol command causes the background operational label ID
to be default-assigned to the RBMID file on the RAD if it
is not already assigned.

The form of the IXED control command is

IXED

PROCESSOR CONTROL COMMANDS

Processors in the System Processor area and any user back-

ground or foreground program residing in the User Processor,
Foreground or Background Program areas can be called by a
processor control command. The commands have the format

Iprocessor parameters

where

processor is the file name of a processor that must
be distinguishable in the first three characters from
system control commands (see Table 4). The order
of search (by area) is SP, UP, FP, BP.

parameters are optional parameters interpreted by
each particular processor.

Table 4. RBM System Processors

Namef Description

FORTRAN FORTRAN 1V Compiler

RPG Report Program Generator

OLOAD Overlay Loader Subsystem

UTILITY Utility Subsystem

XSYMBOL Extended Symbol Assembler

RADEDIT RAD Editor Subsystem

SORT Sort Processor

Mhe RBM System Processor names are entered into
the System Processor area dictionary with the RAD
Editor 1 ADD command. If the file name is less
than eight characters, the name on the processor
control command must exactly match the file name,
If the file name is eight characters (maximum), the
first eight characters of the name on the processor
control command must exactly match the file name,
Trailing nonblank characters beyond the eighth
character in the processor control command name
are ignored,

When a processor control command is read and interpreted
by the Job Control Processor, the rootsegment of the speci-
fied subsystem is loaded from the RAD into memory. The
JCP will assign all permanent RAD files used by the speci-
fied processor before the processor is executed unless these
files were previously assigned via IASSIGN commands. The
JCP will also define all temporary operational labels used
by the processor (by defining them as background temp
files) unless they are previously defined via IDEFINE com-
mands. JCP then transfers control to the processor.

When a requested processor is read into the background and
attains control, this marks the beginning of job step. An
example of a job stack illustrating its breakdown by job
step is shown in Figure 2,

EXTENDED SYMBOL CONTROL COMMAND FORMAT

The Job Control Processor reads and interprets the
IXSYMBOL control command and loads the Extended Sym-
bol assembler from the RAD into background memory. The

assembler continues to assemble programs until it encounters
an end-of-file, The Extended Symbol assembler is called
into operation with the command

IXSYMBOL [option] ' opi’ionz, .o ,opﬁonn]

where option can be
BA specifies batch assembly mode. XSYMBOL will
ignore single end-of-files and will terminate only
when two consecutive end-of-files are encountered,
BO specifies binary output.
CR specifies cross-reference listing.

DW specifies display warnings.

GO specifies output GO file,

X

| 1IEOD

| 1*REWIND Ul

nitor enters
Monitor e

Job Step

| 1*COPY F, ALL, FORM

"Idle" state.

| 1*OPLBS LO

| TUTILITY COPY

JCP is read into

| 1assiGN LO=2

background

l!ASSIGN Ui=10

IREWIND LO

Utility is read
into background.

N\
QL

Job Step

Source Deck

JCP is read into

r! XSYMBOL LO, CR

background.

_____.ILREWIND 10

J 1ASSIGN LO=10

| IATTEND

Extended Symbol

1JO8B

is read into
background.

/
A

Figure 2. Job Stack Example

Processor Control Commands 19

LO specifies list assembly output.

LU specifies list update,

NP specifies no standard procedure input.
PP specifies punch standard procedure file.
SL specifies simple literals,

SO specifies source output.

SS specifies symbol summaries.

Ul specifies update input,

Any number of options may be specified and in any order.
If no options are specified, the following options are
assumed by default:

BO, GO, LO

The presence of any nondefault option requires that any
desired default options (except SIwhich isalways defaulted)
must also be present,

FORTRAN IV CONTROL COMMAND FORMAT

The Job Control Processor reads and interpretsthe IFORTRAN
control command and loads the FORTRAN IV compiler from
the RAD into background memory. The compiler is called
into operation with the command

IFORTRAN $q08

veesS
27" "n

where s; can be

LO specifies an object listing.
LL specifies an object listing with data chains.
XP specifies extended precision real data instead

of standard precision.

ALL specifies that multiple files are compiled.
FORTRAN will ignore single end-of-files and will
terminate compilation only when two consecutive
end-of-files are read.

(The processor that is loaded may be either the Basic or ANS
FORTRAN 1V compiler, at the installation's option.)

Binary output is normally output on both the BO and GO
devices. To suppress the BO or GO outpuf, the user must
assign the pertinent operational labels to 0 (see IASSIGN
and IDEFINE control commands in this chapter).

If no specifications are present, binary output on the BO

and GO devices, a source listing, and standard precision
mode are assumed by default. ~

20 RBM/Processor Interface

RBM/PROCESSOR INTERFACE

Ground rules common to all system processors are:
e All processors operate in the background.

e With the exception of the UTILITY program, processors
must use standard background operational label table
assignments for their 1/O requests. (See Table 2 for
the standard background operational labels.)

e The first character of each line of the listed output
from the processors is always interpreted as a vertical
format character (carriage control) and is never printed.
The RBM I/O routines treat the vertical format properly
for the keyboard/printer, line printer, and magnetic
tape.

o When the RBM transfers control to a background pro-
cessor, the X register contains the address of the con-
trol card image, providing access to any parameters.

At the completion of an assembly or compilation, the
processor writes two end-of-files on the LO device,
and then backspaces the LO device one file. The
M:CTRL routine will treat these operations for the
devices as described in the 1/0 section. This permits
file processing of output on magnetic tape, if LO is
assigned to magnetic tape. The processor writes an
EOF on BO and GO at completion and then back-
spaces one file (GO and BO are separate options).

e The processor generally returns control to RBM by
means of a call to M:TERM. RBM will immediately
read from CC and if there is another control command
for the current processor, it will reload the processor
from the RAD.

e If overlay loading is required, the processor uses
M:SEGLD. The overlay operational label for the
background is PI.

e If an irrecoverable error occurs, the processor exits
to RBM with a call to M:ABORT and displays the abort
code in the X register and the abort location in the
A register.

e Since all standard RAD files are defined by the Job
Control Processor, the processors need not call
M:DEFINE, but must call M:CLOSE to release blocking
buffers in those cases where several RAD files are used
but are not all open at one time.

e The first output line to LO from an assembly or com-
pilation should contain a top-of-form format code.

GO AND OVFILES

Figure 3 shows how the JCP and Extended Symbol or Basic
FORTRAN 1V use the operational labels GO and OV. The

Relocatable binary decks
copied directly from BI to
GO by JCP with an!REL

control command.

Assembler or compiler out-

put to both GO and BO.

4-_-—-_‘——J

vy

Overlay Loader takes
input from GO to form
executable OV.

JCP forms executable pro-
gram directly from Al to
OV with an 1ABS control
command,

vy

Executable program; called

by ' XEQ command; loaded
by RBM subtask M:LOAD.

Figure 3. Use of GO and OV Files

GO and OV files are the files to which these operational
labels are assigned by the JCP and are standard default
files when no operational labels are specified. The GO
file is a blocked, sequential file that contains relocat-
able binary decks read from the job stack, and binary
ouput produced as a result of an assembly or compila-
tion. After each module is loaded onto the file, an
end-of-file mark is written and a backspace file is per-
formed. Thus, at any point within a job stack the

GO file contains all modules that have been loaded and is
in position to accept others.

The Overlay Loader may now use the contents of the GO
file to create an executable core image program and save
this program on the random-access OV file. Absolute bin-
ary decks produced by an assembly may also be written (in
executable core image form) onto the OV file by JCP
through use of the 1 ABS command.

RBM/Processor Interface 21

3. OPERATOR COMMUNICATION

SYSTEM COMMUNICATION

When events take place in the system that require operator
intervention, or when one job is completed and another job
begins, RBM informs the operator of these conditions by
messages on the keyboard/printer. All such messages from
the Monitor begin with two exclamation marks (1!)and are
described in Table 5,

Generally, these messages require no operator response on

the keyboard /printer but may indicate that some peripheral

device needs attention. In some cases, the operator must

inferrupt and key in a response after correcting the speci-
fied problem.

I/0 RECOVERY PROCEDURE

If a message concerns an [/O error condition, the Mon-
itor I/O routines that generated the message will be wait-
ing to sense a change of state in the device. (A change of
state is defined as a change from manual to automatic, or
from automatic fo manual and back to automatic, depend-
ing on the initial condition.) When the change of state is
sensed, the operation is retried. Thus, if the device is
EMPTY, it need only be placed in the automatic mode.
If there is a PUNCHES error or a FAULT on the card
reader, the reader is unloaded, the bad card is corrected
and replaced, and the reader is returned to the automatic

mode .

Table 5. Monitor Messages

Message Meaning

1AL 10 ERROR!
1IBEGIN WAIT

An irrecoverable 1/O error has occurred while accessing the accounting file,
normally because of a hardware failure or unavailability of operational label
AL. The correct assignment of this operational label is to RBMAL, SD. An
attempt should be made to recover the contents of the accounting file as
stated above. If this recovery fails, the operator may gain control through

a KP key-in and then an FG key-in to allow foreground modifications; the
foreground operational label AL may then be reassigned (e.g., IASSIGN AL
=RBMAL, SD,F or 1ASSIGN AL =0,F).

Note: Assignment of the foreground operational label AL to zerowill inhibit
the logging of job stack entries into the accounting file.

11AL OVERFLOW'

HIBEGIN WAIT

The accounting file (RBMAL) cannot accept another entry. The accounting
file is allocated at SYSGEN and accommodates 74 entries. (The user may
increase or decrease this capacity via the RAD Editor.) At this point, normal
error recovery will be a key-in of KPto gain keyboard /fprinter control.
Next, a key-in of SY will permit access to the accounting file. The oper-
ator should now assign the background operational label LO to a hardcopy
device (e.g., paper tape, card punch). Input of a IPURGE control com-
mand specifying the clear option (i.e., PURGE AL,R) causes the contents
of the accounting file to be copied onto that device and clears the account-
ing file. The job stack causing the overflow can now be reentered.

TIATTEND ERROR xx

JCP has read an erroneous control command while operating in the ATTEND
mode, in which case RBM goes into a wait state after typing this message.
After a subsequent S key-in, RBM will process the next control command.

I'IBEGIN IDLE

JCP has just read a IFIN card (which completes a job stack)and background
has gone into an idle state. Processing will resume on a new job stack fol-
fowing an unsolicited S key-in.

HBEGIN WAIT

The background has executed a WAIT request. An unsolicited S key-in will
continue background processing.

HBKG CKPT

Bcékground hasbeen checkpointedas a resultof a foreground program request.

Hhis alarm occurs only if the RBM job accounting option has been exercised at SYSGEN.

22 Operator Communication

Table 5. Monitor Messages (cont.)

Message Meaning

RELEASE, dtnn The specified device has been released Fﬁr background use.

11BKG RESTART Background has been restarted from its point of interrupfion.

11BKGD xx ABORT, LOC yyyy The background job has aborted at focation yyyy for the reason specified by

abort code xx. If the Job Control Processor initiated the abort, a detailed
explanation will be written on the background DO device.

If the system is operating in the "attend" mode (see IATTEND), RBM will
perform any required postmortem dumps and then go into a wait state after
an abort. After a subsequent S key-in, RBM will attempt fo process the
next control command from the CC device.

If the system is not operating in the "attend" mode, RBM will not go into
the wait state but will perform any required postmortem dumps and immed-
iately begin reading from the CC device. All data cards and control com-
mands will be skipped until a 1JOB, IPAUSE, or IFIN card is found. Only
a 1JOB card will clear the "skip" mode. All control commands are listed
on the LL device with an indication (> character) preceding the command
to show that they are being ignored.

11JCP JCP has begun to read control commands. This message occurs at the be-
ginning of a job and between steps within a job (e.g., when an assembly is
completed). If CC is assigned to the keyboard/printer (as a standard as-
signment, or after a KP key-in), the input light on the keyboard/printer
will indicate that RBM is ready for input of a control command.

11CC NOT ASSIGNED JCP is unable to read a control command because the CC oplabel either is
assigned to DFN 0 or was not assigned during SYSGEN.

PISYSERR xx The Monitor has encountered some condition that will not permit further
operation or aforeground task has generated an abort condition (see "Machine
Fault Task" subheading in Chapter 6 and the "C" bit in Table 19). xx may
be any one of the following:

OP Operator-initiated system halt.

Sp The RAD device containing RBM cannot be recognized.

ET An EIOP timeout has occurred. A system reset is necessary
to continue.

PE A task has generated a memory parity error.

MF A task has generated a machine fault (probably the result of
incorrect Direct 1/0).

PF A power failure has occurred at a time when RBM cannot
recover,
11dtnn EMPTY The device specified is in the manual mode and may be out of paper,

cards, or tape.

I 1dtnn ERROR [, TRK xxxx] ‘ There has been a parity or transmission error on the device. If any auto-
matic retries were specified, they will have been performed before this
message is output. A CR device will indicate that an error card is in the
output stacker. Recovery procedure is described above under "I/O Re-
covery Procedure”. If di is RD, xxxx will be the errored track number,
which is determined from the remaining byte count.

System Communication 23

Table 5. Monitor Messages (cont.)

Message

"~ Meaning

Ildtnn FAULT

Some condition on device type dt with physical device number nn thexa=
decimal) has caused this device fo become nonoperational, The recovery
procedure is described above (in the discussion under change of state), The
operation is automatically retried when the device goes into the automatic
mode; it is neither necessary nor possible for the operator to type in a
response.

Idtnn PUNCHES

An invalid punch combination has been sensed on an EBCDIC image, The
card will be stacked in the alternate stacker (if there is one).

I'ldtnn DATA RATE

A data rate overrun has occurred. If any automatic retries were specified,
they will be performed after this message is output.

!ldtnn UNRECOG

Device type dt with device number nn (hexadecimal) is not recognized by
the I/O routines. If the device is a magnetic tape unit, the requested
drive may not be dialed in properly or power may be off in either the unit
or the controller.

!ldtnn WRT PROT

The RAD or magnetic tape is physically write-protected. If a RAD file is
logically write-protected, this message will not appear but appropriate
status will be returned.

I1dil REQUEST, dtnn

A request has been made to reserve the specified device. The operator
should prepare the device and then reserve it through use of the FR key-in.
dil refers to the dedicated interrupt location of the requesting task.

11dil RESERVE, dtnn

The specified device has been reserved for foreground use for the task whose
dedicated interrupt location is dil,

FRGD xx ABORT, LOC yyyy TCB zzzz

The foreground task with a TCB at location zzzz has aborted at location
yyyy for the reason specified by abort code xx, The corresponding interrupt
level will be disabled and if the task occupied nonresident foreground, an
unload operation will be initiated. Background processing will continue.
Because this message is written at the monitor priority level, only the abort
message for one foreground task (the lower priority level task) will appear
if two foreground tasks abort consecutively.

IIKEY ERROR[, comments]

The monitor could not process an unsolicited key-in response. The message
usually indicates a format error on the key-in, where comments may be one
of the following:

NO AR The wrong disk pack was mounted for an M key~in
and the area could not be found,

DEVICE One of the following conditions was detected:
1. This device was not defined,
2. The device does not have removable areas.
Applies to M and R key-ins,

NO BTL There is no bad track fist for the device specified.

2 IO ERR The device specified in the "M’ key-in cannot be
correctly accessed.

24

System Communication

Table 5. Monitor Messages {(cont.)

Message

Meaning

I !KEY ERROR[, comments]
{cont.)

2 ERRn

IN USE

OVFLOW

DFN/OP

1O ERR

TEMP STACK

The following error codes are defined in the 'M!
key=in processing:

n=1 The expected device number parameter is
not two characters,

=2 The key=-in exceeds the 20 characters
maximum,

=3 The field exceeds the maximum length of
eight characters,

=4 During the 'all' option, an area is defined
on another device,

=5 The area specified is not found on the
device.

=6 The area name specified is found on an-
other device,

=7 An expected area name is not two
characters.

=8 Sector 2 does not contain a bad track list.

=9 No bad track list for this device is found
in the system tables,

=10 An option other than the 'all' or area
option is specified.

=11 There is no room available in the Master
Directory for the specified area.

If the key-in was an M (mount), the area must be
removed, If the key-in was R (remove), files must be
closed in the area (perhaps by an abort or unload).

The Master Directory table length will not allow this
key-in to be processed.

The Device File table or Operational Label table has
overflowed,

The device specified in the 'M' key-in cannot be
correctly accessed,

The RBM Temp Stack has overflowed.

TIMESSAGE comments.

A IMESSAGE control command has been read. The comments field may
contain tape mounting or other instructions. RBM continues to read from
the CC device after the message is typed out.

11PAUSE comments

stack,

A IPAUSE control card has been read. The comments field may contain
tape mounting information or other instructions. A control panel interrupt
followed by an S key~in will cause RBM to continue reading from the job

System Communication

25

Table 5. Monitor Messages (cont.)

Message

Meaning

HINO 'RBMPMD' FILE OR DFN

A portion of background could not be saved. The first part of background
will be dumped as zeros.

HPOWER ON

The system has experienced a power failure and the power~fail-safe option
has been implemented. [f the computer is a Sigma2 or is a Sigma 3 with no
external interrupt and no critical foreground tasks, or if the background or
RBM Control Task was active, execution will continue; otherwise it will
crash. If the latter case, the operator should reboot RBM from the RAD
and restart the background.

Hidtnn NOISE REC

A noise record has been detected on magnetic tape and ignored. (A noise
record is one that contains less than eight bytes and an irrecoverable parity
error).

tidtnn BAD TAPE

The magnetic tape mounted on device dinn contains a bad spot that cannot
be skipped when writing. The operator should mount a new tape and (if
possible) rerun the job.

1IENTER DATE AS MM/DDAYY

A program request was made via M:DATIME for the date specifying that
the operator be unconditionally sclicited for the date.

TIENTER TIME AS HR, MN

A program request was made via M:DATIME for the time specifying that
the operator be unconditionally solicited for the time of day.

TIERRFILE OVERFLOW IMMINENT

The Error Log is about to overflow. Log entries will soon be lost unless the
operator performs a IPURGE EL,R operation (see the IPURGE control
command).

VIERRFILE OVERFLOW, PURGE

The Error Log has overflowed and log entries are being lost. The operator
must perform a IPURGE EL,R as soon as possible (see the IPURGE control
command).

OPERATOR CONTROL

Operator control of RBM is achieved by one of two methods:

solicited or unsolicited,

The active foreground task will be disabled and a call will
be made to M:EXIT if all of the following conditions are
true; otherwise, a key-in response will be requested:

1. The value in the data switches has changed since the

SOLICITED CONTROL

Solicited control will normally be in the form of a specific

request from a foreground or background program and should

always be directed to the operational label OC — Operator
Console. There is no standard format for the response to a
solicited control.

UNSOLICITED CONTROL
All forms of unsolicited control are initiated when the
operator activates the INTERRUPT switch on the Processor
Control Panel. Unsolicited control may take one of two
forms:

1. An unsolicited key-in request.

2. A forced foreground disable.

26 Qperator Control

last activation of the Control Panel Interrupt (or since
boot).

2. The value in the data switches matches the address of
the dedicated interrupt location of the current task, as
specified in word 2 of the standard Task Control Block.
See Table 19, Note that this implies that the active °
task must call M:SAVE.

Conditions 1 and 2, when taken together, simply mean
that the operator must intentionally enter the appro-

priate value in the data switches; an accidental disable
cannot normally occur.

3. The active foreground task (that is, the one to be

terminated) must ‘have a hardware priority fower than
the Control Panel Interrupt level.

If a forced foreground disable is specified, a foreground
abort message will be written; otherwise the Control Panel
Interrupt Task sets a flag in the RBM Control Task status
word and triggers RBM, The Control Panel Interrupt Task
then exits.

When the RBM Control Task becomes the highest priority
task in the system (that is, when all real-time foreground
tasks are nonactive), it issues an output message

HKEY=-IN

and requests input (up to 20 characters) from the operator.
Because of possible delays associated with messages to and
from the operator, no devices used for time critical oper-
ations should time-share an 1/O channel used for operator
communications. Each key-in mustbe terminated with the
New Line @ code. The backspace (¢ or control-X) and
delete (EOM or control-H) codes may be used before the
New Line is typed to correct a mistyped key-in. The anal-
ysis and subsequent action from the unsolicited key-in is
performed at the RBM Control Task priority level. Each
key-in mnemonic must be followed by a space before its
argument list.

Specific key-in responses under RBM are:

* comment Insert a comment, Useful for remote assist
dialog. Note that a blank must follow the asterisk.

BL oplb =dfn[,P) Permits change of operational label
assignments during running of background programs,

where

oplb is an assigned operational label or FORTRAN
device unit number,

dfn is a decimal number specifying a legitimate
device file number,

P is an optional permanent change of the default
assignment until system reboot. ‘

BL oplb =opib[,P]

: Alternate version of BL (Background
Label) key-in above.

BR([dt]nn Release the specified device for the next wait-
ing task, The characters representing the device type are
optional but, if input, will be used to validate the request.

C: tcb[,code] Connect the specified real-time fore-
ground task to the dedicated interrupt location.

where
tcb is the address of the task control block for this

task. (If the value is hexadecimal, it must be
- shown as +xxxx.) If the Overlay Loader initializes

the TCB by means. of the tcb parameters, it does
so completely, using load information and values
on the TCB and BLOCK cards. No partial initiali-
zation of a TCB is allowed with the exception of
the blocking buffer pool. If a user builds his own
TCB, the TCB must begin at the execution loca-
tion plus the "temp" value specified on the
Loader I$ROOT command.

code if present, overrides the initial code in the
TCB for the task; a code of seven would cause the
level to be triggered. If code is not present, it
will be derived from the task control block.

cc Remove the keyboard /fprinter override of the CC de-
vice. The next control command will be read from the
background operational label CC. This operator key=in is
identical to the CC control command.

DA mn Make available a device that was previously de-
clared unavailable (i.e., "down"), where nn is the address
of the device.

DB xxxx,yyyy Dump locations xxxx to yyyy if re-
quested; otherwise, immediately dump all of background
memory on background device DO. This key-in can be in-
put at any time for debugging purposes. The dump will be
in hexadecimal.

CHAN,chan
t DEV,dev
BC'} DFN,dfn

ors. (o]

Display the 1/O-error and
1/O-access counters for

either one or all channels,
as specified by the form of

key-in.
where
chan is a one- or two-digit hexadecimal channel
number. The limits on chan are 0 <chan < 1B.
dev is a two-digit hexadecimal device address.

dfn is a one- or two-digitdevice file number (DFN),
in hexadecimal.

fdun is a FORTRAN device unit number. If the
second parameter begins with "F:" or a numeral,
an fdun is assumed.

oplb is a two-character operational label.
[;] if present, indicates that the specified oper-
ational label or FORTRAN device unit number

is for the foreground (F) or background (B). If not
specified, background is assumed. ‘

If no parameter is specified, all channel error and access
counters are displayed. - (All channel and device numbers
specified must have been declared at SYSGEN time.)

'SYSGEN optional.

Operator Control 27

The format of the display message output in response to a
DC key-in is as follows:

CHAN c¢c ERRORS eeee ACCESSES aaaaaaaa

All values are displayed in hexadecimal and reflect the
number of errors and accesses since the last counter reset
(see the RC key=in) or since system boot, whichever is
more recent.

DE' Causes Debug (if Debug is part of the system) to
request the input from the keyboard/printer.

DFt xxxx,yyyy Dump locations xxxx to yyyy if re-
quested; otherwise, dump all of foreground on background
device DO. The dump will be in hexadecimal.

pMt xxxx,yyyy Dump locations xxxx to yyyy if re-
quested; otherwise, immediately dump all of RBM on back-
ground device DO. The dump will be in hexadecimal.

t
(1] mm/dd[/yy[, hemn]] Reset the calendar date within
RBM and continue processing if the Monitor is in an idle
or wait state.

D[¥) o, dd [,yy (b, mn]]
key-in above.

Alternate version of D[T](Date)

DR! [dn] xxxx,yyyy Perform a selective dump of the RAD
device dn to background device DO, where xxxx and yyyy
are the first and last sectors of the block of sectors to be
dumped. [f dn is omitted, the RAD containing the SP area
will be dumped. If dn refers to an undefined or non-RAD
device, an error message will be written. If a consecutive
series of sectors are all zeros, they will be skipped unless
the last sector of this zero series is yyyy, in which case it
will be dumped. For example, if "DR 100,200" is keyedin,
and sectors X' 1B0' through 'X'215' contain zeros, X'100'
through X'1AF' and sector X'200' will be dumped. This
key-in applies only to the 7202, 7203, and 7204 RADs.

The RAD dump routine performs RAD input with interrupts
inhibited, and therefore should not be used when response
time is critical.

DS nn,mm[,dfn] Substitute one device for another, i.e.,
change the device address associated with one or more
device file numbers (DFNs). This key-in is used mainly
for reassigning Model 7332/33 (1600 BP1) magnetic-tape
device address when one of these units has been declared
unavailable. In the key-in syntax, nn is the hexadecimal
device address to be replaced by mm, and dfn (optional) is
the single DFN for which the substitution is fo be made.

'SYSGEN optional.

28 Operator Control

(The dfn is checked to ensure correspondence to nn prior
to change.) If dfn is not specified, all DFNs that currently
point to device nn will be so modified. The message

HHCHANGED DFN dfn

will be issued for each DFN so modified, so that one or more
can later be changed back to its original assignment. The
specified devices (nn and/or mm) may be either available or
unavailable when the key-in is made. The availability status
of the mm device is appliedto all DFNs reassigned to it.

This key-in does not apply to disk/RAD devices, nor may
it be used to substitute one device type for another (e.g.,

Mode | 7322/23 for Model 7332/33, or tape for printer).

DU #n Declare a peripheral device unavailable (i.e.,
"down"), where nn is the device address. This key-in is
not valid for the system RAD or disk, nor for the operator's
console. Subsequent M:READ, M:WRITE, M:CTRL, or
M:IOEX references to the "down" device will return a
device-unavailable status.

F{;plb[,F]]
et

label table only.

Dump the information described below for
the specified file, or dump the operational

where
oplb is an operational label that indirectly speci-
fies the desired DFN. F indicates a foreground
operational label.
fdun is a FORTRAN Device Unit Number (e.g.,
F:101) that indirectly specifies the desired DFN.

F indicates a foreground fdun.

dfn is a Device File Number (DFN).

If no parameter is specified, only the operational label table
will be displayed.

When a parameter is specified, the following information
will be output on background DO device for the desired
DFN in addition to the operational label table.

e Contents of the specified Device Channel Status Tables.
e Contents of the specified File Control Tables.

e Contents of the specified /O Control Tables.

If the file is a RAD file, the following additional infor-
mation will be output:

e Contents of the specified [/O Control Sub-table.

e Contents of the blocking buffer assigned to the speci-
fied file, if one exists.

FG[S] Must precede any job stack operation affecting
the foreground or the operation will be aborted. This
key-in is effective until the next IFIN or !JOB command
is encountered. Since the key-in is normally input in
response to a IPAUSE command, the optional S key-in will
clear the wait state,

FL oplb=dfn[,P] Permits foreground operational labe!
assignment changes during system operation. The changes
will be reset to SYSGEN values upon system reboot.

where

oplb is an assigned operational label or FORTRAN
device unit number.

dfn is a decimal number specifying a legal device
file number.

P is an optional permanent change until system
reboot.

FL oplb = oplb[,P] Alternate version of FL oplb =dfn[,P]

FR [df]nn Reserve the specified device for foreground
use. The characters representing the device type are op-
tional but, if input, will be used to validate the request.
The device type will be required to distinguish PT40 from
KP40, etc.

CH Input hexadecimal patch cards from background de-
vice CC. (See Chapter 11 for the format of the patch
cards.) Patches to RBM or foreground must be preceded by
an SY or FG key-in,

KP Begin reading control commands from the keyboard/
printer. The key-in goes into effect immediately and stays
in effect until a CC key-in or 1CC control command is
encountered.

L message Enter a message into the system's error log.
The message may consist of up to 18 characters; it will be

truncated to that length if necessary. If error logging was
not specified at SYSGEN, this key=-in will result in a KEY

ERROR message.

tt
M dn[,[vsn][,arl,az,...,arn]] Mount areas "ar" on
device "dn". The operator must mount the disk pack con-
taining areas "ar;" on device "dn" before making this

fSYSGEN optional.

t
Recognized only if a disk pack unit has been declared at
system generation.

key=in. Unless the area specified is Xn, the disk pack
will be read to ensure that it contains the specified
areas. [If no areas are specified, then all areas on the
disk pack will be added to the Master Directory in core,
otherwise, only the areas specified will be added to the
Master Directory. If the Master Directory already con-
tains an entry for an area, an error message !!KEY
ERROR, IN USE will be output. The currently mounted
area must be removed with-an R (remove) key~in and the
M (mount) key-in reissued. Other error messages are
listed in Table 6. The optional vsn parametfer is a
three~ to eight-character volume serial number.

For cartridge disks which contain a bad track list (Models
7251/52 and 3231/32/33), the M keyin will read the bad
track list into the system tables.
Twenty characters, including & , is the maximum that can
be input for any one key=-in. If an Mkey=-in exceeds 20 char-
acters, it can be divided into two parts. For example

M dn, 67890123, al,a2,a3®
is 23 characters long. It may be divided up as

M dn, 67890123, al @ followed by

M dn,a2,a3 @

M dn,Xn[,wp) Mount area Xn on device "dn".
where
wp specifies the wrii'e-profecfioh level for the area

as denoted by one of the following codes:

Codes Write-Protection Level

NO (or N) No write-protection; background or
foreground programs may write on the
file.

BG (or B) Write permitted by background pro-
grams only,

FG (or F) Write permitted by foreground pro-
grams only.
Background programs may write on
the file if an SY keyin is in effect.

SY (or S) Write permitted by RBM only. Fore-

ground or background programs may
write on the file if an SY keyin is in
effect.

If the wp parameter is omitted, the default write-

protection level is NO,

M dn,BTL Input the bad track list from device "dn" and
move it into the system tables. No areas will be added to
the Master Directory in core.

Operator Control 29

Q name Queve specified program for subsequent
execution in nonresident foreground. As soon as this space
is free, the requested program is loaded. If the queue
stack is full or if the specified program is not found in the
directory, an error message is output on the assigned fore~
ground oplb, DO,

Rdn[,arl,arz,...,zn]” Remove areas from the Master Di-
rectory, If no areas "ar;" are listed, all areas on the device
will be removed from the Master Directory. For the cart-
ridge disks which contain a bad track list (Models 7251/52
and 3231/32/33), the bad track list is removed from the
system tables. If any files are in use within the areas, re-
moval does not occur and a I IKEY ERROR, IN USE message
is output. An X (abort)keyin to abort a background program
or an UL (force unload) keyin to unload a foreground pro-
gram may overcome an IN USE situation for removal.

RANNn Xerox 530 systems only. Allow connection

by dial-in of a remote-assistance terminal to the specified
device number (that must be assigned to a Xerox Model 4194
or equivalent device). Following execution of this key-in,
the remote-assistance capability is automatically involved
upon detection of a ring indication on the data set for a
specified device. This key=-in is applicable only to data
sets with an automatic answering feature; e.g., a Bell
Series 103A or equivalent.

A foreground receiver (X'1B3') may be executed following
completion of the remote connection.

RE dn Model 530 systems only. Allow connection of a
remote assistance terminal to the specified device number
(which must be assigned to a Xerox Model 4191, 4192, 4193,
or 4194 terminal), Following execution of this key-in,
the remote assistance terminal capability is invoked by com-
pleting a telephone connection with the data-set for the
associated device.

CHAN,chan
t DEV,dev

RC'| DFN,dfn Reset the 1/O error and 1/O access

OPLB,{:dIII:}[,E] counters for either one or all chan-

prb i nels, as specified by the form of the

key-in,
where

chan is a one- or two~digit hexadecimal channe!

number. The limits on chan are 0 <chan < 1B.
dev is a two-digit hexadecimal device address.

dfn is a one- or two-digit device file number (DFN)
in hexadecimal.

fdun is a FORTRAN device unit number. If the

second parameter begins with "F:" or a numeral,
an fdun is assumed,

t
Recognized only if a disk pack unit has been declared at
system generation,

30 Operator Control

oplb is a two-character operational label.

I:F] if present, indicates that the specified oper-

ational label or FORTRAN device unit number is
for the foreground (F) or background (B). If not
specified, background is assumed.

If no parameter is specified, all channel error and access
counters are reset. (All channel and device numbers speci-
fied must have been declared at SYSGEN time.)

RD dn Model 530 systems only. Disconnect the remote
assistance terminal from the specified device number (which
must be assigned to a Xerox Model 4191, 4192, 4193, or
4194 terminal).

S Continue processing if Monitor is in an idle or wait
state. If there is a waiting background program, continue
processing that program. If there is no background program,
begin reading control cards from the CC device. (Monitor
can get info the wait state from a W key-in or IPAUSE com-
mand or into idle from a IFIN command.)

sy[;s] Permit modification of system files on the RAD
to take place until the next 1JOB or IFIN command is en-
countered. This key-in is o double check (similar to the
FG key-in) to prevent accidental destruction of the RAD
files. Since this key-in is normally input in response to a
IPAUSE command, the optional S will clear the wait state,

T hrmn Reset the RBM system time, hour and minutes.

T hr,mn Alternate version of T hrmn,

TC nn Cause an 1/O timeout to occur on the channel
associated with hexadecimal device address nn. This keyin
will initiate a retry of an 1/O operation for a device which
was formerly in need of operator intervention. In systems
with Clock1 the retry will be automatic after 30 seconds
but if Clockl is excluded, the operator must perform this
key-in. This key=-in is not required if the device is in the
"manual " condition, merely return the "automatic” condi~-
tion and the 1/O operation will complete.

UL Force an unload of the program occupying the non-
resident foreground area. Note that operator key-ins can
interrupt the background program at any time. Operator
intervention cannot take place while there are active fore-
ground programs, and will be delayed until they terminate.

w Background goes into a wait state.

X Abort the background job with any dumps requested,
and output error code OP and a printed message showing
the location of last background instruction executed, If
the Postmortem Dump program is already active, it will be
terminated,

z Terminate the current background job including the
Postmortem Dump program without performing postmortem
dumps (abort code ER is output).

BRANCHING TO SERVICE ROUTINES

Under RBM, foreground and background programs may make
calls on the Monitor to perform various services or privi-
leged operations. (See Table 6.) For background requests,
a branch to protected memory will trigger the protection
routine which examines the branch for validity. If the pro-
tection violation is one of a permissible set of "controlled"
violations, the branch is permitted; otherwise, the back-
ground job is aborted with a suitable error message giving
the location to which the branch was attempted. If the
branch is valid, the protection routine will permit the

4. MONITOR SERVICE ROUTINES

method is to declare the service routine name as an ex-

ternal reference and have the Overlay Loader satisfy the

an update SYSGEN,

branch to the appropriate Monitor service routine.

All service routines are completely reentrant. Hence, they
can be used by multiple tasks on a completely independent
basis. Table 6 shows the routines requiring temporary space

in the user's temp stack.

There are two different methods of executing a branch to
one of these Monitor service routines:

the conventional

reference at load time. (In this case, the address literal
will be in the user's program, and will be filled in by the
Overlay Loader.) The other method is to branch indirectly
through the address literal in the zero table (see Appen-
dix A) using the absolute address given in Table 6. This is
a useful technique for an absolute foreground program as-
sembly, or for a processor or other programs that are self-
relocating. It also requires less program space and may
make it unnecessary to reload a permanent program following

The B register is always saved and restored since it is used
to point to temporary space.
tile. The return address (specified by the L, T, or A regis-

All other registers are vola-

ter) must point to the background area if the routine is

Table 6. Transfer Vector for Monitor Services

called (branched to) from the background. Otherwise, a
protection violation abort occurs.

Address I;/t Words of Temp Required
Dec. | Hex. | Routine 6 Purpose of this Routine Min. Max.
199 | C7 M:FSAVE F M:SAVE Function if all registers previously Saved 0 0
200 | C8 M:IOEX (0] Device-Dependent 1/O Driver ’ 16 16
201 Cc9 M:READ Device-Independent Read Routine 19 51
202 | CA M:WRITE Device-Independent Write Routine 19 51
203 | CB M;CTRLH Device-Independent Control Routine 50 62
204 | CC M:DATIME' Calendar Date and Time of Day 37 37
205 CD M:TERM Normal Termination of Background 0 0
206 CE M:ABORT Abnormal Termination of Background 0 0
207 | CF M:SAVE F Save Registers on Real-Time Inférrup'r 0 0
208 DO M:EXIT F Restore Registers on Foreground Exit 0 0
209 Di M:HEXIN Hexadecimal to Integer Conversion 0 0
210 D2 M:INHEX Integer to Hexadecimal Conversion 0 0
211 D3 | M:CKREST F _Checkpoint/Restart Background 0 65
212 D4 M: LOADPr Load Nonresident Foreground or transfer control to 32 32

another background task
213 | D5 | m:opeN' Open Blocking Buffer for RAD File 32 32
214 | D6 | M:CLOSE™ Close Blocking Buffer for RAD File 33 33
215 D7 M:DKEYS Read Data Keys , 0 0
216 D8 M:WAIT” B Execute Wait Loop from Background 34 66
217 | D9 M:SEGLD Load Overlay Segment ‘ 29 61
218 DA M:DEFINE” B Define RAD Files in Background Temp Area 32 32

Monitor Service Routines

31

Table 6. Transfer Vector for Monitor Services (cont.)

Address F/t Words of Temp Required
B

Dec. | Hex. | Routine O Purpose of this Routine Min, Max.
219 | DB | MASSIGNT Assign Operational Labels 37 51
220 DC M:POP Release Dynamic Temp Space

221 | DD | MRES Reserve Dynamic Temp Space

222 | DE M:OPFILE Convert Operational Label to Device-File Number

223 DF MRsVP' F/O Reserve or Release Peripherals 39 71
224 | EO m:Dow'! F/O Diagnostic Qutput Routine and Error Logger 32 64
225 | €1 | mcoc™ |F/O | Communications Handler 44 44

locations to load the routine.

Notes: 1.

tF =>foreground only; B = background only; O = SYSGEN option.

M hese routines are nonresident RBM overlays. All nonresident RBM overlays require a minimum of 32 temp memory

To branch to one of these routines, branch indirectly through the specified address above after RCPYI P, L
(except M:RES which is called following an RCPYI P, T). .

2. The minimum temp space required is the number used by the routine itself. The maximum temp space is the
number required by this routine and those it calls, plus 19 if any of the routines are nonresident RBM over-
lays. For example, M:READ (19) may call Q:ROC to load M:OPEN (13) and Q:ROC may reenter M:READ
(19) to load the overlay. A total of 51 temp memory locations may be used.

3. Normally, M:SEGLD requires 29 temp memory locations. However, 61 are required to output the message
TIBEGIN SEG xx. This is an RBM assembly option (i.e., #SEGXX = yes).

4, M:CKREST requires 65 temp memory locations if the checkpoint is performed at the priority level of the
calling task and the message ! IBKG CKPT is to be typed out. This message can be suppressed if bit 8
of R:SYFG is set, in which case M:CKREST requires 33 temp memory locations.

5. Use of any device that has a nonresident device dependent 1/0O edit or error recovery routine associated with
it requires 51 temp memory locations by M:READ/M:WRITE. These include KP, PT, LP, B7, CR, and CP.
However, if one of these devices is not ready, 83 temp memory locations may be required.

Certain Monitor service routines are nonresident overlay
routines. The Monitor subroutine Q:ROC controls the load-
ing of the RBM overlay area. The following Monitor ser=-
vice routines are nonresident overlay routines:

M:ASSIGN M:DATIME M:OPEN
M:CLOSE M:DEFINE M:RSVP

M:COC M:DOW M:WAIT

M:CTRL M:LOAD

Actually, portions of the above routines are resident. The
resident portion of M:CLOSE, for example, is as fol lows:

M:CLOSE RCPYI P, T
B Q:ROC
DATA 'id nn'
where
id represents the segment identifier of the non-

resident overlay section of M:CLOSE.

nn is the temp stack requirement.

32 Service Routines

Q:ROC will call M:RES to reserve the appropriate amount
of temp space, will read in the required segment, and will
transfer control to the overlay routine which runs and re-
turns to Q:ROC. Q:ROC will reload the overlay area if
appropriatet and will then release the temp space and re-
turn to the caller by a call to the Monitor service routine
M:PQP. Particular attention should be given to the maxi-
mum temporary stack requirements of these routines.

SERVICE ROUTINES

M:I0EX (General 1/0 Driver — SYSGEN optional)

M:IOEX provides direct control by background programs,
the Monitor, or foreground real-time programs over all I/O

'1f the overlay area was originally occupied by an active
Monitor service routine, the routine must be reloaded. If
the requested routine is the one occupying the overlay areq,
no loading will be required.

operations on the buffered 1/O channels for centralization
of 1/0 interrupts. All M:IOEX control functions are ex-
empt from channel time limits. The calling sequence is

LDX adrist
RCPYI P,L
B M:IOEX

where adrlst is a pointer to the argument list, which is a
set of two, three, four, or five consecutive words in the

user's program or in a temporary stack. This argument list

appears as follows:

word 0
AlZ|C]oO o0|D|0—0| OP
01 2 3 4 6 7 8 1213 15
where
F =0if word 1 is an operational label or device

unit number.

=1 if word 1 is a device file number.

A =1 if AIO Receiver is specified in word 3 (fore-
ground option only).

=0 if no AIO Receiver is specified.

Z = 1if AIO Receiver is acknowledged on zero-
byte-count interrupt.

0 if acknowledged on channel-end only.

C =1 if a user~written command chaining receiver
is specified (foreground option only).

= 0 if no command chaining receiver is specified
(default command chaining to be used).

D = 1indicates that the device has been marked
Mdown" by a DU key~-in.

’

=0 indicates that the device is not down.

1/O may not be performed on a down device
unless bit 7 of the request order wordisa one;
otherwise, device-unavailable status is re-

turned. Similarly, /O may not be performed
on an "up" device unless bit 7 of the request
order word is a zero.

The D bit is intended for the use of RBM

diagnostic programs to allow testing of fail~
ing devices. User programs should code with
the D bit reset (D =0).

o°P is the code for the operation to be performed:

0 for SIO
1 for TIO
2 for TDV
3 for HIO
4 for "check previous data transfer"
word 1
Operational label or file number
0 1
word 2
Address of first IOCD (for SIO only)
0 15
word 3

Address of AIO or CC Receiver (for SIO only)
0 15

If bit A =1 (word 0), then word 3 is a pointer to the A1IO
receiver, If A =0 and bit C = 1, then word 3 is a pointer
to the command chaining (CC) receiver. If both A =1 and
C =1, however, an additional word is required as a CC-
receiver pointer:

word 4

Address of CC Receiver (for SIO only)
0 15

Return to the user's program is to the location in register L
on entry to M:1OEX. Register B is always saved.

The Overflow (Ol) and Carry (CI) Indicators, the A regis-
ter, E register, and (in some cases) X register are used to
return status information on the required operation. The
complete list of status codes is given in Table 7.

If a device has been declared "down" through the operator's
use of a DU key=-in, only M:IOEX calls having bit D =1
(in word 0) are permitted access to the device. This is in=
tended to allow RBM diagnostic programs to test failing
devices. Otherwise, (D =0), a device-unavailable status
is returned (fE = =1, rA =9, rX =0). Conversely, if a de-
vice has not been declared down, IOEX calls with D = 1
are not permitted; a device-unavailable status is returned
to the diagnostic program,

Note that no 1/O error recovery is attempted. DSBs and
OSBs are just as received from the 1/0O system hardware.
These status returns are organized so that a quick and simple
test will show the nature of the return. If the user wishes
to keep trying to initiate the 1/O operation or keep check-
ing for completion, it is possible to loop back to the call

to M:IOEX.

Service Routines 33

Table 7. Return Status from M:IOQEX

E Register A Register X Register
Operation Major Status Ol Ci
0 1-7 8-15 0-7 8-15 0-15
S10, TIO, Device number -
TDV, HIO not recognized ! ! 0 I Recognition Code 0
Invalid call or oplb | 0 0 1 - 4o0r8 0
All Oplb set to zero 0 0 0 S 2 0
Device unavailable | O 0 1 - 9 0
SIO cannot be TIO
accepte qt 0 1 0 Current DFN DSB Dev. No. 0
t . TiO
S1O Channel busy 0 0 0 Active DFN DSB Dev. No. -1
Successful SIO
initiation 0 0 0 Current DFN DSB Dev. No. 0
SIO cannot be
accepted 0 ! 0 TIO
TIO Current DFN DSB Dev. No. -
Other 0 0 0 ‘
Devif:e. abnormal 0) 0
condition 7DV
DV Current DFN DSB Dev. No. -
Device normal 0 0 0
condition
Device operating
when HIO 0 1 0
received
HIO Current DFN HIO Dev. No. -
Devi DSB
evice not oper-
ating when HIO 0 0 0
received
/O operation 1 | o | o | CurrentDEN SIO Dev.No.| ___
in progress DSB
1/O completed Byte Count
/O check | [sual end o | 1] o | E AIG Residue (from
Flag 0SB * DSB Dev. No. | even I/O
1/O completed (Bit 7) channel reg-
0 0 0 .
normal end ister at chan-
nel end)
Legend:
ste BXNC to test both conditions simultaneously. DSB = Device Status Byte
Dev. No. = Device number of current device
OSB = Operational Status Byte

34

Service Routines

If an-AlO and/or a CC receiver is specified, it must be a
closed subroutine, is executed at the 1/0O interrupt level,
and must return to the 1/O Interrupt Task. The same gen-
eral usage rules govern both: no monitor services may be
called, all registers are considered volatile, and processing
must be brief so as not to interfere with other on-going 1/0.
On entry to the CC receiver, register L contains the return
location and register X contains the DFN; on exit, if reg-
ister A is negative, software command chaining will not be
performed; if zero or positive, such chaining will take
place. (See "M:IOEX Functions", below, for functional
descriptions of AIO and CC receiver operation. See also
"End Action" in Chapter 5 and "AIO Receivers" in Chap-
ter 6.)

The user can use M:10EX to read/write on the RAD or any
peripheral device that uses standard Xerox peripheral re-
sponses. For input/output operations to the RAD, the user
must first give a seek order and then the appropriate data-
transfer request. The user must also perform his own file
management. If multiple tasks use the RAD, they must
cooperate in some way so that the seek address is not modi-
fied by some higher-level task before the data operation

is initiated. Note that a user must always issue a "Check"
{op code of 4) after each read or write request.

The following special rules govern the use of M:10EX for
a-RAD:

1. A device-file name of the form XXdn must be included
in the set of SYSGEN input parameters following the
heading DEVICE FILE INFO, where XX indicates that
this is a special-purpose device for use with M:10EX,
and dn is the hardware device number of the RAD. The
M:IOEX calling sequence must contain the device-
file number corresponding to this device-file name,
or must contain an operational label that is assigned
to the device-file number.

2. The set of SYSGEN input parameters following the
heading RAD ALLOCATION must include provisions
for reserved tracks that are not to be included in the
areas allocated for RBM file management. This can be
accomplished by

a. Assigning the system RAD toadevice number other
than XXdn. This method requires two RADs, one
containing the RBM area assignments, and the
other available for use with M:IOEX.

b. Allocating only part of a RAD for RBM area assign-
ments, leaving the remainder available for use
with M:IOEX.

c. Allocating part of a RAD for M:10EX use by speci-
fying that a number of tracks be skipped between
RBM areas with an allocation parameter of SK = n,
where n is the number of fracks.

d. Any meaningful combination of the above.

M:IOEX FUNCTIONS

TIO, TOV, HIO In these operations, the request is per-
formed immediately and the device status bytes are returned
if the device is recognized. The AIO Receiver is ineffec-
tive for these operations.

sio The SIO operation is initiated if there is device
recognition and the channel is free (which may not be the
same as "device free" or "device controller free" for chan-
nels with several devices).

The SIO is issued even if the device is in the manual mode.
It is therefore the responsibility of the user's program to test
for the manual mode both before and aofter the SIO request,
and to inform the operator by a suitable message.

An HIO can be used to abort an 1/O operation. This results
in setting the channel end device ready for a new activity.
Since status is returned, an 1/O check operation is not
required.

Protection checks are performed only for background 1/0
requests. Background is not permitted an AIO Receiver,
and a receiver is ignored if requested from the back-
ground. Background operations specifying data chaining
are not allowed. This is due to the structure of the 10CDs,
I/O Data Tables, and the requirements for the absolute
protection of foreground programs (see "End Action" in

Chapter 5).

The user of M:IOEX must be thoroughly familiar with
machine-level 1/O operations in general, and in particular
with the execution of the SI1O instruction as described in
the appropriate Xerox computer reference manual, M:IOEX
does not modify the user's IOCDs or device~order bytes in
any way.

When using foreground data chaining it is very important

to set the interrupt flags on all IOCDs, since an unusual
end condition in one of the IOCDs without the interrupt
flag being set will cause the 1/O to terminate without an
interrupt, and the channel may then "hang up" waiting for
the interrupt because the RBM tables indicate that the chan-
nel is still busy.

In addition to hardware-executed data chaining, RBM pro-
vides a software convention for command chaining. Iis
operation and control is analogous to data chaining and
involves an extension of the normal, hardware-determined
IOCD and 1/O-control-table formats. The use of command
chaining is fully described in the RBM/System Technical
Manual, 90 11 53 (see also the RBM 1/O control tables
illustrated therein for usage examples). If a command
chaining (CC) receiver is specified in the M:IOEX argu-
ment list, it is entered at 1/O completion time prior to
the execution of software command chaining, at the 1/0
interrupt level.. The purpose of the CC receiver is to allow
the user to make a real-time decision as to whether or not

Service Routines 35

a command-chained operation is to be continued. The
content of register A on return from the CC receiver over—
rides standard RBM command chaining control (see below):
if the A register is negative, chaining is to be terminated;
if zero or positive, continued. (The receiver is entered only
if there is another operation to be performed in the user's
I/O table.) If no CC receiver is specified, a default RBM
receiver is entered and default command-chaining control
is exercised: the operational status byte (bits 0-7 of the
even channel register) is tested for transmission error, chain-
ing modifier, or unusual end. If any of these conditions is
true, command chaining is terminated. Since neither data
chaining nor software command chaining operations are per-
mitted for background programs, the specification of a CC
receiver from the background is ignored.

The Monitor does not alter the user's data in any way. If
an 1/QO interrupt is received and there is no AIO Receiver
specified (and the device is still busy), the /O interrupt
is ignored and the channel remains active.

The user's program must determine whether there wasa chan-
nel end or an unusual end condition. If the return is for o
busy device or channel, the program can loop on this re-
quest until the operation is successful.

Since only higher priority tasks can take control from the
task issuing the request, the routine issuing the request
gains control of the desired device and/or channel as soon
as the current operation is complete. The M:IOEX routine
inhibits interrupts for a period of less than 100 microseconds
during the loading of the 1/O channel registers and the set-

' ting of the activity status for the device and channel. Thus
a higher priority task can always interrupt up to the point
when the 1/O channels are loaded during the initiation of
an 1/O request,

1/0 CHECK This operation tests for channel end on the
previously requested 1/O operation by testing certain flags
within the RBM 1/O tables. The flag is set by the 1/0
interrupt task when the device interrupt occurs. Thus,
no TIOs are required to determine when the operation is
complete. Since the TIOs do consume some 1/O time
(particularly if executed repeatedly in a test loop), the
method of checking for 1/O completion described herein
is desirable. The Monitor saves the operational status
byte and the byte count residue from the completion of
the 1/O operation, even though another device may have
used the channel before the end-action check is made by
the requesting task.

The following restrictions are pertinent in using M:10EX:
1. RBM will not necessarily recover automatically from
the results of an HIO for most devices. Operator

intervention may be necessary.

2. Background programs cannot specify data chaining or
command chaining.

3. Background programs must specify an interrupt in all
10CDs.

36 Service Routines

M:READ (General Read Routine)

M:READ provides device~independent input with standard
editing and checking. Standard error detection and cor-
rection is optional on each call. The calling sequence is

LDX adrlst
RCPYI P, L
B M:READ

where adrlst is a pointer to the argument list, a set of two
to six words in the user's program or in a temporary stack.
This argument list appears as:

word 0
FIAJWIE|IR]OIO]O Order
0.1 2 3 45 6738 15
Vioolr .
“where” ' c
F =1 if a device-file number is specified.

= 0 if an operational label or device unit number
is specified.

A = 1if an AIO Receiver address is specified (speci-
fiable by foreground only).

=0 if no AIO Receiver is specified.

W = 1if wait for completion is unconditional.

= 0 if wait is for "initiate and return" only; return
is immediate if operation cannot be started
at once. (The minimum-seek algorithm does
not apply to RAD "no wait" operations.)

E =1 if standard error recovery is to be performed
at channel end.

= 0 if no error recovery is fo be attempted.

For RAD or disk pack, five attempts for error re~
covery will be made if E is specified; 10 attempts
will be made for magnetic topes. If I/O without
a WAIT is specified, error recovery will not be
performed until a "Check" is issued by the user.
See RAD and Disk Pack Error Recovery.

R =1 direct access: a RAD record displacement is
specified (granule or logical record number,
applicable only to random files). If the file
is not random, calling sequence error is
returned.

= 0 sequential access: a RAD record displacement
is not specified and implies sequential access
of random files or sequential files.

If the order is "Check previous output for completion (04)",
the 'R' is used as follows: '

R =0 do not retry the Voperafion if operator inter-
vention is required; instead, return " Operator
Intervention Required".

= 1 retry the operation, notifying the operator if
intervention is required.

D =1 indicates that the device has been marked
"down" by a DU key=in.

= 0 indicates that the device is not down.

I/O may not be performed on a down device
unless bit 7 of the request order word is a one;
otherwise, device~unavailable status is returned.
Similarly, 1/O may not be performed on an "up"
device unless biy 7 of the request order word is a
zero.

The D bit is intended for the use of RBM diagnos-
tic programs to allow testing of failing devices.
User programs should code with the D bit reset
(D =0).

Order is one of the following permissible pseudo
input orders:

Order Operation

X'00' Return information about this device
and file. See Return Registers.

X'02' Read binary.

X'04* Check previous input for completion
(affer a "no wait" initiation).

X'06' Read automatic.

X'0C' Read backward (9-track magnetic
tape only).

X'10' Return information on FORTRAN
associated files.

word 1
Operational label or file number
0 15
word 2
Address of buffer to buffer to receive data
0 15

Buffer must be in background if called by a background
program. Also, buffer must not overlap active temporary
storage or unavailable memory.

word 3

Number of bytes to transmit
0 15

Byte count must be an even number when reading from RAD
files and cannof exceed 65,534, For all other devices the
byte count may be either even or odd but cannot exceed
8192. If the byte count is even, input data stored in the
user's buffer starts in the leff~-hand byte; if odd, data starts
in the right-hand byte.

word 4

AIO Receiver or RAD record displacement
0 15

If A =1 (in word 0), this is the address of the closed AIO
Receiver subroutine called by the 1/O interrupt task at
channel end. If A =0, this is the RAD record displace-
ment (granule or logical record).

word 5

RAD record displacement (optional)
0 15

If an AIO address is specified (A = 1 in word 0), word 5
indicates the displacement from the start of the file (start-
ing with a displacement of zero). Transfer starts at the
beginning of the indicated file unit. Word 4 is RAD file
unit displacement if A =0.

While blocked and unblocked random files may be ac-
cessed directly or sequentially, the usage modes should not
be freely mixed. Note that if the R bit is not set for ran-
dom files, the file is processed sequentially.

RETURN REGISTERS

Return is always to the location specified in the L register.
The B register is always saved.

The E, A, and X registers all contain status information on
the return, as shown in Table 8. 1/O completion codes
are listed in Table 9. Return is always immediate if there
is a calling sequence error, in which case the E register is
negative upon return. For the case where a wait is speci-
fied, the 1/O is initiated and the M:READ routine loops
until the operation is complete. When "initiate and no-
wait" is specified, an SIO is issued before the return if the
device is recognized, is currently free, can accept an S10,
and is not in the "manual" mode. If any one of these con-
ditions is false, the M:READ routine returns immediately
with the appropriate indicators set. . If the channel or de-
vice is busy, the caller can either loop back to the call to
M:READ or switch to another device. The "wait" flag has
meaning whether this is an initiate or o check order. Error
recovery is attempted if specified before the final return is
made.

Service Routines 37

Table 8. Return Status from M:READ, M:WRITE, M:CTRL

”Secfor size (in bytes) of the device containing the BT area.

Operation Major Status Action E Reg. A Reg. | X Reg.
All operations Operational labels not valid. Return immediately. -1 8 t
Calling sequence error. Return immediately. -1 4 t
Operational label is sef to zero. Return immediately. 0 2 t
RAD or magnefic tape file positioned Return immediately, 0 4 t
ot EOT.
Irrecoverable 1/0 error. Return after error recovery -1 1 t
attempt, if any.
Device has been declared unavailable. Return immediately. 0 9 t
Initiate Blocking buffer not available. Return immediately, 0 10 f
Initiate I/O Channel and device are free and in Initiate 1/O and return. 0 0 Oor -1
and no wait automatic. Status in X register only
meaningful if A =1 in the
call and the A register is
zero upon return, X = =1
if the AIO Receiver will not
be acknowledged; other-
wise X =0.
Channel and/or device are busy. Return immediately. 0 -1 t
Manual intervention is required Return immediately. -1 -1 t
{manual mode or device not recognized).
Completion available without 1/0 Return immediately. Oor -1 | See t
being initiated. Table 9
Check and /O still in progress. Return immediately. 0 -1 f
no wait
1/O complete. Return after end=action, Oor -1 | Comple- |Byte
if any. tion code | count
(Table 9)
Initiate and Channel and device are free and Initiate 1/O and wait for Oor -1 | See Byte
wait automatic. completion. Table 9 | count
Channel or device are busy. Wait and keep trying.
Device number is not recognized or is Type out the proper mes-
write protected. sage to operator and retry.
Device is in manual mode. Type out EMPTY message
to operator and retry.
Initiate and I/O still in progress. Wait, and keep checking.
wait or check
and wait I/O complete. Perform any end=action Oor -1 | Comple- |Byte
and return. tion code | count
trans~
mitted
tUnspecified.

38 Service Routines

Table 9. 1/O Completion Codes

E Reg. A Reg. Meaning Comment
0 0 Operation successful . X register contains the number of data bytes transmitted.
-1 c-1 Operator intervention is required. The operator was appraised during the error recovery pro=
Normally, “this error is equivalent cedure that intervention is required.
to an 1/O error.
-1 1 Irrecoverable 1/0. If error recovery was specified, the maximum number of
: retries have been unsuccessfully attempted.

0 2 Operation not meaningful for this Either an operational label was assigned to file zero or /O

device. operation is not meaningful for the device.

0 3! ’; End-of-file encountered. Significant only for magnetic tape and sequential RAD
files (except in automatic mode when significant also for
cards, paper tape, and keyboard/printer).

0 4! End-of-tape encountered. Significant only for magnetic tape or sequential and

: random-access RAD files.

0 5 Incorrect record length. For read operations, the requested byte count does not
equal the device's physical or logical record size. For
write operations, the requested byte count is greater than
the device's physical or logical record size. For either
read or write, the actual byte count transmitted is returned
in the X register.

0 6 No /O pending for this check Error in 1/O buffering. An initial no-wait 1/O request

operation. either was not issued or was rejected.
)

0 7 Device is write-protected. Significant only for writing on magnetic tapes and RAD
files.

0 8 Beginning-of-tape encountered. Significant only for reading backward and for positioning
magnetic tapes and sequential RAD files via M:CTRL.

T . . . ‘

0 9 Device unavailable. Device was declared "down" through use of DU operator's

key=in.
f . . . epe .

0 10 Blocking buffer unavailable. Significant only for blocked RAD files.

fStatus also meaningful under initiate 1/0 and no wait.

On a check operation, the byte count returned in the X Register

Status Information

register may not be meaningful if the calling sequence does
not specify the same count as the initial read.

If the order code is X'00*, the following device status in-
formation is returned.

Register Status Information

A Device name (EBCDIC):
RD = RAD/disk file
KP = keyboard/printer
PT = paper tape

CR = card reader
CP = card punch
MT' = magnetic tape

LP

1l

line printer
PL = plotter
LD = |o§ico|' device. (E) not

meaningful

Service Routines

39

Register Status Information
E TDV device status byte (bits 0-7) and
physical device number (bits 8-15).
X Physical standard record size (bytes) for
non=-RAD files or granule size for RAD
files.

If the code is X'10', the following status information is re-
turned for random or packed files:

Register Status Information
A Address of the FORTRAN associated vari-
able (PTR).
E File units per FORTRAN logical record.
X File unit in bytes (granule or logical rec-

ord size).

If a read is attempted to a flawed track in disk pack files,
the header of the flawed track is read to determine its
alternate. The alternate track is then read as if it were
the original.

M:READ FUNCTIONS

M:READ is designed to read one logical record from the
specified device regardless of device type and whether the
record is EBCDIC or binary. Therefore, M:READ will set
up the proper order bytes for the actual device, using the
"pseudo order byte" given in the call to M:READ only as

a guide. The user may request fewer bytes than are in the
record and only this number will be returned in his buffer.
However, if more bytes are requested than are in the
record, only the bytes in the record will be read. In
any case, the actual number of bytes read will be re-
turned in the X register when the completion code is re-
turned, and if this is not the same as the number of bytes
requested, an "incorrect length" code will be returned.
While it is not always necessary for the user to check all
possible return codes, it may be useful to print them out to
aid in debugging.

If an attempt to read a record from magnetic tape results in
the detection of an irrecoverable fransmission error and
incorrect length condition, and if fewer than eight bytes
were read from tape, it will be skipped and the next record
on tape will be read.

Using M:READ, a user can read 80 EBCDIC bytes regardless
of whether they come from cards, paper tape, magnetic
tape, keyboard/printer, or RAD. M:READ will perform
standard editing from paper tape to give a record a format
identical to card image output.

By using a "read and no wait" followed later by a "check

for input complete" the user can effectively overlap input
and compute.

40 Service Routines

The order code X'00' is used to request information about
an unknown device, and may be helpful in determining the
optimum blocking sizes to use.

When using M:READ to make requests on a Logical Device
(refer to Chapter 5 —1/O Operations for a description of
Logical Devices), where Logical Device is used in the
sense of a mechanism to facilitate information transfer be-
tween tasks independently of real devices, the following
observations should be made:

1. Channel timeout does not apply.
2. Read backward is not meaningful.

3. Read Binary and Read Automatic are not differentiated.
Only one record, as specified by buffer address and
byte count, is transferred per request.

REAL~-TIME PRIORITY

All of the 1/O routines are reentrant, and any input can be
interrupted for a higher-priority task up to the "point of no
return" of setting Monitor status flags and loading channel
registers. External and internal interrupts are inhibited for
up to 100 microseconds of CPU time during the actual S1IO
sequence. Keeping a high priority task active and looping
on an input request to a busy device enables the task to
seize control of the channel or device as soon as the cur-
rent 1/O operation completes.

SPECIAL EDITING FOR CARD READER

Read Automatic. Any cards with a "1" and "2" punch in
column 1 are automatically read as binary; all other cards
are read as EBCDIC or BCD. (For nonstandard binary cards,
the user must use "read binary”.) It is possible to specify
that a!l cards from a certain file are to be read as BCD and
converted by the M:READ routine to EBCDIC before being
returned to the user. Since this would apply only to one
file, it is possible to read some cards in EBCDIC and some
in BCD from the card reader. (BCD card codes are pro-
duced by an IBM 026 keypunch, and EBCDIC card codes
are produced by an IBM 029 keypunch.) The EBCDIC
record size is 80, and the binary record size is 120 bytes.

An incorrect length status is returned if the requested byte
count does not exactly match. An "end-of-file" status is
returned when an EBCDIC card that begins with IECD is

input into the user's buffer. An “end-of-tape" status is
never returned. '

Read Binary. An "incorrect length" status is returned if
the requested byte count does not.equal the maximum num-
ber of bytes requested in the calling sequence. The num-
ber of bytes requested, up to a maximum of 120, are input
in the user's buffer. "End-of-file" and "end-of-tape" status
codes are never returned.

SPECIAL EDITING FOR PAPER TAPE OR KEYBOARD/
PRINTER

Read Automatic. All input from paper tape or keyboard/
printer is initiated in a one-byte-at-a-time mode. From
paper tape, the read order is always "read ignoring leader".
If the first byte is a code of X'1C', X'3C', X'FF', X'9F',
X'BF', X'DF', or X'78' (which can only happen with paper
tape), the M:READ routine switches to a binary mode and
reads up to 119 more bytes (for a total of 120 in the record).
The code byte will be the first byte in the user's buffer.

Code bytes are all invalid EBCDIC codes in the sense that
they are not printable graphics or control codes. Since
they are all supersets of the card reader "1 and 2 punch"
rule for column one, the same codes for "read automatic"
can be used for the card reader as for paper tape and, in
both cases, the code is part of the user's data buffer. If
the first byte from the paper tape or keyboard/printer is not
one of the binary codes M:READ continues to read one byte
at a time until a NEW LINE code is encountered.

When a NEW LINE code is encountered, input transmission
is terminated and the line image is filled out with blanks
to the requested byte count. The NEW LINE code is not
transmitted to the user's buffer. (If a NEW LINE code is
the first code in the input line, it is ignored.)

Thus, all EBCDIC records are of variable length, up to the
maximum requested or until a NEW LINE is encountered.
Further, EOM and cent (¢) have special meanings within
the user's data line. An EOM causes the entire line up to
the present position (including the EOM byte) to be dis-
carded. A ¢ sign acts like a backspace. For each ¢ sign
received, this byte and the byte preceding it are thrown
away.

When reading binary recordsin the automatic mode, 120 bytes
are read regardless of the number of bytes requested. For
EBCDIC records, the paper tape is read up to and including
the NEW LINE code. For either EBCDIC or binary records,
not more than the maximum number of bytes requested is
transmitted to the user's buffer. The requested byte count
must be 80 for EBCDIC records and. 120 for binary records.
Any other byte counts result in an "incorrect length"
status return.

An "end-of-file" status is returned when an EBCDIC record
that begins with IEOD is input into the user's buffer.

Read Automatic from Model 4191 or 4193 Keyboard/Printer.
A Read Automatic order for a Model 4191 or 4193 keyboard/
printer (Model 530 systems only) causes a prompt char-
acter (/) to be printed immediately prior to reading from
the keyboard — there is no INPUT light to indicate “read"
state. Otherwise, the operation is the same as.described
above except that a control-H combination causes the en-
tire line to be cancelled (discarded) and control-X is used
for. the backquce (character-erase) function.

k Read, Bl nary from Paper Tupe The Read Binary order for
paper tape is "read immediate" unless it is changed to "read

.Read Binary from Keyboard/Printer.

ignoring leader" by a PATCH. The physical record size
is the number of bytes requested by the user's input. The
next record starts immediately following the last byte of
the previous record and the requested byte count deter-
mines the end-of-record. “Incorrect length" and “end-
or=file" status codes are never returned. "End-of-tape"
status is not returned, even when the paper tape runs off
the reader.

A read binary order
causes the keyboard/printer to read the exact number of
bytes specified. RBM performs no editing, and no bytes
(including NEWLINE codes) are considered control bytes.
“Incorrect length", "end-of-tape", and "end-of-file"
status codes are never returned.

SPECIAL EDITING FOR MAGNETIC TAPE

Read Automatic or Binary. Automatic and binary modes
are identical on 9-track tape, cmd M:READ supports only
the BCD and packed-binary modes' for 7-track tapes. Only
the number of bytes requested is transferred to the user's
buffer regardless of the physical record. "Incorrect length"
status is returned when there are either too few or too many
bytes in the input record, and the tape is positioned at the
start of the next physical record. "Incorrect length" will
not be reported for foo many bytes in the input record for
7-track, packed binary tapes.

If the tape is positioned past the end-of-tape marker and
error checking is specified, the device is not started and
"end-of-tape" status is returned. If error checking is not
specified, the device is started, and the status returned at
completion is as in Table 10 except that "end-of-tape™
status (A=4) is returned if a file mark is sensed. Read back-
ward operations on 9-track tapes are always permitted past
end-of-tape.

The Read Backward order produces a buffer with data in an
inverted condition. If the tape is at the load point when
the Read Backward order is given, no data is fransmitted
and “BOT" status is returned. Read Backward will be
ignored for devices other than 9-track magnetic tape.

SPECIAL EDITING FOR SEQUENTIAL RAD FILES

Read Automatic or Binary. On a RAD, automatic and

binary modes are identical. When reading from blocked

files, a blocking buffer must be supplied. If the calling

program has not specified a blocking buffer, M:READ will

call M:OPEN to reserve a buffer from the calling task's

buffer pool. If no buffer is available, M:READ exits wnfh
a "blocking buffer unavailable" status.

"The user should be thoroughly familiar with the BCD and
packed-binary mode if 7-track magnetic tape is used. See
the Sigma 7-Track Magnetic Tape System/Reference Man-
val, 9009 78.

Service Routines 41

Compressed records are decompressed by M:READ so that
only the expanded record, -without compression codes, is
input into the user's buffer.

A byte count can be requested that is fess than, equal
to, or greater than the file's logical record size. The
number of bytes requested, up to a maximum of the logical
record size, is always transferred. If the byte count does
not equal the logical record size, "incorrect length" status
is refurned. In any case, the file is positioned to the next
logical record, regardless of the byte count transferred.
For compressed files, the requested byte count is compared
to the byte count of the expanded record instead of the
logical record size. "End-of-file" status is returned when
the file is positioned at the logical EOF. "End~of-tape"
status is returned when the file is positioned at the logi-~
cal EOT. This is true whether or not error recovery is
specified.

A Read Backward order will be interpreted as a Read
order.

SPECIAL EDITING FOR RANDOM-ACCESS RAD FILES

Read Automatic or Binary. Automatic and binary modes
are again identical. For unblocked random files, the
exact number of bytes requested will be put into the user's
buffer and "incorrect length" status will not be returned.
One or more granules will be read to satisfy the byte count.
RAD space between granulesis lost. Unused parts of gran-
ules are ignored.

For blocked random files, no more than one record will be
transferred. A greater byte count request results in incor-
rect length. The file will always be positioned at the next
record after a successful transfer.

If the Read begins or extends beyond the file's ending
boundary, no data is transmitted and "end-of-tape" status
is returned. For blocked random files, an end-of-file may
also occur. This is true whether error recovery is specified
or not.

Note: For all disk files, no transfer will be initiated that
crosses a frack boundary. Instead, it will be broken
into two transfers: one to transfer to the end of the
track, and a second to complete the transfer. There-
fore, in a "no-wait" operation, a check must be
requested to complete the transfer. If an AIO Re-
ceiver is specified, it will be entered each time
channel end occurs, but it also must be specified in
each Check operation call.

M:WRITE - (General Write Routine)

M:WRITE provides de‘}ice-independent output with stan-
dard editing and standard error detection and correction.

42 Service Routines

The error handling procedure is optional on each call to
M:WRITE. The calling sequence is

LDX adrlst
RCPYI P,L
B M:WRITE

where adrlist is a pointer to the argument list, which is a
set of two to six words in the user's program or in a temp-
orary stack. The argument list consists of six words:

word 0
FIAJWJE|[R]OI|SR|D Order
01 2 3 45 6 7 8 15
where
F =1if a device-file number is specified.

=0 if an operational label or device unit is
specified.

A =1 if an AIO Receiver address is specified.
=0 if no AIO Receiver address is specified.

Note: only a foreground operation can specify
this.

W =1 if wait for completion is unconditional.

=0 if wait is only for "initiate and return®; re-
turn is immediate if the operation cannot be
started immediately.

E =1 if standard error recovery is to be performed
at channel end for this operation. Five at=-
tempts at error recovery will be made for ro-
tating memory devices and ten attempts will
be made for magnetic tapes if E is specified.
If 1/O without a WAIT is specified, error re-
covery will not be performed until a "Check"
is issued by the user.

=0 if no error recovery is to be attempted.

R =1if a RAD record displacement is specified (can
only be specified for random-access RAD files).

=0 if a RAD record displacement is not specified.

If the Orderis "Check previous output for completion (04)",
the ‘R' is used as fol lows:

R =0-do not retry the operation if operator interven-
tion is required; instead, return "Operator
Intervention Required".

= 1 retry the operation, notifying the operator if
intervention is required.

- 1 if the user is doing his own blocking to an

RBM blocked or unblocked sequential RAD
file and an indication of a possible short
last record is to be retained in the file di-
rectory. If the record being written is ac-
tually a short record, a flag will be set in
the IOCT for later transfer to the file direc~
tory when the file is closed. The actual byte
count of the record will be stored into the
effective last word of the record. If the
record is not a short record, the 10CT flag
is cleared; thus this specification is only
meaningful for the last record. Upon reading
the file, a Read request for the last record
(assuming a short record) would result in an
incorrect record length status (E =0, A =5,
X = actual byte count).

=0 if short record logic is not to be invoked.

The following rules govern the usage of the
short record flag:

1. The record must be written from a loca-
tion that guarantees that the location
where the effective last word of the
record (as defined by the actual record
size) would lie within the domain of the
task. This should not be a problem since
the record is normally written from the
application programs block reserve. Fail-
ure to do so from a background program
will result in a calling sequence error
(E=-1, A=4). Since the boundaries
of a foreground program cannot always
be determined, interference with another
task can occur.

2. It is assumed that on Read operations
the user program is requesting a byte
count equal toor greater than the actual
record size. A Read request for less
than the actual record size would re-
turn an incorrect record length for each
read and a transfer of the request bytes
for each record, including the last rec~
ord, and may return more data than was
actually written into that record, since
RBM has no way of determining the writ-
ten byte count without reading the en-
tire record.

3. The "short record" specification is mean-

. ingful only for unblocked sequential and

blocked sequential files and is ignored

for other devices or files. Only the last

record in the file retains the short record
indication.

4. The "short record" operation results ina
modification to the users buffer if the
record is a short record.

D =1 indicates that the device has been marked
"down" by a DU key~in.

=0 indicates that the device is not down.

1/O may not be performed on a "down" device un-
less bit 7 of the request order word isa one; other-
wise, device-unavailable status is refurned. Si-
milarly, 1/O may not be performed on an “up"
device unless bit 7 of the request order word is «

e zero.
The D bit is intended for the use of RBM diagnos-
tic programs to allow testing of failing devices.
User programs should code with the D bit reset
(D =0).
Order is one of the following pseudo order bytes:
Order Operation
X'00' Return information about thisdevice.
X'or Write binary.
X'03! Write file mark or 1EOD.
X'04' Check previous output for comple-
tion (after a "no wait" initiation).
X'05' Write EBCDIC.
X'07' Check write (RAD only).
X*10' Return information on FORTRAN
associated files.
word 1
Operational label or file number
0 15
word 2
Address of buffer containing data
0 15
word 3
Number of bytes to transmit
0 15

The byte count must be an even number when writing on
RAD files and may not exceed 65,534. It may be either
even or odd for all other devices, but cannot exceed
8192 bytes. If an odd byte count is requested, the first
byte is written from the right half of the word and the left
half is ignored. If an even byte count is requested, the
byte is written from the left half of the first word.

Service Routines 43

Output to the card punch assumes an even byte count. An
extra byte at the start of the buffer is sent if the count is
odd.

word 4

AlO Receiver or RAD record displacement

0 15

This is the address of the closed AIO Receiver subroutine
called by the I/O interrupt task ot the channel end, if
A =1 (word 0). If A =0, this is the RAD granule displace-
ment (granule or record)

word 5

RAD record displacement (optional)
0 15

If an AIO address is specified (A =1 in word 0), word 5
indicates the displacement from the start of the file (starting
with a displacement of zero). Transfer starts at the begin-
ning of the indicated file unit. Word 4 is the RAD file unit
displacement if A = 0.

Packed and unblocked random files may be accessed randomly
or sequentially. Note that if the R-bit is not set for-random
files, the file is processed sequentially.

RETURN REGISTERS

The return is to the location in the L register. The B regis~
ter is always saved.

The status is returned in the E, A, and X registers. Status
and method of returning status are the same as for M:READ.

If the code is X'10', the following status information is
returned for random or packed files:

Register Status Information

A Address of the FORTRAN associated vari-
able (PTR).

E File units per FORTRAN logical record.

X File record size in bytes (granule size if

random file, logical record size if packed
random file).

If a write is attempted to a flawed track in disk pack files,
the header of the flawed track is read to determine itsalter-
nate. The alternate track is then written as if it were the
original,

44 Service Routines

M:WRITE FUNCTIONS

M:WRITE is designed to write one physical record on the
device specified, regardless of the device type. Because
of differences in Write orders for the card punch, it is
necessary to specify whether the output record is binary or
EBCDIC. (For most other devices, the difference is not
meaningful.)

Not more than one physical record will be written for a
single Write order. For devices like the card punch, if
fewer than a standard number of bytes are specified (80 for
EBCDIC and 120 for binary), the remainder of the record
is padded with blanks (EBCDIC) or zeros (binary). Most of
the general comments which apply to M:READ also apply
to M:WRITE.

Write End-of-File. Order code X'03' produces the fol-
lowing results:

Line Printer No effect
Keyboard/Printer No effect
Card Punch 1EOD card
Paper Tape Punch TEOD NL

Magnetic Tape EOF tape mark -

RAD Logical file mark

For devices where the Write End-of-File order has no
meaning, a status of "operation not meaningful for this
device" will be returned. If a magnetic tape or RAD file
is positioned at the end-of-tape, the end-of-file will be
output. (This is the only writing allowed past the end-of-
tape when error checking is specified.) For RAD files, the
end-of-file is set to the current record position within the
file as determined by the most recent access through
M:READ, M:WRITE, or M:CTRL.

Write EBCDIC to Keyboard/Printer. The first byte is as-
sumed to be a carriage control byte and is never printed.

If the byte is a zero or a one, double spacing is used; other-
wise, single spacing is used. In any case, this first byte
is not sent to the keyboard/prinfer. Trailing blanks are
removed and a NEW LINE code is command chained to the
last nonblank byte of the user's buffer. If there are more
than 85 printable characters, those beyond 85 are ignored.

Write Binary to Keyboard/Printer. The exact number of
bytes specified is written. No format byte is assumed, no
editing is performed, and no line'format is imposed. It is
the user's responsibility to insert NEW LINE codes if more
than 85 bytes are output. A maximum of 256 bytes may be
output with one operation.

Write EBCDIC to Paper Tape. Trailing blanks are removed
and a NEW LINE code is inserted as the last byte (if not
already present). The entire record, specified by the byte

count, is edited and output and an "incorrect length" status
is never returned.

Write EBCDIC to Line Printer. The first byte per record
is always assumed to be a carriage control (format) byte,
and is never printed. With any odd byte count (as in all
of the 1/0), the first byte transmitted is from the right
half of the first word, and the left half of the first word is
ignored.

The print routine chcnﬁes the logical format byte (as shown
below) to the proper physical format code for the printer.

If more than 133 bytes are specified, the remainder beyond
133 bytes is ignored and an "incorrect length" status re-

turned. If fewer than 133 bytes are specified, the right

(trailing) portion of the printed image will contain blanks.
However, the user's buffer is not modified. The print rou-
tine will first data chain on the order byte and format byte
in the Monitor area and then on the user's print image.

If it is desired to force single spacing, there may be a word
appended to the beginning of the user buffer with a blank
in the right half; the byte count is then increased to an odd
value, and up to 132 bytes from the original buffer will be
printed with the extra "blank" used as the format byte to
force single spacing. The format codes (in EBCDIC) are

Format Byte Effect

blank No space before printing, single
space after printing.

1 Page eject before printing, single
space after printing.

0 Single space before printing, single
space after printing.

- No space before printing, no space
after printing.

Any other format code will be treated like a blank but wili
not be printed. These are standard FORTRAN format char-
acters with the exception of the minus sign (=) which is sub-
stituted for the standard FORTRAN plus sign (+) to allow
overprinting. The user can use M:IOEX (General 1/O
Driver) to send the standard format code or any other format
code for Xerox printers,

Write Binary to Line Printer. Writing binary to the line
printer is identical to writing EBCDIC to the line printer
except that the first byte from the user buffer is treated as
a pseudo VFC and is interpreted by the line printer handler
(see Appendix F),

Write EBCDIC to Card Punch. Regardless of the byte count

requested, 80 bytes are always output. If fewer than 80
bytes are requested, the punch image is filled out with
blanks. The image is moved to a Monitor buffer; the user's
buffer is never modified. I more than 80 bytes are re-
quested, only the first 80 are output and the surplus is

ignored. In this case, "incorrect length" status is returned.
If the file has been declared BCD af system initialization,
all EBCDIC output records are converted to BCD before
being punched. (The operation is performed in the Moni-
for's buffer.)

Write Binary to Card Punch. Regardless of the byte count
requested 120 bytes are always output. If less than 120
bytes are requested, the punch image is padded with
trailing zeros. (The image is moved to a Monitor buffer;
the user's buffer is never modified.) If more than 120 bytes
are requested, only the first 120 will be output and the
remainder ignored. In this case, an "incorrect length"
status is returned.

Write EBCDIC or Binary on Magnetic Tape. Variable-

length records are possible; no check is made of the data
and no editing is performed. The exact byte count {up to
the allowable maximum) is always written, however for
reliability reasons, it is recommended that byte counts less
than twelve or greater than 8190 not be used. For 7-track
magnetic tape, the data is recorded in either BCD or
packed-binary format, which may cause an "incorrect
length" status if the record is not read with the same byte
count used to write the record (see the 7-Track Magnetic
Tape System Reference Manual, Publication 90 09 78). No
"incorrect length" status is ever returned.

If the tape is positioned past the end-of-tape marker and
error checking is specified, the data is not transmitted and
"end-of-tape" status is returned. If error checking is not
specified, the data is transmitted and the "end-of-tape"
stafus is not returned.

If the tape is physically write-protected and an "initiate
no-wait" order is requested, the "write—protected" status
is returned. If an "initiate and wait" order is requested,
the Monitor puts out an alarm and waifs for operator action
(see the pseudo order bytes under the definition for ORDER
under word 0 of the argument list).

Write EBCDIC or Binary on Sequential RAD Files. When

writing on blocked files, a blocking buffer must be sup-
plied. If the calling program has not specified a blocking
buffer, M:WRITE will call M:OPEN to reserve space in the
task's buffer pool. If no buffer is available, M:WRITE exits
with a "blocking buffer unavailable" status.

Records to be written on compressed files are edited with
compression codes inserted in a Monitor buffer, The data
in the user's buffer remains unchanged.

For compressed files only, the logical record size has no
meaning and the requested number of bytes is compressed
and output. For all other files, a byte count less than,
equal to, or greater than the logical record size can be re-
quested and the requested number of bytes, up to the maxi-
mum of the logical record size, is always output. If the
byte count is greater than the logical record size, an "in-
correct length" status is returned. In any case, the file is
positioned to the next logical record regardless of the byte
count transferred.

Service Routines 45

An "end-of-tape" status is returned when the file is
positioned at the logical EOT (whether error checking is
specified or not or if the current operation will cross
the logical EOT). Data cannot be output past a logical
EOT.

If a Write is attempted on a file that is either logically
write-protected or on a RAD track that is physically write-
protected, a "write~protected" status is returned and no
data is outpuf.

Since the RAD has no read-after-write capability as do
magnetic tapes, a separate Check-Write operation is essen-
tial to ensure absolute validity of the data output. How-
ever, since a separate Check-Wrife operation requires as
much time as the original write operation, and the RAD has
a high degree of reliability, the capability should only be
used when the data is sensitive or cannot be regenerated.
Backspacing operations must be performed before the Check-
Write operation, since no repositioning is performed at this
time. For compressed or blocked files, no Check-Write is
allowed and a status of "operation not meaningful" will be
returned.

Write EBCDIC or Binary on Unblocked Random-Access RAD
Files. Although a granule size may be specified when a
random file is defined, the size does not retrict the maxi-
mum number of bytes that may be written. However, each
Write operation begins at the start of a granule, and
uncompleted granules are filled out with zeros. The exact
number of bytes requested is output; never with "incorrect
length" status return. If the Writé begins or extends beyond
the file's ending boundary, no data is transmitted and an
"end-of-tape" status is returned, whether or not error
recovery is specified.

If o Write is attempted on a file that is either logically
write-protected or on a RAD track that is physically write-
protected, a write-protected status is returned and no data
is output.

Write EBCDIC or Binary on Blocked Random-Access RAD
Files. Any access is restricted to the record size regardless
of whether the access is random or sequential. Incorrect
length and end-of-tape may occur. Write protection con-
siderations are the same as for unblocked random files.

Note: For all disk files, no transfer will be initiated
that will cross a track boundary. Instead, it will
be broken into two transfers: one to write to the
end of the track, and a second to complete the
transfer. Therefore, in a "no-wait" operation, a
check must be requested to complete the transfer.
If an AIO Receiver is specified, it will be entered
each time channel end occurs, but it also must be
specified in each check operation call which may
be different from the AIO Receiver given in the
Write call.

When.using M:WRITE to make requests on a Logical Device
(refer to chapter 5 - I/O Operations for description of

46 Service Routines

Logical Devices), where Logical Device is used in the sense
of a mechanism to facilitate information transfer between
tasks independently of real devices, the following observa-
tions should be made:

1. Channel timeout does not apply.
2. Check Write is not meaningful.

3. Write Binary and Write EBCDIC are not differentiated.

M:CTRL (General Control Routine)

M:CTRL provides device-independent positioning capabili-
ties for magnetic tapes (both 7-track and 9-track) and for
RAD files. All M:CTRL control functions are exempt from
channel time limits. The calling sequence is

LDX adrist

RCPYI P, L
B M:CTRL

where adrlst is the pointer fo the argument list which is
a set of two or five consecutive words either in the user's
program or in a temporary stack. This argument list appears
as follows.

word 0
FIAIWi{OIR|0}0]|D Order
01 2 345 ,6;7 8 15
\‘ : : (1 < - ‘
where f
F =1if adevice-file number is specified.

= 0 if an operational label or device unit number
is specified,

A =1if an AIO Receiver is specified in word 4
(specifiable by foreground only). 'A' is
ignored if 'W' = 1.

=0 if no AIO Receiver is specified.

W =1 if wait for completion is unconditional.

=0 if wait is only for "initiate and return®, ‘
return is immediate if the operation can-
not be started immediately. '

If the Order is "Check previous output for completion (04)",
the 'R' is used as follows:

R =0 do not retry the operation if Operator Inter-
vention is required; instead, return "Opera-
tor Intervention Required"”.

= 1 retry the operation, notifying the operator if
intervention is required.

D = 1 indicates that the device has been marked
"down" by a DU key~in.

= 0 indicates that the device is not down.
1/0 may not be performed on a "down" de-
vice unless bit 7 of the request order word is
a one; otherwise, device-unavailable status
is returned. Similarly, 1/O may not be per-
formed on an "up" device unless bit 7 of the
request order word is a zero.

The D bit is intended for the use of RBM di-
agnostic programs fo allow testing of failing
devices. User programs should code with the
D bit reset (D = 0).

ORDER is one of the following pseudo order bytes:

Order Operation

X'04' Check previous operation for com-
pletion (after a "no wait" initiation)

X'EB' Space Record Backward
X'EF' Space Record Forward
X'FB' Space File Backward
X'FF* Space File Forward

X'2B' Rewind Off Line

X'38' Rewind On Line

word 1

Operational label or file number

0 15

Words 2 and 3 are currently unused and should be coded
as zeroes.

word 4

AIO Receiver Address

IfFA =1 {inword 0) dnd 'W' # 1, this is the address of the
closed AIO Receiver subroutine entered by the I/Ointerrupt
task when the associated tape motion is complete.

Note: In certain cases, an I/O interrupt will not occur
and the AIO Receiver will not be entered. When
such a situation exists, M:CTRL will returh with
the ' X' register set to -1, as for M:READ/M:WRITE
functions. '

Return is to the location in the L register. The B register is
always saved. Status is returned in the E, A, and X regis-
ters, as in M:READ. No wait initiate requests must be
followed by a check operation. Otherwise, subsequent
requests on this file will result in a calling sequence error.

Note: For compressed RAD files, where these operations

are not meaningful, an "operation: not meaningful"
status will be returned.

M:CTRL FUNCTIONS

If the device is a magnetic tape or a RAD file, it is posi-
tioned as indicated. The record spacing commands are uti-
lized for physical records and are not meaningful for

FORTRAN logical records.

Space Record Backward. The Space Record Backward order

posifions a magnefic tape to the start of the previous physi-
cal record. If the tape is already at load point, the order
is ignored and a BOT status is returned. If the previous
record was an end-of-file, EOF status is returned.

For compressed RAD files, this order. is illegal and a
status of "operation not meaningful for this device" will
be returned.

For all other RAD files, the file is positioned fo the start
of the previous logical record. If the file is positioned at
the logical BOT, the order is ignored and a BOT status is
returned. If the file is positioned immediately beyond
the logical EOF, EOF status is returned and the file is
repositioned to the point immediately before the logical
EOF. If the file is blocked and there is output data in
the blocking buffer, it is written on the RAD before the
file is repositioned.

Space Record Forward. The Space Record Forward order
positions a magnetic tape of the start of the next physical
record. If the record skipped was an end-of-file, EOF
status is returned.

For compressed RAD files, this order is illegal and a
status of "operation not meaningful for this device" will be
returned.

; For all other RAD files, the file is positioned to the start

of the next logical record. If the record skipped was the
logical EOF, an “"end-of-file" status is returned. If the
file is positioned at the logical EOT, the record is not
skipped and an "end-of-tape" status is returned.

Space File Backward. The Space File Backward order posi-
tions a magnetic tape to either the start of the previous file
mark (and EOF status is returned) or load point (if there is
no file mark). If the tape is already at the load point, the
order is ignored and BOT status is returned.

For RAD files, the file is positioned to either the start
of the logical EOF or to the logical BOT. If the file
is positioned immediately beyond or .at the logical EOF,
it is repositioned to the point immediately before the

Service Roufines 47

logical end-of-file, and EOF status is returned. If the
file is positioned before the logical EOF, it is repositioned
to the beginning-of-tape and BOT status is returned. If the
file is already positioned at the logical beginning-of-tape,
the order is ignored and BOT status is returned. If the file
is blocked and there is output data in the blocking buffer,
it is written on the RAD before the file is repositioned.

Space File Forward. The Space File Forward order positions
a magnetic tape to the start of the next file. A status of
EOF is returned. s

For RAD files, the file is positioned immediately at the
logical EOF and "EOF" status is returned. If the file

is already positioned beyond the logical EOF or no logi-
cal EOF has been written, the order is ignored and an
"illegal RAD sequence" status is returned. If the file is
blocked and data has been written in the blocking buffer,

it will be written out before the file is repositioned.

Rewind On-Line. The Rewind On=-Line order rewinds mag-
netic tape to the load point. If the tape is already at the
load point, no error status is returned.

For RAD files, the file is positioned to the logical BOT.
If the file is already at the load point, no error status
is returned. If the file is blocked and there is output
data in the blocking buffer, it is written on the RAD before
the order is executed.

Rewind Off-Line. For magnetic tape, the tape is rewound
and unloaded. The Rewind Off-Line operation is useful
for a "save" tape or for a tape at the end-of-reel when a
new tape must be mounted. The user must control and check
this condition. -

For RAD files, the file is closed by a call to M:CLOSE.
If the file is blocked and there is output data in the
blocking buffer, the data is written on the RAD before
the order is executed. In addition, the file directory
is updated on the RAD to reflect the current position of the
logical file mark.

M:DATIME (Calendar Date and Time of Day)

M:DATIME provides the calendar date or time of day, or
both, to either foreground or background programs in
EBCDIC format. The calling sequence is

LDX adrlst
RCPYI P,L
B M:DATIME

where adrlst is the pointer to the argument list, which is a
set of two consecutive words either in the user's program

48 Service Routines

or in a temporary stack. This argument list appears as

follows:
word 0
DIT 0 0
o 1 23 15
where
D = 1 if return calendar date is specified.
= 0 if calendar date is not required.
T = 1 if return time of day is specified.
= 0 if time of day is not required.
S = 1 if date and time are supplied by the user (in
Address and Address + 1).
= 0 if current date or time of day, or both, are
to be used.
o = 1 if date and time are to be unconditionally
solicited from the operator.
= 0 if current date or time of day or both are to
be used.
word |
Address
0 15

where Address is the location where the date and time of
day are stored.

Return is to the location in the L register. The B register is
always saved.

M:DATIME FUNCTIONS

K:CLOCK in the communication region is a pointer to the
accounting table that contains the date and time. The date
and time are set at system initialization and can be reset
by the operator through unsolicited key-ins. The date is
automatically advanced (if Clock 1 or JOBACCT is indi~-
cated) and provisions are included for year changes includ-
ing leap-year adjustment. Thus, under continuous opera-
tion, only adjustments to accommodate daylight savings
time changes are required. The date or time of day, or
both, are stored in the following format in the area of core
specified by word 1 of the argument list:

Date: M M
D
D
Y Y
2 blanks are sup-
A
- plied when both
Time: H R date and time are
M N requested

Note: Time of day is given in military time (0000-2359).

If the date and the time are supplied by the user (S = 1),
the times supplied in Address and Address + 1 will be over-
laid by the calendar date or time, or both. This option is
used by the Job Control Processor PURGE command.

If O is specified, the date and/or time will be solicited
from the operator.

M:TERM . (Normal Exit from User Programs)
M:TERM provides an entrance back to the Monitor on a nor-
mal termination of a user program. The calling sequence is

RCPYI P,L

B M:TERM

M:TERM FUNCTIONS

For an unload request, M:TERM triggers the RBM Control
Task routine S:LOAD for the next load if any other entry
is in the queue stack. If no additional requests are present
and S:LOAD has checkpointed the background, S:LOAD
triggers RBM Control Task S:REST for a restart. Foreground
blocking buffers are not closed. A call to M:CLOSE is
required before calling M:TERM to guarantee that blocking
buffers are correctly merged with RAD files. If the call is
from a real-time foreground program, the task is disabled
and M:EXIT is called to perform the exit functions. If the
calling task occupies nonresident foreground, an unload
operation is performed.

On calls from the background the L register must be set to
a background addressor the background call will be aborted
with a protection violation. All 1/O is allowed to run
down. All files utilizing blocking buffers will have their
blocking buffers closed out. If an unconditional post-
mortem dump was specified, it will be performed at this
time. The Control Command Interpreter will then be read
into the background and will read the next control command.

M:ABORT (Abort Routine)

When a background program fails for any reason, a call to
M:ABORT provides a method of clearing the background
program out of core memory and for terminating all active
1/O for the background program. The calling sequence is

LDA loc

LDX code
RCPY1 P,L

B M:ABORT

where code is a word of EBCDIC information and loc is a
word of hexadecimal information that is printed on the DO
..and OC devices toshow why the job was aborted.

Return is never to the location in the L register. If the
call is from a real-time foreground program, the task is
disabled and M:EXIT is called to perform the exit functions.
If the calling task occupies the nonresident foreground area,
an unload operation will be performed. On calls from the
background; the L register must be set to the background

or the background call will be aborted with a protection
violation. All I/O in progress is allowed to complete and
a postmortem dump will be performed at this time if pre-
viously requested.

M:SAVE (Interrupt Save Routine)

M:SAVE routine performs the full context switching when

a foreground interrupt occurs. It is available only for fore-
ground programs that are connected directly to an interrupt.
The calling sequence is

RCPYI P,L
B M:SAVE
ADRL tcb

where tcb is the address of the Task Control Block for the
task.

Return is to the value in the L register + 1. The contents
of all registers except A and L are transferred to the TCB,

M:SAVE FUNCTIONS

The contents of A and L must be saved in the proper place
in the TCB before the task calls M:SAVE. M:SAVE then
saves the original value of X, T, B, and E in the TCB. The
interrupting task has its own floating accumulator set into
locations 0001-0005 and the previous task's floating ac-
cumulator pointers are saved. The M:SAVE routine stores
the temporary stack and TCB pointers in locations 0006 and
0007 for this current task and saves the old values in the
interrupting task's TCB.

If the flag in the TCB is set for "no temporary storage"
M:SAVE saves only the hardware registers and the TCB
pointers, and not the full context.

If JOBACCT has been specified, M:SAVE will switch
charges to foreground at the first interrupting foreground
task.

An additional entry point, M:FSAVE, is available for users
of the Store Multiple instructiont. This entry point, with

-an address literal in cell X'C7', assumes that all registers

*Store Multiple is a standard feature on Xerox Model 530
and is an optional feature-on Xerox Sigma 3 computers..

Service Routines 49

have been saved, but performs the remainder of the functions
of M:SAVE as listed above. The calling sequence is

RCPYI P, L
B *X!'C7?
ADRL tcb

where tcb is the address of the Task Control Block for the
task.

M:EXIT (Interrupt Restore Routine)

M:EXIT restores the contents of all regiéters prior to exit
from a foreground task, switches the full context back to
the previous task, and performs the actual exit sequence.
The calling sequence is

RCPYI P, L
B M:EXIT

Return is to the interrupted task at the address saved in the
PSD. All registers are restored to the same value they had
at the time of the interruption.

M:EXIT FUNCTIONS

The operations performed by M:EXIT are essentially the re-
verse of those in M:SAVE, It is necessary to inhibit inter-
rupts for about 11 microseconds for the actual exit sequence,
but it is not necessary to call M:EXIT to perform the exit
sequence if it can be performed by the user's program.

The TCB contains a flag to indicate whether any temporary
storage is used. If the task does not use any Monitor 1/0O
routines or the floating accumulator, no temporary storage
is needed. In this case, only the hardware registers are
restored. M:EXIT will restore charges to background if
JOBACCT has been specified and return is to background.

M:HEXIN (Hexadecimal to Integer Conversion)

The M:HEXIN routine converts a hexadecimal number (rep-
resented in EBCDIC) to a binary integer. The calling
sequence is

LDA left

RCPY A,E

LDA right
RCPYI P,L

B M:HEXIN

where left and right contain the EBCDIC codes for the hexa-
decimal number (the left and right part of a possible four~
byte field).

50 Service Routines

Return is to the location in the L register. The result is in
the A register, the X register is changed, and the B register
is unchanged.

M:HEXIN FUNCTION

Blanks and zeros are treated as hexadecimal zeros. No tem-
porary storage is used and no error checking is performed.

M:INHEX (Integer to Hexadecimal Conversion)

The M:INHEX routine converts a binary integer to a hexa-
decimal representation in EBCDIC code, The calling se-
quence is

LDA integer

RCPYI P, L

B M:INHEX
where integer is the value to be converted.
Return is to the location in the L register. On return, the
E register contains the leftmost two bytes, and the A regis-

ter contains the rightmost two bytes. The X register is
changed, but the B register is unchanged.

M:INHEX FUNCTION

Four fields of four-bit hexadecimal codes are converted to
four fields of eight-bit EBCDIC equivalents. No temporary
storage is used.

M:CKREST (Checkpoint/Restart Background)

M:CKREST checkpoints the background (i.e., writes it out
into a predefined area on the RAD), turns the background
space over to the foreground program, and then restarts the
background when requested. The calling sequence is

LDX adrlst
RCPYI P, L
B M:CKREST

where adrist is a pointer to an argument list, as follows:

word 0
CI|R 0
O 1 23 15
where

C =1 if request is to "checkpoint" the background.

=0 if request is fo "restart" the background.

R = 1if a Checkpoint Complete Receiver is to be
informed when the checkpoint is complete.
(Valid only if C=1and P=0.)

=0 if no Checkpoint Complete Receiver is used.

P =1if checkpoint is to be performed at the level
of the calling task (meaningful only if C = 1).

=0 if checkpoint is to be performed at the level
of the RBM Control Task (meaningful only if
c=1.

word 1

Checkpoint Complete Receiver

0 15

The Checkpoint Complete Receiver should be used like
an AIO Receiver. That is, after requesting a checkpoint,
the foreground program should release control by a call
to M:EXIT and regain control through the specified re-
ceiver address when the checkpoint operation is com-
pleted. Only a foreground program can checkpoint the
background; a background program cannot checkpoint the
background area.

Return is always to the location contained in the L register.
The B register is always saved. The A register contains the
status (1 if operation is impossible; 0 if successful).

M:CKREST FUNCTIONS

Checkpoint. All active 1/O for the background is allowed
to complete but no error recovery is performed for this 1/0O
until the background is restarted. Peripheral devices dedi-
cated to the background should not be repositioned.

When all 1/0O has terminated, the entire background space
is written out onto a prespecified area of the RAD and the
background is set "protected". If the background is truly
“empty"t when the request is made, the checkpoint is per-
formed immediately, and no RAD is required for the check-
pointing procedure. If a Checkpoint Complete Receiver
was specified, it will be entered with the L register set to
the return address and will be run at the RBM Control Task
level.

A checkpoint operation will be automatically performed
while loading a nonresident foreground program that ex-
tends into the background. When the active nonresident
program unloads (see Monitor service routine M:LOAD),
the background will be automatically restarted. When the
checkpoint operation is completed, the message ! {BKG
CKPT is output to inform the operator.

.

This would occur after a IFIN command was encountered
or when the Monitor was in an idle state after an abort of
an attended job.

Restart. A restart is always performed at the priority level

of the RBM Control Task. It is assumed that no peripherals

have been repositioned. The core allocation table is re-
stored to the previous value before the checkpoint took
place, and the background is then loaded in from the RAD
and continues as before.

If no background program was in progress when the check-
point was called for, the background is set to an unprotec-
ted status but no attempt is made to reload a program from

the RAD when the foreground terminates.

The message !!BKG RESTART is output to inform the opera-
tor that the background has been released by the foreground.
See Chapter 6 for more details.

M:LOAD (Absolute Core Image Loader)

M:LOAD initiates the loading of the root segment of a resi-
dent or nonresident foreground program by entering the re-
quested program name into the queue stack. It also initiates
the loading of the root segment of a resident or nonresident
foreground program or background processor upon request
from the Job Control Processor, or from a background pro-
gram that desires to load and transfer control to another
background program. M:LOAD is also used to release (un-
load) the nonresident foreground space for use by the next
program in the queue.

The calling sequence is

LDX adrist
RCPY1 P, L
B M:LOAD

where adrlst is a pointer to an argument list, as follows:

word 0
Pl1Q 0
o1 2 3 15
where
P =1 indicates a request to read from the specified
device-file number (word 1). The device-
file number must currently be assigned to a
RAD file. (This option is restricted for use
by the Job Control Processor.)
=0 indicates a request to read the specified pro-
gram from the user's processor (UP) RAD area.
The program name is given in C1-C8.
Q =1 indicates the request is to be queuved if it can-

not be satisfied now (meaningful only for fore-
ground loads).

=0 indicates therequest is to be ignored if it can-
not be satisfied now.

Service Routines 51

U =1 indicates an unload operation, in which case
P and Q are not meaningful.

=0 indicates a load operation.

word 1
DFN or C1 and C2
0 15
word n
Cc7 C8
0 7 8 15
where
DFN is the device-file number.
C1-C8 is the program name (must be 8 characters,

including trailing blanks; program must reside in
the UP area).

For foreground loads, return is always to the location in
the L register. The contents of the B register are always
saved and the A register contains status codes, as follows:

A Register Meaning
0 Operation is successful.
1 Request cannot be honored at this time

(this could occur if Q =0 and a non-
resident foreground area was already
committed; or if Q = 1 and the queue
stack was full).

M:LOAD FUNCTION

After saving the nonresident program name or device-file
number request, M:LOAD triggers the RBM Control Subtask
S:LOAD and then exits to the location in the L register.

The actual loading of the program is accomplished at the pri-
ority level of the RBM Control Task. S$:LOAD will ensure
that sufficient blocking buffers dare available for those oper-
ational labels contained in the header record 'of the proces-
sor. If the request was for a nonresident foreground program
that extends into area reserved for the background, S:LOAD
automatically causes the background to be checkpointed.

If the request is from a background program, a load and
transfer control operation is assumed. Blocking buffers
from the current blocking buffer pool will be closed. All
operational labels except Pl will retain their current assign-
ments. The contents of COMMON and CCBUF will be
retained. The X register, upon transfer to the new back-
ground program, will point to CCBUF; all other registers
are volatile. Operational label PI will be assigned to the
new task for SEGLOAD operations.

52 Service Routines

It is essential that each nonresident program executed in
the nonresident foreground area terminate itself by a call
to M:TERM to unload, disable itself, and then exit via
the normal interrupt exit routine (M:EXIT). This will re-
lease the nonresident foreground area for subsequent loads.
An unload request is an implied call to M:TERM and is an
alternate way of terminating a nonresident foreground task.
M:LOAD will return an error if the calling task is not the
nonresident foreground task.

For an unload request, M:TERM triggers the RBM Control

Task routine S:LOAD for the next load if any other entry is
in the queue stack. If no additional requests are present
and $:LOAD has checkpointed the background, S:LOAD

triggers RBM Control Task S:REST for a restart.

Note that M:LOAD inhibits interrupts for a short period
while manipulating the queue stack (less than 100 psec if no
more than eight entries are waiting in the queuve).

M:0PEN (RAD File Open)

M:OPEN reserves a blocking buffer from a buffer pool or a
specified location, for a blocked, compressed, or packed
RAD file to which an operational label or device unit num-
ber had previously been assigned.

The calling sequence is

LDX adrlst
RCPY1 P,L
B M:OPEN

where adrlst is a pointer to the three-word argument list |
shown below.

word 0
FlB|oO 0
o 1 2 15
where

F =1 kc devicé-f%le number (DFN) is specified (in-
ternal Monitor calls only).

=0 if an operational label or device unit number
is specified.

B =1 if a blocking buffer location is included in
this call.

=0 if no blocking buffer location is included, in
which case M:OPEN attempts to find space
in the task's buffer pool (see "Blocking Buf-
fers", Chapter 5).

word 1

Operational label, device unit number, or DFN

0 15

word 2

Address of blocking buffer (optional)
0 15

Return is to the location in the L register. The B register
is restored. The following status information is contained
in the A register on return.

A Register Meaning

0 Operation successful.

1 Blocking buffer already defined.
No space available in buffer pool.
1ilegal operational label or operational
label unassigned.

4 Not RAD file, or notablocked RAD file.
Blocking buffer outside of background for
a file assigned to the background.

6 "~ IHlegal DFN.

M:OPEN FUNCTION

The address of the blocking buffer (either the one specified
or one located from the task's buffer pool established by an
ABS or $BLOCK command) is stored in the RAD 1/O Con-
trol Table. If no open request has been performed for a
blocked, compressed, or packed file by the user's program,
M:READ, M:WRITE, or M:CTRL will call M:OPEN to allo-
cate a buffer from the blocking buffer -pool on the first data
transfer operation.

M:CLOSE (RAD File Release)

M:CLOSE releases a RAD file (including the blocking buf-
fer if any) or releases the blocking buffer for a blocked file,
but retains the file assignment. In either case, partially
filled blocking buffers are written onto the RAD. The call-
ing sequence is

LDX - adrlst
RCPYI P,L
B M:CLOSE

where adrlst is a pointer to the argument list, as follows:

word 0
FI{R{BIO 0
6 1 2 3 15
where
F =1if a device-file number is specified.

=0 if an operational label or device unit number
is specified.

R . =1 if the device-file number is to be released.
= 0 if the device-file number and operational
label remain assigned but the blocking buf-
- fer is to be released (the file is not to be
repositioned).

B =1 if a buffer is specified.

= 0 if no buffer is specified.

word 1

Operational label, device unit number, or DFN

0 15

word 2

Buffer location (optional)

0 15

Return is always to the location in the L register. The B reg-
ister is always restored to its former value. The A register
contains one of the following completion status codes.

A Register Meaning

0 Successful.

1 Iilegal DFN.

2 The operational label is not assigned
to a RAD file.

3 Illegal operational label.

4 1/0O error writing blocking buffer or
EOF onto RAD.

5 No buffer available i;o complete the

close operation.

M:CLOSE FUNCTIONS

If the file is blocked and data has been written on it,

the contents of the blocking buffer are written onto the
RAD.

If the blocking buffer was allocated from the task's buf-

fer pool, the buffer is released. The EOF is written on
the RAD.

If R=1, F =0, and the operational label has a permanent
assignment, the label is set to that value. If the label has
no permanent assignment, the label is deleted from the
table of operational labels.

If an EOF has been written on the file it must also be
written onto the RAD. To accomplish this, M:CLOSE

Service Routines 53

requires a buffer into which the file directory is read. If
no buffer is specified, M:CLOSE attempts to allocate a
buffer from the task's buffer pool (or will use the one al-
ready opened for this file if it is blocked). If no buffer is
available and an EOF is to be written, the file is not
closed and an error completion code is returned.

If a file to be released happens to be last allocated in the
Background Temp area (BT), its space will be recovered.
Therefore, if BT files are closed in the reverse order from
which they are allocated, Background Temp space may be
recovered.

M:DKEYS (Read Data Keys Routine)

M:DKEYS provides a means for background programs to read
the data keys on the processor Control Panel. The calling
sequence is

RCPYI P,L
B M:DKEYS
Return is to the location in the L register. The contents of

the B register are always saved. The contents of the data
keys are in the A register on return.

MMWAIT (Simulated Wait Instruction)
M:WAIT provides a means for babckground programs to
execute a Waif instruction from nonprotected memory. The
calling sequence is

RCPYI P,L

B M:WAIT
The return is to the location in the L register. The B reg-

ister is always saved. The return does not take place until
the operator performs an unsolicited S key=in.

The Monitor types out the message
FIBEGIN WAIT

and goes info a wait loop.

Only a background program may use M:WAIT; a call from
a foreground program results in a no-operation.

M:SEGLD {Load Overlay Segments)

M:SEGLD loads and/or executes an overlay segment, for
either the foreground or background, from a file previously
prepared and saved on the RAD by the Overlay Loader or
the Absolute Loader.

54 Service Routines

The calling sequence is

LDX adrlst
RCPYI P,L
B M:SEGLD

where adrlst is a pointer to the argument list.

word 0

Wi LI R 0 Segment ID

o 1 2 3 7 8 15
where

W =1 if an unconditional wait for completion is
specified.

=0 if loading is to be initiated only; control will
be returned to the calling program.

L =1 control is to be transferred to the transfer
address (if one exists) of the segment just
loaded, in which case the L register is not
meaningful when the transfer occurs (valid
only if W=1).

=0 control is to be returned to the calling
program.

R =1 fHere is a "loading complete” receiver (mean-
ingful only if W =0).

=0 no "loading complete" receiver.
word 1
Operational label
0 15

The operational label is used to control the loading of the
segment. The file must previously have been defined as a
RAD file and set to the proper overlay program on the RAD.
Background programs should use operational label PI.

For the benefit of segmented foreground programs, the ini-
tialize code (entered by M:LOAD) can assign an internal
operational label to the foreground ML operational label.
This internal operational ‘label may then subsequently be
used in calls to M:SEGLD. The foreground program may
not use the ML operational label in calls to M:SEGLD.

word 2

ADRL of OV:LOAD
0 15

The symbol OV:LOAD must be declared as an external ref-
erence and is set by the Overlay Loader to the value of the
Overlay Loader Control Table address in core.

If the program is assembled in absolute form, the Absolute
Loader will create the OV:LOAD table at the end of the
root. Therefore the last item in the root would normally be

an OV:LOAD EQU §.

word 3

Loading Complete Receiver
0 15

The Loading Complete Receiver is permissible only for fore-
ground programs and should be used in the same way as an
AlIO Receiver. That is, after loading is initiated the fore-
ground program should release control by a call to M:EXIT
and regain control through the specified receiver address
when the overlay operation is completed.

On all calls specifying an " initiate only", a check operation
must be performed on the operational label designated to
determine the status of the load and to release the associ-
ated device-file number for subsequent use.

On entry, return is to the location in the L register if the

L parameter in word 0 of the calling sequence is "0"; other-
wise, control is returned to the newly loaded segment. The
B register is always saved. On the return, the A register
contains status showing the completion code, as follows:

A Register Meaning
0 Operation complete and successful.
-1 Irrecoverable 1/O error (if W = 1), or
device containing overlay is busy (if
W =0).
2 Invalid call.

M:SEGLD FUNCTIONS

A core table of 5n + 1 words is maintained at the end of the
user's root segment that defines the actual RAD addresses
for the overlay segments. (OV:LOAD points to this table;
n is the number of segments in the program.) The segments
may be loaded in any order because of the random-access
capability of the RAD. Using the Loading Complete Re-
ceiver and associated procedures can achieve greater effi-
ciency in foreground loading.

M:DEF INE (RAD File Definition)

M:DEFINE aliocates a portion of the background temporary
file area on the RAD for temporary use by the designated
operational label or device unit number. This call is ap-
plicable to foreground operations only if the oplabel or
fdun has been previously assigned to a permanent RAD file.
The calling sequence is

LDA favaa (FORTRAN programs only)

LDX adrlst

RCPYI P,L
B M:DEFINE
where

favaa signifies the FORTRAN associated variable
absolute address. It is meaningful only if K =1,

adrlst is a pointer to a four-word argument list.
word 0
F WP |T|PJO|K|G]|S 0
0 2 3 45 6 7 8 9 101 15
| — 7

v

File Format Byte

where

F specifies the file format as follows:
000 Blocked
001 Comprésséd
010 Unblocked
100 Random, blocked
110 Random, unblocked

WP =11 if RBM write protection is specified.
= 10 if foreground write protection is specified.
=01 if background write protection is specified.
=00 if write protection is not desired.

T = 1if the last temporary file allocated is to be
truncated so that it will be only as long as
its EOF. If no EOF has been written on this
file, it will be truncated so that it will be
only one record long. Space recovered in
this fashion can be reused in the current

M:DEFINE call.
=0 if no truncate is to occur.
P =1 if word 2 contains a number between 0 and
101 that specifies the percentage of remain-
ing background temporary area to be allo-

cated for this file.

=0 if word 2 is the number of logical records to
allocate.

K = 1if the A register contains the FAVAA.
= 0 if FAVAA is not specified.
G = Tif a granule size for random files is specified;

otherwise, the granule size is determined by

Service Routines 55

the sector size of the reference device
(meaningful only if F =110).

S = lindicates the file (if packed format) may use
the sharable blocking buffer if provided by
the Task Control Block (see "Blocking Buf-
fers*, Chapter 5).

= 0 indicates sharing is not desired.

word 1
Operational label or device unit number
0 15
where
operational labels are EBCDIC
device unit numbers are binary

word 2

Number of logical records or percent

0 15

word 3

Logical record size, or granule size if G=1 (bytes)

0 15

The number of logical records in the file and the logical
record size are used to calculate the actual temp space
required. For compressed EBCDIC files, the logical record
size must be less than 2047 bytes. For compressed EBCDIC
files, n card images can normally be accommodated by n/3
80-byte records. Thus, 12,000 card images would require
4000 80-byte records (about 83 tracks on a 360-byte per
sector RAD). For blocked, uncompressed files, the total
area in sectors equals the number of records requested, di-
vided by the number of logical records per sector. Thus,
120-byte binary card images can be placed three per sector
on a 360-byte-per-sector RAD. A 300-card deck would
therefore require 100 RAD sectors (seven tracks). If G =1
and F = 110, the file size is computed using the granule
size in word 3.

If this is a random file and G = 0, then the logical record
size is actually the FORTRAN random 1/O logical record
size and the granule size is equal to either the physical
sector size for temporary files, or to the granule size
defined at file ADD time for permanent files.

For unblocked records, the total area in sectors equals the
number of records requested multiplied by the number of
sectors required for each record.

56 Service Routines

Return is to the location in the L register. The B register is
restored. The A register contains status information on the
return, as follows:

A Register Meaning

0 Operation successful . E register con-
tains number of records in file; X reg-
ister contains record size in bytes.

1 Calling sequence error. Logical record
size is not an even number or 0 records
requested.

2 Operational label invalid (foreground)
or no spare entry in operational label
table.

3 No more device-file numbers for the
RAD.

4 RAD overflow (files too large).

5 K = 1and attempted to define pre-

viously defined file with o different
FAVAA. E register contains number
of records in file; X register contains
record size in bytes.

M:DEFINE FUNCTIONS

For the specified temporary file, the appropriate size is
allocated from the pool of temporary file space if such space
is available. An unused device-file number is then initial-
ized with the boundary points of this RAD file. All subse-
quent references to this file (until closed by a call to
M:TERM, M:ABORT, or M:CLOSE) will refer to the allo-
cated area. The file is set to the "rewound” condition, if
it is a sequential file.

If the operational label is already assigned, no error status
is returned if it is assigned to a background RAD file. If
K =1, the address of the FORTRAN Associated Variable

from the call must be the same as the one for the file.

Note: M:DEFINE uses locations 1-3 (of the calling pro-
gram’s floating accumulator) for temporary storage.

M:ASSIGN (Assign Operational Label)

M:ASSIGN performs equivalence between an operational
label or FORTRAN device unit number, and

1. A RAD area.
2. A file name within a RAD area.
3. A device-file number.

4. Another operational label or device unit number.

The calling sequence is

LDX adrist
RCPY! P,L
B M:ASSIGN

where adrlst is a pointer to an argument list of two to eight
words, as follows:

word 0

0——0 D
7 12 13 15

Y | FIA
01 2 3 45

O | 420

where

TY =00 if the label or device unit number is to be as-

signed to another label or device unit number.

= 01 if the label or device unit number is to be
assigned to a device-file number.

= 10 if the label or device unit number is to be
assigned to a RAD area.

11 if the label or device unit number is to be
assigned to a file within a RAD area.

I

F =0 if the label is a background operational label.

1 if the label is a foreground operational label.

>
I

1 if the two-letter area mnemonic is contained
in word 3; otherwise, D will specify the
area. If A is set, D will be ignored. A must

always be set for areas other than SP, SD,
SL, UP, UD, UL, BT, and CP.

(%]
|

= 1 indicates the file (if packed format) may use
the sharable blocking buffer if provided by
the Task Control Block (see "Blocking Buffers"
Chapter 5).

= 0 indicates sharing not desired.

opt = 1 indicates that device specific options are
present in words 3-N (meaningful only if
TY =00 or O1).

= 0 indicates that device specific options are not
present.

If TY =00 or 01 and opt = 1, then D = num-
ber of device specific options that are pres-
ent in word 3 to word N. Device options are
one- to four-character EBCDIC fields, two
words per specification, which are left-
justified and blank filled. D must be in the
range 0 <D < 7.

If TY = 10 or 11 then D has the meaning
given below.

D =directory fo be used:
000 Checkpoint area (area only)
001 System Processor area
010 System Library area
011 System Data area
100 Background Temp area (area only)
101 User Processor area
110 User Library area
111 User Data area (UD only)

No named files may exist in either the Checkpoint or Back-
ground Temp areas.

word 1

oplb (1) or device unit number (1)
0 15

where oplb (1) is the operational label or device unit to be
assigned.

word 2

oplb (2), device unit number (2), DFN, or buffer address
0 15

where

oplb (2) if present, indicates that oplb (1) will be
assigned fo the device~file number that oplb (2) is
currently assigned to.

DFN if present, is the device-file number that
oplb (1) will be assigned to.

buffer address is the first word address of a buffer
(equal to one blocking buffer in length) that will
be used by M:ASSIGN as temporary storage for the
appropriate RAD area dictionary. This is mean-
ingful only for TY = 11.

If TY =00 or 01 and opt = 1

words 3 and 4

Option 1, CI Option 1, C2
Option 1, C3 Option 1, C4

(ifD=10r2)

words 5 and 6

Option 2, C1 Option 2, C2

Option 2, C3 Option 2, C4

(if D =2)

Service Routines 57

Device specific options are represented as a one- to
four=character EBCDIC field, left justified and blank filled.
Note that the device specific options are meaningful only
for certain devices. Use of an unrecognized option for a
device results in an error return of "INVALID OPTION",

If TY =10 or 11, the following options are recognized for
Model 3325/35 tape drives:

800 For 800BP1, NRZI recoding

1600 For 1600 BPI, phase encoded recording
ASCI For ASCII code conversion

EBCD For EBCDIC (ASCII code conversion 'off')

word 3

Clor Al C2 or A2
0 7 8 15

If A (of first word of argument list) =1, word 3 contains
the two-letter area mnemonic, Al and A2; otherwise,
word 3 contains the first two characters of the file name,
as continued below:

word 3 + A
C1 C2
0 7 8 15
word 6 + A
Cc7 Ccs8
0 7 8 15

C1-C8, if present, is the name of the file to which oplb (1)
is to be assigned. That is, this file on the RAD is to be
linked to an unassigned RAD device-file number to which
oplb (1) is, in turn, assigned. This is meaningful only for
TY =11,

Return is to the location in the L register. The B register is
restored. The A register contains status information on the
return as follows:

A register Meaning

0 Successful operation.

1 Mixed oplbs or device-file numbers
(foreground to background or vice
versa) or protection violation on buf-
fer address.

2 Invalid oplb or DFN.

3 No spare entries in oplb or DFN

tables.

58 Service Routines

A register Meaning
4 File name not found in designated
directory.
5 RAD area not allocated.
6 Illegitimate RAD file format.

When the A register =0, the X register will contain the
physical record size (or sector size) for this device and the
E register will contain the newly allocated DFN.

M:ASSIGN FUNCTIONS

M:ASSIGN may be called to make any of four types of
assignments, according to the setting of TY, as follows:

TY =00 oplb (1) is assigned. to the DFN to which
oplb (2) is currently assigned. Oplb (2) must
be the same mode (foreground or background)
as oplb (1) (error return A = 1). A background
program cannot assign foreground oplbs (error
return A = 1).

=01 oplb (1) is assigned to the specified DFN.
DFN must be legal, must not be a RAD DFN,
and may not be foreground if oplb (1) is
background.

= 10 oplbl (1) is assigned to a currently unused
RAD DFN which, in turn, is linked via the
RBM Master Dictionary to a current RAD area.
The area may then be used exactly like a RAD
file with the following characteristics:

Format: random

sector size in
bytes

Logical record size:

area write=
protect code

Write protection:

BOT: BOT of area
EQOF: none
EOT: EOT of area

= 11 oplb (1) is assigned to a currently unused RAD
DFN, which in turn is linked via the RAD
dictionaries to an individual file within an
area (e.g., XSYMBOL). The RAD area must
currently be accessible (error return A = 5).
The buffer address must be in the back-
ground if the calling program is a back-
ground program.

If there are no errors, the assign will take place regardless
of the prior status of oplb (1), For TY =10 and 11, RAD
files are rewound (file pointer is set to BOT). For TY =00
and 01, the file position is unchanged.

M:RES (Temporary Storage Allocation)

M:RES allocates storage from a task's temporary stack by
addressing the Bregister to the first available memory loca-
tion of that stack. If the temp storage is to come from the
task's associated temp stack (temp stack pointers in TCB
words 3 (start), 4 (end) and 13 (current pointer, K:DYN) it
is called dynamic temp, When dynamic temp is requested,
M:RES saves the current B register, addresses B to the value
in K:DYN (from the TCB) and sets K:DYN to K:DYN+n
(where n is defined below).

Monitor service routines use only dynamic temp (as shown
- in Table 7). This allows them to be reentrant (i.e.,
used concurrently by different tasks, each with its own
unique TCB). The calling sequence to allocate dynamic
temp is

RCPYL P, T

B *§+3

DATA n

DATA ©

ADRL M:RES
where

T must point to background memory if M:RES is
being called by a background program. (Other-
wise, a PV abort will occur).

n is the number of memory locations to reserve.

A TS abort will occur if insufficient space is available.
This abort can only occur for dynamic temp allocation.

The calling sequence for nondynamic temp allocation is

RCYPI P, T
B *$+3
DATA n

NONDYN DATA temp Pointer to nondynamic
temp

ADRL M:RES

temp " RES n

Nondynamic tempisused traditionally by Basic FORTRAN IV
library routines which are not in the Public Library. That
is, Basic FORTRAN 1V library routines loaded witha speci-
fic task, for use only by that task. If one of these routines
is to be accessed as a Public Library routine, the OLOAD
processor will set NONDYN fo zero as it adds the routine

to the Public Library and will remove the trailing temp
reserve. This trailing TEMP RES n must not be followed
by data or insfructions.

M:RES FUNCTIONS

The former B register will be saved in location 1 relative

to the new B register. Location 0 relative to the new B
register will contain 0 if nondynamic temp was specified.
Otherwise, location 0 will not be zero and M:RES adds the
number of locations requested to K:DYN (i.e., increments
the temp stack pointer) after addressing B to the former value
of K:DYN. Obviously, locations 0 and 1 relative to the B
register must not be changed. Location 2 relative to B is
eventually used as the return for M:POP and is initially set
by M:RES to point fo M:ABORT, M:RES returns to the loca-
tion in the Tregister +3 if the reserve was successful; other-
wise, M:RES will call M:ABORT with the code 'TS'.

On return from M:RES, the calling progrom can set its own
return through M:POP as follows

LDA = return
STA 2,,1

The L and X registers are unchanged on return from M:RES,

M:POP {Temporary Storage Release)

A call to M:POP is made to release the current temporary
storage stack (pointed to by the current value in the B reg-
ister), restore the previous value to B, and return to the
location specified in temp + 2.

If the temporary storage was allocated by M:RES, the call

~ must set up a return in temp + 2. The calling sequence is

LDA = return
STA 2,,1
RCPYT P,L

B M:POP

where return is the location to which return will be made
after the stack is released.

Register L must always be set, even for foreground tasks.

Return is to the address specified in location 2, relative to
the beginning of the stack being released. The location in
the L register and the return address must be in the back-
ground area if refurn is to a background program. On re-
turn, B contains its previous value before the RES-POP se-
quence. Assume return is made to location R; L is set to
the value R+ 1, :

Service Routines 59

M:POP FUNCTIONS

M:PQOP performs the opposite functions of M:RES. If toca-
tian O relative to the B register is zero, M:POP dces not
manipulate the dynamic temp stack pointer, K:DYN.
Otherwise, the current value of the B register is stored
in K:DYN. Locafion I relative to the B register is then
moved to the B register (ofter 2,,1 is sef aside as the
refurm). '

M:OPFELE (Convert Qperational Label fo Device-File

Number}

M:OPFILE defermines the file fo which a foreground or
background operational fabel is ass:gne& The calling

sequence is

LDA type

LDX = adrist

RCPY! P, L

B M:OPFILE
where

type is the mode of the operotional label; nega-
tive for foreground, positive for background.

adrlst s a pointer to the operational fabel.

Return is to the locafion in the L register. The B register
is saved and restored. The status is confained in the E reg-
ister as follows:

E = negative if label is not found

= positive if label is found

If E is positive, the following information is provided.

Register Contents
X Device-file number
E 10CT entry address’
A Operafional label fable entryt

Note: This routine is used primarily by RBM and certain
processors. It will seldom be needed by user

programs.

*See the chapter on SYSGEN for a discussion of the I/O
Conirol Table and the Operational Label Table.

60 Service Routines

MBSVP (Reserve or Release Peripherals)

M:RSVP reserves a peripheral device for foreground use
only, unfil the foreground voluntarily releases the dewce
or until an operator keyin releases the device

EDX adrist
RCPYI P,L
B M:RSVP

where adelst is the pointer to the argument list, which

consists of one to four consecufive words etther in the user's
program or in o femporary stack. This argument list ap~

pears as follows: ‘

word O
FIUIRIDIN Device Number
0 1 2 3 4 6 7 8 15
where
F = I if request is "reserve for foreground”.
= 0 if request is "release fo background"”.
U =1 if request is for an unconditional reserve,
where operator intervention is not required.
= 0 if request is for a conditional reserve, where
operator intervention is required.
R =1 if a receiver is to be entered when the con-

ditional reserve is completed (only meaning-
ful iFU=0orif S=1).

=0 if no such receiver is to be used.

D =0 a device fype is not specified.

= 1 if a device type is specified (used to distin-
guish KP40 from PT40).

N =0 if request specifies a device number in bits 8-
t5 of word 0.

= 1 if request specifies an operafional label (con-
tained in word 1 + R + D) which is to be used
to determine the acfual device number for a
reserve operation. The device number upon
a successful reserve will be returned in the
E-register. The device number must be used
for a release operation since an unsolicited
'FL* keyin may have reassigned the opera-

tional label.

S =0 if nonexclusive foreground use ofa background
device is requested. It is the responsibility

of the user to resolve contention between
competing foreground tasks.

= 1 if exclusive use of the device by the request-
ing task is desired. Since RBM knows the
"owner" of the device, an abort or fermina-
tion of .that task will cause an automatic re-
lease of the device. Once a task has been
granted exclusive use of that device, other
requestors receive a "device already reserved"
(A =-1) status if Ror S =0, or a return of
"request is queued for that device" (A = 3).
if both Rand S = 1.

M =0 normal RSVP messages on OC.
= 1 suppress RSVP messages on OC.

word 1

Reserve Complete Receiver (optional, R =1)

0 15

A Reserve Complete Receiver should be used like a AIO
Receiver; namely, after the request has been acknowledged,
the foreground program should release control by a call to
M:EXIT and should regain control when the reserve has been
effected through the specified receiver address. This re-
ceiver is enfered at the priority level of the RBM Control
Task and should return to the location contained in the

L register.

word 1 + R

Device type (e.g., KP) (optional, D =1)
0 15

If D=1, word 1 + R contains a device type specification
used to differentiate a specific unit of a multiple unit de-~
vice (e.g., KP40 vs. PT40).

word 1+ R+ D

Operational Label (optional, N = 1)
0 15

If N=1, word 1 + R+ D contains an operational label to
be used for the reserve operation. The actual device
number involved will be returned in the E-register.

Return from M:RSVP is always to the location contained
in the L register. The A register contains status as follows:

A =0 if the request is acknowledged. If F =1 and
U =1 (i.e., unconditional reserve), the
device is reserved for foreground use. If
F =0 (i.e., release), the device has been
released for background use.

=1 if the request is acknowledged but operator
interventionisrequired. The Reserve Complete

Receiver is entered when the operator effects
the reserve. This is the normal response to a
conditional request fo reserve a peripheral
device (F=1, U=0, R=1).

=2 if the device is not associated with a back-
ground file. Not applicable if request was
for "exclusive" use.

= 3 request is queued, The RXR (receiver) is
entered when the device becomes available

R=landS=1).
= 4 if the operational label isnot defined (Reserve).

=5 if the operational label is assigned to zero
(Reserve).

= 6 RXR (receiver) not specified (F =1, U =0),

=7 if the operational label is assigned to a rota-
ting memory device.

= 8 operafional label may not be specified for
"release".

=9 device has been previously reserved as shared.

= =1 if the request cannot be satisfied because
the RSVP table is full or if RSVPTABL, 0 was
specified at SYSGEN.

X register is significant as follows:
X =0 if normal condition (i.e., 0< A< 3).

= ~1 if abnormal condition (i.e., A< 0or A > 3).
Thus, a BIX may be used to detect any error.

The E register is meaningful only when request was to re-
serve via operational label. In this case, upon a success~
ful reserve request return (i.e., X =0 and 0 < A < 3), the
E register will contain the actual device number. The
device number must be specified for a release operation
since an operational label reassignment may have taken
place (e.g., FL keyin).

MRSVP FUNCTIONS

Reserve. If the request is for an unconditional reserve,
a message is output to inform the operator of the foreground
reserve action (e.g., 1110B-RES, LP02),

If the request is for a conditional reserve, a message is
output to inform the operator of the request (e.g., 1110B-
REQ, CRO3), The operator should then prepare that de-
vice for the pending foreground operation, and then re-
serve the device by an unsolicited key-in of FR (fore-
ground reserve; for example, FR CRO3). This will reserve
the device for foreground use. If the Reserve Complete

Service Routines 61

Receiver is specified, it will be entered at this point.
Note that the dedicated interrupt location of a task
requesting use is indicated as dil- (i.e., !!dil-REQ, LP02).

Release. The peripheral device can be released for back~
ground use or the next foreground task by a call to M:RSVP
to release the device. The peripheral device specified
will be made available for other users or background. A
message will be output to inform the operator of the re~-
lease action if the device is being released to background
{e.g., !! REL, CRO3). The peripheral device can also
be released by an unsolicited key-in of BR (background
release). Unsolicited key=ins to reserve and release peri-
pheral devices are described in Chapter 3.

Limitations. The reserve peripheral table will accommo-
date only as many eniries as were specified at SYSGEN,
(RSVPTABL, X where X represents the number of entries fo
be provided for and defaults to 5.

M:DOW (Diagnostic Output Writer or Error Logger —
Foreground Only)

M:DOW is a dual=purpose service routine available only
to foreground tasks. The function that M:DOW will
perform is dependent upon the value of a code in word 0
of the argument list defined in the calling sequence below.

LDX adrlst
RCPYI P,L
B M:DOW

where adrlst is a pointer to the argument list, the format
of which is dependent upon its function code, as shown in
Table 10,

Returnisalways to the locationinthe L register. The B reg-
ister is always maintained. If code =0, status is returned
in the E, A, and X registers. This status will be the same
as that described for M:READ/M:WRITE. If code #0, no
status will be returned; i.e., E, X, and A registers will be
unspecified.

M:DOW FUNCTIONS
Code =0

Multitask use of the same file may result in a conflict sit-
uation wherein a fask is unable to output a message because
a lower—priority task has control of the file. If such a
condition could exist, the higher priority task should call
M:DOW, which will wait until end-action=pending occurs,
save all status for the lower priority task, and translate the
M:DOW argument list to an equivalent M:WRITE call.
Since end-action=-pending occursat the I/O interrupt level,
this allows multitask use of the same file without affecting
low level 1/O.

62 Service Routines

Code # 0

The maintenance of an off-line, dynamic Error Log is
valuable in the diagnosis and correction of hardware and
hardware/software interface problems. As a SYSGEN
option (ERRORLOG), M:DOW is available for such log-
ging purposes. From the user-supplied argument list,
M:DOW will create an entry to this log according to
Table 10, and will add this entry to the Error Log when
RBM becomes active.

Note: If the Machine Fault Task makes an Error Log entry,
interrupts will be effectively inhibited for up to
350 microseconds.

M:C0C (Character-Oriented Communications —
SYSGEN Optional, Foreground Only)

M:COC performs input, output, and control operations on
a specific communication line. The calling sequence is

LDX adrlst Pointer to the argument list
RCPYI P,L Set the return address
B M:COC Branch to the routine

The argument list pointed to by adrlst is as fol lows:

word 0 Order
word 1] E Line number Prompt character
word 2 Buffer address
word 3 Byte count
word 4 EOM Receiver

0 1 78 1112 15
where

is as fol lows:

Order (bits 12-15)

Order Operation

0 Status check of line.
1 Write n bytes, no editing.
2 Read n bytes, no editing.

3 Send break character (long-space).

4 Check previous read or write.
5 Write message of up to n bytes, edited.
6 Read message of up to n bytes, edited.

Table 10. M:DOW Argument Lists

Argument List
Function Word 0/Code’ Word 1 Word 2 Word 3
0000 oplabel’
Diagnostic output 8000 DEN Address of buffer Byte length
Error Log Entries:
. tt.
SIO Failure 0091 DFN - -
. t
Channel timeout 0092 DFN - -
Bit 6 = Overflow
indicator
Spurious Inferrupt 0093 AlO status
Bit 7 = Carry
indicator
tt
1/O error 0095 DFN - -
System startup 0018 - - -
Power on 0020 - - -
Version 0022 - - -
Time stamp 0023 - - -
EBCDIC message 0027 - Address of entry Byte length
Machine fault 0081 Fault register - -
contents
tttt
User entry OOFF - Address of entry Byte length

t
Any code other than those indicated in low-order byte is treated as a "no-operation". (The code is shown in
hexadecimal.)

tt
Identifies file/device fo be written to.

i coe g
Identifies file/device involved in error (not the error file).

Tt
User entries receive a time value in words 2 and 3 of the entry,

Service Routines

Prompt character

Order Operation
7 Disconnect line (turn off data set).
8 Connect line.

where n =0 < n <255,

is 1 if an end-of-message (EOM) receiver is
specified; is 0 if no EOM receiver is specified.

is meaningful on duplex lines for
orders 6 and 8. For order 6, it is the character
(EBCDIC) to be output before input is requested.
This can be used to signal the operator that input
can now begin. For order 8, it specifies the mode
in which all communication will be handied on
this line until it is disconnected, and it has the
following form:

Bit Value Meaning

8 1 Echo all input characters.

0 Do not echo.

9 1 Translate all input from 7-bit
ANSCII to EBCDIC, and all
output from EBCDIC to ANSCII.

0 Do not translate any codes.

10 1 Check parity oninput and create
parity on output (even parity).

0 Ignore parity.

11-12 00 Device is Model 33/35 teletype.

01 Device is Model 37 teletype.

10 Device is keyboard/dispiay.

11 Device is foreign device, and
no echoing, editing, or trans-
lation will be performed (over-
ridessetting of bits 8, 9, and 10).

14-15 Communication Lines (for con-
nect order).

00 Full duplex (echoing accepted).

01 Simplex — send.

10 Simplex — receive.

11 Half-duplex (echoing not

accepted).

Note: The time required to turn a half-duplex
line from receive to transmit mode is con-
sumed in M:COC at user-program level,
not in the interrupt handler, RCOC.

Service Routines

EOM Receiver

is used like an AIO Receiver. When
an input or output message is completed, the ap-
propriate communications task will branch to the
specified EOM receiver address, at the priority
level of either the input or output external inter-
rupt, and will show the line number (of the line
with the completed message) in the X register.
The user program should save this status, trigger
an appropriate user interrupt level, and return to
the location in the L register. All operations are
no-wait operations; that is, the return is immedi-
ate upon initiating 1/O or performing the connect
or status checks. Thus, the EOM receiver is ap-
plicable only for read (2 and 6), write (1 and 5),
and send break (3) orders. EOM receivers are
subject to the same restrictions and precautions as
are AlO receivers. (See Chapter 6 for a more de-
tailed discussion of AIO receivers.)

Note: For half-duplex lines the EOM receiver is
activated before the EOM sequence is in-
itiated by a subsequent "check" call to
M:COC.

Return from M:COC is to the location specified in the

L register. On return, the B register remains unchanged; and
the E, A, and X registers are set as specified in Tables 11, -
12, 13, and 4.

The nine possible orders that can appear in the argument
list, and the operation for each, are described below:

0

Check status of line. This operation allows the
user to check both the logical condition of the
line (line mode, which is one of the unique codes
in Table 14) and the physical condition of the line
(which is reported just as it is received from the
hardware, as shown in Table 13). Only the line
number is needed in the argument list.

Write n bytes, no editing. If the byte count is
odd, the first output transmission takes place from
right of the first word, and the left of the first
word is ignored. No end-of-message codes are
added at the end of the message, and no trailing
blanks or null characters are stripped off. Parity
generation and translation from EBCDIC to ANSCII
are under the control of the specified options for
this line.

Read n bytes, no editing. A read operation is
initiated, with no editing for cancel or character-
delete operations, but with o search for any
ANSCII control character. Input is terminated
if any control character is found or if the speci-
fied byte count is exhausted. If any input bytes
were received before this read request was given,
these bytes are thrown away. The end-of-message
character always remains in the user's input buf-
fer, translated to EBCDIC, if specified. The
same comments about patity apply for the write
operations.

Table 11, Status Returns for M:COC
Operation Major Status Action E A X
All operations Line no. not valid Return ‘ -1 8 Line no.
Calling seq. err. immediately -1 4 Line no.
Line has disconnected -1 2 Line no.
Invalid line status -1 1 Line no.
Initiate read Line is busy Return 0 -1 Line no.
or write immediately
Successfully initiated Initiate and 0 0 Line no.
- return
Check previous Line is busy Return 0 -1 Line no.
input or output immediately
‘ Operation complete Clear line and 0 Completion Byte count
return code
Connect or Successful connection Connect and 0 0 Line no.
disconnect return
Status check Connected line “Test and return . Line Line mode Line no.
status
Table 12. Completion Codes Table 14. Line Mode
A Register Value Meaning A Register Value Meaning
0 Successful completion. 0 1 Line disconnected.
1 Parity error on some byte read. 1 Output mode.
Br - ists.
2 eak condition exists 2 Prompt character output (then

Table 13. Line Status

switch to input).
Input mode.
Inactive mode.

Message complete.

o L AW

EOM sequence initiated (half-
duplex only).

E Register Bits Meaning .
0-11 Not used.
12-13 Receiver status
00: Data set not ready (if
data sets are used), or
receiver not installed.
01: .Receiver on.
10: Receiver off.
11: Break (long space)
detected.
14-15 Transmitter status

0-: Data set not reporting
“clear to send"” (if data
sets are used), or trans—
mitter not installed.

10: Transmission in progress.

11: Ready to send.

Send break character (long-space). If the line is
in an inactive mode, the long-space is sent im-
mediately. If the line is in a write mode or a
read mode, the operation is terminated and the
long-space is then sent. In the argument list, only
the line number is meaningful.

Check previous read or write. This operation is
required for all read and write operations, whether
or not an EOM receiver is specified. The user buf-
fer remains busy until the previous operation is
checked. The line is then set inactive and be-
comes ready for subsequent use, This is the only
way to determine break:conditions. The return
status is shown in Tables 11 and 12, Only the line
number is meaningful in the argument list.

Service Routines 65

5 Write message of up fo n bytes, edited. This : already dialed-in. A user program can poll the

operates like the write operation without editing ' lines with a "check status" order prior to logical
except (1) that trailing blanks and trailing null connaction to determine when a line has been
characters are removed and (2) that appropriate physically connected (i.e., data sets ready).

control characters are added as the final charac-
ters of the message.

FUNCTIONAL DESCRIPTION OF COC PACKAGE
6 Read message of up to n bytes, edited. This oper-

ates like the read without editing, except that The COC software package manages character-oriented
ignore, backspace, and cancel operations are in telecommunications equipment (normally Teletype-compatible
effect for the current line; when any of these spe- devices) at the message level, providing translation, echo-
cial characters are encountered, the proper effect ing, parity checking, and the line editing as required. It
takes place on the line and the user's buffer is consists of two portions, M:COC and RCOC.
modified accordingly. (Note that the backspace
is an editing, or destructive, backspace; that is, M:COC. This is a monitor service routine that performs
the previous character is deleted from the user's all control operations and initiates all reads and writes.
buffer.) The prompt character, if nonzero, is out- It is part of the nonresident RBM overlay structure.
put prior to the read operation. (See Table 15 for -
a summary of editing operations.) , RCOC. This is a resident foreground program, usually re-
' quiring installation modifications, that consists of the fol-
7 Disconnect line. The send and/or receive mod- lowing tasks and related items:
ules of the line are turned off, the data set is :
disconnected, and the logical status is set to 1. Aninitialization routine.
disconnect. : ,
2. An input-interrupt handler connected to the input in-
- 8~-+Connect line. The communication mode option terrupt of the COC controller (7611), which translates
for the line, simplex or duplex, is matched against and edits input characters, echoes the characters as
. the physical structure of the line and, where ap- required, and forms input messages.
propriate, the receiver is turned on. Mode con- , o
flicts are returned as invalid line status. The 3. An output-interrupt handler connected to the output
logical line mode is set to "inactive" and the interrupt of the 7611, which translates and transmits
other options are set. The connected line is output characters and performs line formatting at end-
assumed to be a dedicated line or a line that has of-message (character-count completion only).

Table 15. Summary of Editing Operations

Codes Used

Operation

33/35 37 Character Display
User-generated end-of-message CR or LF or BREAK NL or BREAK NL or INTERRUPT
character on input, edited
System-generated end-of- LF or CR (opposite of None for NL; None for NL; NL for INTERRUPT
message character on input user input); NL for BREAK
: CR and LF on BREAK
Attention code; used to BREAK BREAK INTERRUPT
terminate input or output
Ignore this character, except RUBOUT or DEL or DEL or
after ESC ESC,SPACE ESC,SPACE ESC,SPACE
System-generated characters CR, LF,RUBOUT NL,RUBOUT NL,5 - NULL
on output at end-of-message
Delete previous character ESC,RUBOUT ESC,DELETE ESC,DELETE or EM

: (echo-—) (echo\) operation

Delete current line ESC, X ESC, X ESC, X or CR,CAN

66 Service Routines

4. Input and output translation tables (ANSCII to EBCDIC
and vice versa).

5. A circular input buffer (i.e., "ring buffer"), which
overlays the initialization routine (item 1).

RCOC may be loaded at system boot time or as needed (in-
stallation option). When loaded, the initialization routine

automatically connects the COC handler tasks to their re-
spective interrupts, establishes linkage for M:COC, initial-
izes the COC for input, and exits. At this point, all lines

are set to the (logically) disconnected status, ready to be

tested, connected, and used via calls to M:COC.

M:COC FUNCTIONS

All line=control and read=write operations are initiated by
means of user calls o M:COC. Once RCOC has been ini-
tialized, all input/output requests are rejected by M:COC
until the line is connected. If a line is dedicated (i.e.,
leased or "hardwired") or if a dial-up line has dialed in,
only a connect (order 8) call to M:COC is required. If the
line is to be "dialed out" (physical activation from the com-
puter end rather than from the terminal end), an M:IOEX
SIO-order call to the Automatic Dialing Equipment must
precede the M:COC connect request for each line (see
"Auvtomatic Dialing" below for further details).

A check-line-status (order Q) call may be issued prior to a
connect request to check for line-operational and physically-
activated conditions, in which case detailed line-status and
line-mode information is returned (Tables 13 and 14). If
this is not done and a connect request is issued for a line
that is nonexistant or nonoperational, i.e., no send and/or
receive module installed or receive module will not turn on
(but whose line number is valid), the following operator's
message is issued and an invalid-line-status major status is
returned:

TROUBLE LINE nn

If the line is not physically activated, e.g., not dialed=in
(data set not ready or not “clear to send"), invalid-line-
status is returned also. If the specified line number is not
a valid one, this is so reported. (The range of valid line
numbers is determined during the assembly of RCOC.) See
Table 11 for major-status returns.

A successful connect call for a given line sets the logical
line mode to "“inactive", in which mode any input received

on the line is ignored, but the line is available for 1/0O
requests. Subsequent 1/O operations on that line must be
initiated sequentially with a check-previous—operation (or-
der 4) call intervening between successive read/write calls
(I/O requests are not queued). As each read or write
operation is completed, the logical line mode is set to
“message complete". At this point the line is still busy and
can only be cleared (set to inactive) by the check-previous-
operation call. (This call, order 4, is not required ofter a
check-status, connect, or disconnect request.) The check-
status (order 0) call may be executed at any time.

Program and Interrupt=Task Relationship. A read request
simply sets the line mode to “input" at calling program
level, which in turn causes the input interrupt task to accept
input on that line and build the input message in the user's
buffer, all at interrupt level. A write request sets the line
mode to "output" and causes M:COC to transmit the first
character in the user's buffer at calling program level.
Thereafter, the output interrupt task automatically transmits
the remaining characters, one per COC output interrupt
(i.e., one each "output word time") until the entire mes~
sage is sent, all at interrupt level.

As each input or output message is completed (or otherwise
terminated), the line is set to "message complete", line
mode 5, and the user's EOM receiver (if present) is exe-
cuted at the interrupt level. Normally, the receiver should
trigger the requesting task and (always) return via register L.

AUTOMATIC DIALING

If Automatic Dialing Equipment (ADE) is included, real-
time tasks can dial a terminal and connect it to a pre-
determined COC line for that terminal. The ADE is a
multiunit controller that .controls up to 16 dial positions
and corresponding lines. It is connected to a dedicated
1OP channel (additional to the COC's).

The dialing operation can be accomplished via M:IOEX.
A TDV order should first be issued to ensure that the dial
position is available. Then an SIO order can be issued to
activate the ADE and address the dial position. Any order
byte will be interpreted as a "write". The memory buffer
contains the number of the data set being dialed (two digits
per word, each digit occupying the rightmost four bits of
the byte in four-bit BCD). After the dialing procedure has
been completed, the task should check the status of the
COC line before attempting to send or write on it.

Service Routines 67

9. 1/0 OPERATIONS

BYTE-ORIENTED SYSTEM

The Monitor performs all /O services for the byte-
oriented 1/O system, This includes:

e Logical-to-physical device equivalencing.
e Initiating I/O requests.

e Standard error checking and retry (optional).
e Task dismissal on "wait" 1/O (optional).

e Software checking of background requests to preserve
protection of foreground and Monitor.

e Optionally generating device order bytes for device-
independent operations.

e Accepting user-generated IOCDs and device order
bytes to provide complete control for a user's
program.

~ e Using data chaining for foreground programs performing
scatter-read or gather-write operations.

e Reading or punching cards in either BCD or

EBCDIC.
e Positioning magnetic tapes and RAD files.
e [Editing from paper tape or keyboard/printer.
e All /O interrupt handling.

e Managing both temporary and permanent RAD
files.

e Limiting channel active time for I/O transfers.

1/0 INITIATION

Whenever a task needs to initiate an 1/O operation, it
calls on the appropriate Monitor 1/O routine (see Chap-
ter 4 for complete calling sequences). These Monitor
1/O routines are reentrant, so that a higher priority
task may interrupt and request 1/O during the initiation
of a lower-priority task, in which case the low-priority
task is suspended and the higher-priority task satisfied
first,

A real-time foreground program may acquire control of
a multidevice controlier from background users at the
completion of any current I/O. This technique is used
in place of queuing. All Monitor 1/O initiation is made
at the priority of the calling task, with background tasks
having the lowest priority.

68 1/O Operations

The channel time limits imposed by the Monitor on standard
devices are as follows:

Maximum Allowable Channel

Device Type Active Time (seconds)

KP 255

LP

CR

CcP ,

MT (9 track) 10

PT # chars. x rate
MT (7 track) 10

RD 7202/04 3

RD 7242/46 4

RD 7251/52 3

PL Not imposed

LD (logical device) Not imposed

END ACTION

The chapter on Operator Communication specifies the pos-
sible error messages. Generally, standard error recovery
takes place when the 1/O is checked for completion rather
than on the 1/O interrupt. This means that error recovery
for the background will be processed at the priority level

of the background rather than at the 1/O interrupt priority
level. However, there is a provision for the real-time fore-
ground user to specify an end-action routine to be called
when the Monitor answers the 1/O interrupt. This is the
AIO receiver address in the 1/O calling sequence, and it
is to be used only when more sophisticated end-action is
required or whena foreground task is tobe restored to active
status at channel end. Theroutine is processedat the priority
level of the I/O interrupt, so the processing should be of
very short duration. Reentrancy in this routine is the user's
responsibility. For example, this routine might consist of
storing the I/ status information and then triggering a
lower-level external interrupt through a Write Direct, where
this lower-level task performs the actual processing. The
end-action routine should then return to the task from which
it originally came (by RCPY L,P).

The form of the call to the AIO receiver is

LDA aiodsb (device status byte

from AIO inbits 0-7;
device number in
bits 8-15)

RCPYI P, L

B AlO receiver address

The AIO Receiver routine should return to the location
contained in the L register on the entry. -All registers are
assumed to be volatile, which means that they need not be
saved and restored to their former contents,

The purpose of the AIO Receiver technique is to allow a
real -time user program to be informed by RBM when chan-
nel end occurs on a particular 1/O operation. It is used
instead of 1/O queueing by the Monitor. Typically a fore-
ground program wishing fo maximize 1/O and computation
overlap will issue an 1/O request with the no-wait option
and with an AIO Receiver address specified. When the
1/0 is successfully initiated; the foreground task exits from
the active state (by a call to M:EXIT) and is restored to
active status at channel end by a Write Direct to trigger
the interrupt level from the AIO Receiver. The foreground
program must then return to the Monitor 1/O routine with
the "check" option to complete the end action on the
file. See Chapter 6 for a more detailed discussion of
AIO Receivers,

Note: For transfers invoking blocked files where no
1/0O is actually performed, the X register will
confain -1 to indicate that the AIO receiver
will not be entered.

LOGICAL/PHYSICAL DEVICE EQUIVALENCE

When writing a foreground or background program in either
Extended Symbo!l or FORTRAN, the user is not required to
know the actual physical device number that will be used
in the input/output operation. Two ways are provided
under RBM fo help the user select the input/output device
on a logical rather than physical basis.

The first method is the direct logical reference. The user
can specify a device-file number in his calling parameters
to the input/output routines, and RBM will translate this
into an actual physical device number. There may be
several device-file numbers pointing to the same physical
device; however, only one device-file number is generally
needed per device per active task in the system. Each
device-file number can be used by only one task at a time.
This is a necessary restriction since the 1/O status is saved
in the device-file number table in the RBMand independent
operation by several tasks on the same device would cause
invalid status from the separate tasks using it.

The second method is device referencing through indirect
logical reference, This method first assigns a device unit
number or an operational label to a device-file number,
which in turn is assigned to a physical device number. The
equivalence of operational labels or device unit numbers
and the device-file numbers is set at System Generation
time for certain standard devices, as shown in Tables 2
and 16. The standard assignments may be changed later by
use of 1ASSIGN or IDEFINE control commands.

Table 16. Standard Device Unit Numbers

Device Unit .
Number Standard Assignment
101 _ Keyboard/printer input
102 Keyboard/printer output
103 Paper tape reader
104 Paper tape punch
105 Card reader
106 Card punch
108 Line printer

Table 2 shows the standard background operational labels.
The devices and functions shown indicate how the standard
processors use these labels. Since each1/O call must specify
a byte count, a user program can read any number of bytes
from SI (if SI is magnetic tape, for example). The labels
are merely a name. There is no restriction on the record
size except as imposed by the peripheral devices,

LOGICAL DEVICES

In addition to the foregoing use of the term "logical device, "
"Logical Device" is also used to refer to a SYSGEN mech-
anism for reserving logical groups of DFNs for a combination
of foreground and background use to accomplish information
or data transmission between tasks without the use of any real
physical device. (Refer to the RBM System Management

Reference Manual for a description of the SYSGEN mech-

anism for defining a Logical Device in this sense.)

Logical Devices are defined at SYSGEN via a 2-character
mnemonic! (for model number), and an accompanying
pseudo-device number (indicating a channel number, pre-
ferably unique), The user performs reads or writes on DFNs
(or assigned oplabels) associated with the LDs via calls on
M:READ and M:WRITE, Two DFNs must be assigned to de-
fine one Logical Device. Communication between fore-
ground and background tasks is accomplished by use of the
foreground (F)/background (B) SYSGEN option at definition
of the LD,

One example of possible use would be where a task receives
data from a hardware device via standard oplabel or DFIN,
This data may be manipulated (if desired) by the task and
passed on fo another task via a pair of DF Ns associated with
the same LD, The receiving task may pass the data to a
different LD or to a real physical device.

Mhe mnemonic "LD" or any other 2-character mnemonic
other than RD or XX can be used. This mnemonic may indi-
cate a device type the Logical Device is to represent; e.g.,
LP for Line Printer as required by the printer symbiont,

Logical/Physical Device Equivalence 69

There are no restrictions astodirection of flow of information.
Either DFN associated with an LD may be used to read or
write to the other DFN associated with the same LD. Two
DF Ns must be associated with one pseudo-device number to
define an LD,

When using an LD, an 1/O operation takes place between
the two DFNs associated with the LD, That is, an /O

operation is only satisfied if a read/write pair of operations
occurs within the definition of one LD, If a task communi-

cates with more that one LD, another task (or tasks) must

perform the reciprocal 1/O operation on the DFN of each
of the LDs the first task performed 1/O on. A pre-1/O edit
routine for LDs satisfies the 1/O operation only when each
of the reciprocal 1/O requests have been made against an
LD. Refer to the RBM Technical Manual for further discus-
sion of the LD mechanism,

 RAD FILES

The two types of RAD files available are sequential files
and random files. A sequential file may be used like a
single-file magnetic tape, whereas a random file may be
used like a truly direct-access device. The capabilities
and restrictions of each type of file are described below.

Random and sequential files vary in two primary respects:

1. Sequential files cannot be accessed randomly; the next
record to be accessed is the one at which the file hap-
pens to be positioned.

2. Sequential files can only be updated at the end.
Random and sequential files share the following attributes:

1. Both are available to foreground and background tasks
(but not concurrently).

2. Both are available to routines M:READ, M:WRITE, and
M:CTRL, but not to M:IOEX.

3. Both can be blocked. The Monitor 1/O routines do the
blocking and unblocking.

4. Logical records may be less than, equal to, or greater
than the RAD secfor size. Unblocked records always
start on a sector boundary. Therefore, if a logical
record is less than a RAD sector and is unblocked, the
remaining byfes of the sector will be ignored. If a
logical record is greater than a sector, it will occupy
an integral number of physical sectors and the remain—
ing bytes of the last sector will be ignored.

70 RAD Files

10.

BOT (beginning-of-tape) is defined as the logical load-
point and equals the first sector of the fite. EOT is de-
fined as the logical end-of-tape and equals the last
sector +1 of the file. EOF (end-of-file) is defined as
the logical file mark (which may or may not exist).

Both can be positioned by tREWIND, IFBACK, and
I'FSKIP commands.

Foreground 1/O requests can specify an AIO Receiver
at channel end for physical 1/O transfers. When op-

erations involve only logical 1/O transfers, the AIO
Receiver will be ignored. A flag will be set (x =-1)

indicating the AIO Receiver is not to be acknowledged,
(see M:READ/M:WRITE status returns),

Operational labels can be equated to permanent files
on the RAD, or be allocated from available temporary
RAD space. This can be accomplished either through
control cards or through Monitor service calls at ex-
ecution time,

When the operational label is defined or assigned to a
permanent file, it is automatically positioned at the

BOT.

The transfer of any even number of bytes (to a maximum
of 65,534) may be requested, provided that the transfer
will not extend past the file boundary for unblocked
files. For blocked files a single record is processed
on each call.

SEQUENTIAL FILES

Sequential RAD files can be compressed (with blanks
removed) if they are EBCDIC data. The Monitor 1/0O
routines do the compressing and expanding but do not
check for binary data. Compressed records are always
blocked and of variable size; therefore the logical
record size has no meaning except when allocating
the file.

As on magnetic tape, once a logical record or file mark
is written on a file, any records or filemarks previously
written beyond that point are unpredictable,

Sequential RAD files (except compressed files) can be
spaced forward or backward by logical records, Selec~
ted records may be read from a blocked sequential file

by spacing records forward or backward, but only
records at the end ofa sequentialfile should be written,
i.e., update in-place not pemmitted.

As on magnetic tape, the only record that can be
written at the EQT is the logical file mark.

RANDOM FILES

All unblocked 1/O transfers start on a granule boundary
within a file. These granule boundaries are addressed
as a number that represents the displacement of the
granule from the start of the file, beginning with zero.
A granule boundary always begins on a sector boundary
but need not end on one (see discussion of granules
below).

When a random file is defined, the user may specify a
FORTRAN logical record size and a pointer to the word
where the last referenced FORTRAN logical record +1
is stored. This information, although unused by the
Monitor, is stored in the file and may be requested by
executing programs or processors (such as the FORTRAN
compiler), if necessary.

Random files may not be compressed. They may be

blocked with transfer on a logical record basis. In

this case, the Monitor performs all blocking/deblocking
operations. Any Write operations are really an update
in place and unmodified portions of a block are pre-

served. A block is not read into core if it is already in
core from a previous operation.

EOF has no meaning in random files except for file sav-
ing, truncating, and mapping purposes.

Random files (either blocked or unblocked) may be
accessed sequentially or randomly. At the end of any
operation, RBM automatically updates the record dis-
placement pointer to the "next" record. The pointer
can be "set" by any random operation, is initially set
to the beginning of the file, and may be changed
by M:CTRL.

As much data as specified by the byte count will be
transferred for the unblocked random files but only one
record at a time will be transferred for blocked random
files and incorrect length can occur.

GRANULES

While a granule is usually synonymous with a sector on a
device, it may be defined (on a file basis) to be equivalent
to any of the following:

e A partial sector.
e One sector.

e Several sectors.

A granule always begins on a sector boundary but need
not end on such a boundary. For example, to make the
7204 RAD and the 7242 disk pack transfers equivalent, a
granule can be defined to be 1024 bytes; this is then one
sector on the disk pack and two sectors plus a fraction of
a sector on the 7204 RAD.

BLOCKING BUFFERS

The RBM system allows for automatic assignment of blocking
buffers for files of blocked, compressed, or packed format.
The number of buffers required by a program may be speci-
fied through the !$BLOCK control card of the Overlay
Loader. Such buffers as will fit within unused memory
(UMEM) of the loaded program may be allocated to @ max-
imum of 16, Size of these blocks is determined by the
value of K:BLOCK. Use of such blocks is identified and
maintained in the task TCB (use bits). Assignment is made
from this pool of buffers as required explicitly through an
M:OPEN call or implicitly through the first use of the file.
Closing a file that uses a block from the poot will free its
buffer for later assignment. Thus, a minimum requirement
for pool buffers may be achieved through a judicious open-
ing and closing of files requiring such blocks,

The !$BUFEND control command in conjunction with the
1$BLOCK command will allow the foreground user to allo-
cate an area outside his program as the buffer pool.

The ability of more than one file to share the same buffer
block is provided to accommodate "packed" files whose
records may be accessed randomly and thus may require a
fresh block with each call to M:READ/WRITE. The capa-
bility of sharing a single buffer from the program buffer
pool is conveyed by the 1$3BLOCK command as the program
load file is generated. This capability is registered in the
TCB as the program is loaded into memory and the first buffer
from the pool is identified as the sharable block. Packed
random files may be individually identified as accepting a
shared buffer through an ASSIGN cor DEFINE parameter.
Subsequent operations with such a file must be on a "wait"
basis since the shared buffer is freed before completing
each read or write request. If the transfer request is not
1/0 with wait, a calling sequence error will be returned.
This is true whether the buffer is from the buffer block pool
or whether it is allocated explicitly (M:OPEN) within the
program.

A buffer block may not be shared by other than packed
random files of the same task.

RAD Files 71

Records of compressed, blockedand packed files are treated
as a contiguous stream of data for blocking purposes, As
such, individual records may overlap block boundaries
without concern to blocking procedures. '

RAD FILE MANAGEMENT

RBM permits allocation of the RAD into the subsections
shown in Figure 4. The exact bounds on these sections are
computed from the size of required contents or selected by
the user in accordance with the anticipated use of the
system. In either case, the bounds are set during System
Generation, and cannot be changed except by a new
System Generation. RBM maintains directories for as many
areas as the user specifies up to 35, plus: the Checkpoint
areqa, the Background temp area, the System Library, Sys-
tem Processor area, and System Data area. RBM also main-
tains control of the checkpoint area. The background temp-
orary space is allocated from control command inputs or
from calls to M:DEFINE as requested.

Areas need not be allocated contiguously (RAD tracks may
be skipped between areas), and can be distributed over
more than one RAD. One to 16 areas may be allocated on
each RAD or disk pack. However, each area must exist en-
tirely on a single RAD, If there is more than one RAD on
the system, one will be designated as the RBM System RAD,
which will receive any default areas. Any RAD with sec~
tor 0 available will receive a bootstrap in that area.

72 RAD File Management

RBM Bootstrap Loader

System Processor area

System Library area

System Data area

RBMGO RBMAL
RBMOV RBMS2
RBMPMD RBMSYM
RBMID

User Processor area

User Library area

User Data area

Checkpoint area

Background temporary storage

ao areas

Alternate tracks {(disk pack only)

Figure 4. RAD Allocation

6. REAL-TIME PROGRAMMING

FOREGROUND PROGRAMS

A foreground program is one that operates in protected
memory, utilizes foreground operational labels or device
unit numbers, and has access to privileged instructions. It
is protected from any background interference through an
integrated hardware/software protection scheme. A fore-
ground program may be classified as either a resident fore-
ground program, a semiresident foreground program, or a
nonresident foreground program, and it is important that
this distinction be understood.

RESIDENT FOREGROUND PROGRAMS

Foreground programs are defined as resident through the
RAD Editor when their files are created on the user pro-
cessor area of the RAD. They are loaded into core from
the RAD whenever the RBM system is booted, and are either

automatically armed, enabled and (optionally) triggered, .

or they initialize themselves through their own initializa-
tion routines. Once loaded into core for execution, resi-
dent foreground programs remain resident until the RBM
system is again booted from the RAD.

SEMIRESIDENT FOREGROUND PROGRAMS

Semiresident foreground programs are normally not in core
memory. They are not read into.core when the RBM system
is booted but must be called in explicitly when needed.
Semiresident foreground programs, when loaded, reside in
the resident foreground area. The user must schedule the
loading of semiresident foreground programs because the
Monitor provides no protection against overlay or over-
loading. When loaded, they may be automatically armed,
enabled and (optionally) triggered, or they may initialize
themselves through their own initialization routines.

NONRESIDENT FOREGROUND PROGRAMS

Nonresident foreground programs are normally not in core
memory. They are not read into core'when the RBM system
is booted but must be called in explicitly when needed.
Nonresident foreground programs, when loaded, reside in
the nonresident foreground area, and the area isthen consid-

ered "active" and is not available for subsequent use by other

programs (including the Monitor) until the program occupying
this area releases it by "unloading”. This feature is useful
when a system has several nonresident foreground programs
that have a resource allocation problem or are connected to
the same interrupt level. The Monitor will control access
to the nonresident foreground area, thus providing protec-
tion against multiple loading of these conflicting programs.

If nonresident programs are to be used, at least K:BLOCK+17
memory locations must be allocated for the nonresident fore-
groundarea of core. Ifallocated, the nonresident foreground

.

areais adjacent to.the background. - If a nonresident foreground
program is to be loaded and the length of the longest path
(including COMMON) exceeds the size of the nonresident
foreground area, the background is automatically check-
pointed fo allow the program to extend to the background.
The background remains checkpointed until the nonresident
foreground program unloads by a call to M:LOAD., When
loaded, nonresident foreground programs may be automati-
cally armed, enabled and (optionally) triggered; or they
may initialize themselves through their own initialization
routines.

MONITOR TASKS

The relative priorities of the separate Monitor tasks are
given in descending order below:

Highest Counters (optional).

Power On Task.

Power Off Task.

Machine Faulf Task.

Protection Violation Task (optional).

f

Multiply Exception Task (optional) .

Divide Exception Task (optional)f.

Real-time tasks, if any, higher than 1/O level.

Input/Output Task.

Control Panel Task.

Counters = 0 (optional),

Real-time tasks, if any, lower than /O level.

RBM Control Task (lowest hardware level).

Background "tasks", lower than all hardware levels.
Although the tasks are not reentrant, they are serially re-
usable; that is, as soon as a task finishes processing one re-
quest, it can immediately process another. For example,
/O interrupts are processed one at a time, with the highest
priority device always processed first if several interrupts
are waiting, but as soon as the processing of one interrupt

request has been completed, another request for a separate
device can be processed.

POWER ON TASK
The Power On Task performs the following operations:

o Waits for acceptable RAD status.

e Arms and enables all RBM interrupts.
rSigmq 2/3-only.

Real-Time Programming 73

e Triggers the RBM Control Task to send a }I/POWER ON
message.

® Restores protection registers to failure=time contents,

o Loads and links to the Power-On receiver if specified
in pointer location X'1A9', If the computeris aSigma 3,
the X register will point to the interrupt status saved
at Power~Off time, This data is organized as follows,
one bit per interrupt per word as described for the
WD-instruction register bits in the appropriate com=
puter reference manual:

0,1: 0if recovery will be attempted, 3 if re-
covery will not be attempted.
1,1: Group '0' interrupts enabled.
2,1: Group '0' interrupts armed or waiting.
3, 1: Group '0' interrupts waiting or active.
If the computer is a Model 530, the X register will
point to a data area organized as follows:
0,1: O (Recovery will be attempted).
1,1: Group '0" interrupts enabled.
2,1: Group '5' interrupts enabled.
3} 1: Group '6' interrupts enabled.
4,1: Group '0" interrupts armed or waiting.
5,1: Group '5' interrupts armed or waiting.
6,1: Group '6' interrupts armed or waiting.
7,1: Group '0' interrupts waiting or active.
8,1: Group '5' interrupts waiting or active.
9,1: Group '6' interrupts waiting or active.
e Restores status at Power-Off time and exits if the com-

puter is a Sigma 3 with no external interrupts, or is a

Model 530.

® Restores context and exits if it is a Sigma 2 or there
are external interrupts and background is active.

If none of the above conditions are satisfied, the Power-
On interrupt is cleared and a SYSERR is forced.

Since Power-On processing is installation dependent and
correct recovery cannot always be guaranteed, a user-
developed Power-On Receiver may be used to restart after
a power failure. The following action may be taken within
the receiver:

1. Timeout errors will be simulated on all active 1/O
channels at Power-Off time. Code within the receivers
may restart 1/O for these devices,

2. The interrupt status is determined, in general, through
the TCB chain (each TCB contains the address of the
TCB of the task it intferrupted). Race conditions can
exist that may cause this chain to inaccurately reflect
the interrupt status, although the PSD chain is correct.

74 Monitor Tasks

If this risk is considered negligible or the effects
unharmful, the tasks can be reactivated through the
TCB chain by the receiver,

3. The foreground Power-On Receiver may activate one
or more foreground tasks or take other special action
to restart the system, This may involve going to some
recent checkpoint,

4, The receiver may exist from the Power-On routine
by going to M:EXIT,

POWER OFF TASK
The Power Off Task performs the following operations:

e Saves all available interrupt status, depending on
model of CPU (see above).

e Saves context via a call to M:SAVE.

o Scans the Channel Status Table and issues an HIO to
any channel flagged active and saves the device status
byte and the even and odd channel register contents in
the File Control Table.

e Inferrogates location X'1A8' for a Power-Off receiver.
If one is specified, a branch is made to it; otherwise,
the Power Off Task waits for the power-on interrupt.

MACHINE i’AUlT TASK

For Sigma 2/3 Systems: The Machine Fault task responds to
the following Sigma 2/3 machine fault conditions, listed in
order of priority:

1. Memory parity error.
. External IOP timeout.

2

3. Incorrect direct 1/0.
4. Internal IOP timeout. Sigma 3 only.
5. Combination of conditions 2 or 3 and 4.,

Of these conditions, background can only cause a memory
parity error. When this occurs, the Machine Fault task trig-
gers RBM and the background task is aborted with an error
code of PE. For all of the above conditions, including parity
error when background is not active, an appropriate fore-
ground receiver will be tested, as specified below. If this
receiver pointer is zero, the action specified below will be
taken. Otherwise, the receiver will be linked to via a
RCPY! P, L. If the receiver returns, the Machine Fault task
will proceed as if a receiver was not specified. The re~
ceiver may correct the situation and simply call M:EXIT.

Receiver Pointer

Condition Address Action

1 X '"1AD! Abort, code=PE

2 X "1AB' SYSERR, code=ET

3 X 'TAA’ Abort, code = MF

4 X '1AC' Machine Fault Message

Abort action consists of disabling the associated interrupt
and exiting the task. If the task occupies the nonresident
area, an UNLOAD will be performed. If an IIOP timeout
occurs, RBM will be triggered to write the "Machine
Fault..." message. The active task will not be terminated
but, on exit from the Machine Fault task, overflow and
carry will be set to indicate device not recognized.

All foreground abort messages and the "Machine Fault..."
message will be written at the RBM Control Task level.
Therefore, if two consecutive foreground tasks abort, only
the message for the lower priority task will appear. How-
ever, both a foreground abort message and the "Machine
Fault..." message may accumulate.

For Model 530 Systems: The Machine Fault Task responds
to all Model 530 hardware-detected machine faults, as re-
ported by the fault register. If the error-logging option has
been selected at SYSGEN, the contents of the fault register
is logged in the system error file (ERRFILE,SD) along with
pertinent context data.

The fault condition is analyzed and a severity code

(0 through 4) is generated according to the breakdown
shown in Table 17. Location X'1AA! is interrogated for a
machine-fault receiver pointer. If the pointer is nonzero,
control is transferred to the receiver with the X and L reg-
isters set as follows:

Register X — pointer to a two-word field, where word 0
contains the severity-level code (0-4), and word 1

contains the fault code (current fault-register con-
tent, see Table 17).

Register L — return location in Machine Fault Task.
If the receiver pointer is zero, or if the receiver returns
control (via register L), the Machine Fault Task will log

the error and proceed, as summarized below, according to
the assigned severity level:

Severity Action

0 Immediate exit, i.e., log fault condition
only.

1 Retry instruction at which fault occurred.

2 Abort task causing the fault with abort~code
MF.

3. Transfer to SYSERR routine, with code MF,
which writes SYSERR message and brings sys-
tem fo orderly halt,

4 Immediate system halt with code MF in
register A, fault code in register X,

(The receiver can change the severity level and return, with
appropriate effect.)

Note that, other than error logging, no action is taken on
multiple fault conditions (severity 0).

Table 17. Machine Fault Classification by Severity Levels

Severity Code and Meaning | Fault Classification Fault Register Contents (Hex.)
0 — Error logging only. All faults not listed below, including any combination Any other than below.
of multiple faults (i.e., faults reported concurrently).
1- Refry.cble: not second DIO data~in parity error. 8210
::r:‘sae;::;;\;?o:?currence ot DFSA constantly high. 8204
Address-parity error on instruction fetch. 81>2
Data-parity error on instruction fetch, 81>1
DIO argument field error. n008
DIO data-out parity error. n004
NIO data parity error. n001
Interrupt-Master fault. 0802
2 — Serious: not retryable No DFSA response. 8208
l::stkl.imited to a specific Unimplemented instruction.’ 8202
Memory module absent (i.e., nonexistent <:|ddress).H 81x4
Address-parity error on operand fetch. 81<2
Data-parity error on operand fetch. 811
PCP pseudo-fault (TRACE on and PCP inferrupt). 0804
DIO fault: parity error on external write direct. 0801

Monitor Tasks 75

Table 17. Machine Fault Classification by Severity Levels (cont.)

Severity Code and Meaning | Fault Classification Fault Register Confents (Hex.)
3 — Critical: affects entire | IOP fault. n020
system. Watchdog timeout (special system devices). n010
4 — Catastrophic: the All mode-3 CPU faults: 83xx
:::ng;;zeo‘ig%’egpemhon Instruction timing error.
: ROS address-parity error.,

ROS data-parity error.

MCM error.

AU parity error.

Control module error. 8220

valve.

Legend: < indicates less than 8, > indicafes greater than 7, n =1 for IOP1; 2 for IOP2, and x indicates nonspecified

code NA).

t
The error receiver is not entered if an unimplemented instruction is executed by a background program.

tt
The error receiver is not entered if a nonexistent memory address is referenced by a background program (abort with

PROTECTION VIOLATION TASK

Any attempt by the background to modify the contents of

protected memory, or fo execute a privileged instruction,
will cause the Protection Violation Task to abort the back-
ground program, using the same method as the Machine

Fault Task,

Unavailable core is set protected. On Sigma 2/3 systems,
write attempts to unavailable core cause protection errors,
and read attempts from unavailable core cause parity errors.
The abort code after a protection error shows the location
causing the error if the error was an invalid store or a priv=-
ileged instruction. An attempt by the background to branch
to protected memory will cause an abort with the address of
the location that was being branched to. Note that Mon-
itor service routine calls actually cause a protection viola-
tion from the background. However, if the branch address
and the return to the background are valid, the branch is
permitted.

The set multiple precision mode instruction, RD X'81', does
not cause a protection violation when multiple precision
hardware is implemented.

MULTIPLY/DIVIDE EXCEPTION TASKS

Sigma 2/3 Systems Only: These tasks simulate a Mulfiply
or Divide instruction for Sigma 2/3 computers not equipped
with Multiply/Divide hardware. They are not reentrant,
and all fower interrupts are essentially locked out for the
duration of the simulation (approximately 250 to 300 CPU
microseconds.)

76 Monitor Tasks

INPUT/CUTPUT TASK

After an input/output interrupt, the Input/Output Task
identifies the highest priority device with a pending in-
terrupt. It then clears the channel activity status and
sets the operational status byte count residue in the proper
device-file status table, if the device is no longer opera-
ting. (The channel is not cleared for a zero-byte-count
interrupt.) If a foreground AIO Receiver was specified (for
a description of an AIO Receiver, see "1/O Operatiohs" in
Chapter 5), control is transferred to this receiver at the
I/O priority level. 1t is expected that the AIO Receiver
exits properly.

To minimize interrupt inhibit time, the channel registers are
loaded and the 1/O initiating SIO is issued af the /O inter-
rupt priority level. Consequently, any task with a priority
leve! higher than [/O must not use M:READ, M:WRITE, or
M:IOEX to perform I/O, but may perform its own /O with-
out use of the 1/O interrupt.

When Clock 1 is employed (a SYSGEN option), M:READ/
M:WRITE operations are subject to a time limit. Clock 1 is
used to ensure that no channel is active beyond a preset

limit. If the limit is exceeded, an HIO is issued to the
offending device and appropriate end action will be taken.

CONTROL PANEL TASK

A Control Panel Interrupt causes the Control Panel Task
to perform one of two functions: (1) remove the foreground
task and (2} notify the RBM Control Task of a pending key-in.
If the Control Panel data switches are set appropriately,

a foreground disable and abort may occur (see "Operator
Control", Chapter 3). Otherwise, the Control Pane! Task
sets the key-in flag for the RBM Control Task, triggers the
RBM Control Task and exits. The key-in operation itself is
performed at the level of the RBM Control Task.

RBM CONTROL TASK

This task controls unsolicited key-ins and background oper-
ations. It is the only RBM task that actually performs input/
output and, therefore, is the only task that requires tempor-
ary stack space for the reentrant RBM input/output routines.

SCHEDULING RESIDENT FOREGROUND TASKS

When several programs and tasks are simultaneously located
in core memory, scheduling is required for the orderly trans-
fer of control from one task to another, Scheduling takes
place in accordance with the following rules:

1. When no background or foreground task is active in
the system, the Monitor enters the "idle" state until
the operator directs the loading of a set of control
commands from an input device.

2. After a background program is loaded, the Monitor
transfers control to the program by an exit sequence
from the RBM Control Task. During execution of the
background program (if the program is waiting for its
own I/O to complete), there can be nothing else in
execution in the system. That is, the Monitor makes
no attempt to multiprogram to absorb idle time. If
there is an armed and enabled resident foreground task
in core, the foreground program may receive an inter-
rupt from some external source.

3. After entry, the interrupting task saves the contents of
any registers it will alter and proceeds to carry out its
function. The task may use either the M:SAVE service
routine to perform the saving opertions or it may save
the contents of the registers itself.

4. When the real-time task is completed, it may restore
the context of the interrupted task and exit via the
standard interrupt exit procedure or may have these
functions performed by the M:EXIT service routine.

Warning: If the real-time task has changed the state
of the interrupt levels by arming or disarming
any active interrupt, the system integrity is
lost, The enable/disable feature should be
used to prevent interrupts until an orderly
exit and inactive state is achieved,

‘Note that this is a last-in, first-out form of scheduling.
The interrupting task may itself be interrupted at any time

during execution by a higher priority task, up to the maxi-
mum possible number of tasks in the system.

Each time, a new task saves the status and register contents
of the interrupted task. When the new task exits, control
is returned automatically to the task it interrupted. If there
is another interrupt waiting between the level of the current
task (which is just completing) and the interrupted task, the
originally interrupted task is immediately interrupted again
and the new (intermediate) task follows the same procedure.
Thus, it is never necessary for any task to know what task
precedes or follows it. The task merely preserves and re-
stores the environment according to the established rules.

The design of the hardware priority system makes it unneces-
sary for the Monitor to be involved in the actual schedul-
ing, and this procedure allows the tasks and programs to
independently control the execution priority of certain
operationswithin the foreground. For example, a real-time
foreground task that is activated by an external inferrupt
may perform some processing and then issue a special Write
Direct to trigger another relafed task to continue the pro-
cessing at a higher or lower interrupt level. If the Write
Direct is to a higher level, the interrupt to the higher level
takes place immediately and the new task is begun. More
frequently, the Write Direct is to a task at a lower priority
level, and in this case the current task exits in a normal
manner and the highest priority "waiting" task will become
active. This task may or may not be the one that just re-
ceived the Write Direct. Eventually, the task that re-
ceived the Write Direct will be reached, and this task will
then continue the processing at that level. Thus, real-time
foreground programs can have anintricate scheduling scheme
with no RBM intervention.

An example of interrupt-driven scheduling is illustrated in
Figure 5.

LOADING FOREGROUND PROGRAMS

All programs must reside on the RAD in order to be read info
memory for execution. They must be written onto the RAD
by the Overlay Loader or the Absolute Loader. (See the
!ABS control command description in Chapter 2 for restric~
tions regarding the use of the Absolute Loader.) In each of
the methods described below, only the program root is loaded
into memory from the RAD file as a result of the action taken.
Segments must be read in by subsequent calls to M:SEGLD.

The most common method of loading a foreground program
into memory is through a call to M:LOAD by another fore=~
ground program. The call takes place at the priority level
of the foreground program and the request is placed into the
queue stack. The program is actually loaded by the Monitor
subroutine S:LOAD at the leve! of the RBM Control Task,
and this method is the most logical one to be used. It is
based upon conditions automatically detected by other fore-
ground programs and requires no response or assistance from
the operator.

Scheduling Resident Foreground Tasks/Loading Foreground Programs 77

High

I/O AlO revr(2)

|
T
1/0 INTERRUPT i
Request CHECKPOINT Request RESTART
FGND 1 1 obeeod o i
I— — 3 —
Initiate 1/0O {AIO rcvr)
1 LI |
FGND 2 2 Ve e e e e vo2
e —
1
FGND 3 E'r ————————————— 3
LR 'BKG RESTART'
CKPT CKPT rcvr(1)
RBM CONTROL TASK P
- 'BKG CKPT*
o
§ A : —— _ll‘—l —
2 BACKGROUND BKGNDH E_C_Bl"' ————————————————————————— 4BKGND
5
0 TI T2 T3 T4 5 16 17 18 T9 Ti0 TIl
TIME SEQUENCE
Note: Times need not be equally spaced.
Time Point Activity (Meaning)
TO The background is executing.
T1 An interrupt is received for Foreground Task 2 which becomes active and saves the environment of the
interrupted background task into its TCB.
T2 Foreground Task 2 requests an 1/O operation, specifies an AIO Receiver, and exits. The background
resumes processing.
T2.5 An inferrupt is received for Foreground Task 3 which interrupts the BG.
T3 An interrupt is received for Foreground Task 1 which becomes active and saves the environment of the
interrupted task (Task 3) into its TCB.
T4 At channel end, an 1/O interrupt is received for the operation initiated by Foreground Task 2; the

1/0O Interrupt Task saves the environment of the interrupted task (Task 1). The AIO Receiver is
entered at the 1/O interrupt level and triggers Task 2, indicated by dotted line at FGND 2 level,

78

Figure 5. Foreground Priority Levels

loading Foreground Programs

Time Point

Activity (Meaning)

T5

T6

17

T8

19

The AIO Receiver returns via a RCPY L, P instruction. The 1/O Interrupt Task exits, restoring the

interrupted task's status. Foreground Task 1 resumes operation, requests a checkpoint of the back-
ground, and specifies a Checkpoint Complete Receiver. This action causes the RBM Control Task

to be triggered, indicated by broken line at RBM Control Task level.

Foreground Task 1 exits, restoring the interrupted task's status. This was actually Task 3, but Task 2
is waiting and it immediately becomes active.

Foreground Task 2 exits, restoring the interrupted task's status. This was Task 3. It becomes active
and continues from where it was suspended.

Foreground Task 3 exits, restoring the interrupted taks's status. This was actually the background
task. Since the RBM Control Task was triggered at T5, it is the highest waiting interrupt level. The
RBM Control Task becomes active and stores the interrupted task's status into its TCB. The RBM
Control Task calls the RBM subtask S:CKPT which writes the background into the RBM Checkpoint
area on the RAD. S:CKPT then extends memory protection to the background and enters the specified
Checkpoint Complete Receiver at the RBM Control Task level. In this illustration the Checkpoint
Complete Receiver triggers Foreground Task 1 with a Write Direct instruction.

Foreground Task 1 becomes active and saves the environment of the interrupted task in its TCB. The
background area is now available to Foreground Task 1 for instructions and/or data. When processing

resumes processing.

is complete, Foreground Task 1 requests a restart.

710 Foreground Task 1 exits, restoring the interrupted task's status (in the Checkpoint Receiver, which
returns via a RCPY L, P instruction). The RBM subtask S:CKPT now completes its operation and
returns to the RBM Control Task which calls in the subtask S:REST to restart the background task.
S:REST first clears the background area, then reads the checkpointed background task in from the
RAD. The background is then set "unprotected" which completes the restart operation.

T The RBM Control Task exits, restoring the status of the interrupted background task which then

Figure 5. Foreground Priority Levels (cont.)

Another method of loading a foreground program is through
an unsolicited key=in by the operator. The operator must
generate a Control Panel Inferrupt and, in response to the
request 1KEYIN, type in "Q name", where "name" must
be the name of a foreground program residing in the user
processor area of the RAD. This action also results in a
call to M:LOAD to queue the request. This method could
be used in response to conditions detected outside the com—
puter system (e.g., a certain time of day). Both of the
above methods apply to semiresident as well as nonresident
foreground programs. For resident foreground programs, they
would be used only to obtain a fresh copy of a particular
program without rebooting the entire system.

Loading through use of the queue stack requires use of the
nonresident foreground area whether or not the request is
for loading into this area. Therefore, whenever a nonresi-
dent foreground program is in core, all queue stack loading
is suspended until the program occupying the nonresident
foreground area releases the area by unloading.

Two other methods of loading foreground programs are avail-
" able. They involve control commands that are normally

used to load background programs that are part of a back-
ground job, and that must be preceded by an FG key-in.
These commands are

IXEQ initiates loading from whatever RAD file to
which background operational label OV is assigned.
The method presumes that either the appropriate
OV oplb assignment has been made, or that the
program to be loaded is on the RAD file RBMOV
to which the label OV is assigned by default.

Iname causes the foreground program "name" to be
loaded in the same way a background processor is
loaded. The foreground program must reside in
either the SP, FP, or UP area: they will be searched
in that order. The user is responsible for avoiding
duplication of program names in those areas.

The control command methods are closely tied to back-
ground schedules and do not provide adequate response to
real-time needs. However, they can be used when de-
bugging foreground programs.

Loading Foreground Programs 79

LOADING NONRESIDENT FOREGROUND PROGRAMS

Nonresident foreground programs are also loaded by the
Monitor service routine M:LOAD, Once loaded, these
programs can be connected to an interrupt via aninitializa-
tion routine or else can be triggered by a code givenin the
program’s TCB, These programs then behave exactly like
resident foreground programs. If the program just loaded
resides in the area of core referred to as the nonresident
foreground area, the nonresident foreground area is tied up
until the program releases this space. A method is provided
to automatically unload this area when M:ABORT or M:TERM
is called by the task occupying the nonresident foreground
area, Therefore, a FORTRAN program calls the library
routine L:OP (generated by the compiler when the program
calls STOP) to terminate and unload. If @ FORTRAN pro-
gram calls EXIT, the nonresident foreground area will not
be unloaded.

FOREGROUND INITIALIZATION

When a foreground program is loaded, it may either be
initialized by RBM (see Overlay Loader !$TCB card in
Chapter 7) or may have its own initialization routine.

If the !$TCB card is used, the initialization routine will be
entered at the interrupt level specified on the I$TCB card.
The initialization code must therefore take the necessary
precautions to ensure that it will only be executed once.
It must then branch to the start of the program, When
OLOAD builds the 1$TCB, the task organization is

Orgin, from I$ROOT Card -| TEMP START

TEMP SIZE, from [$ROOT TEM;’ END
Card
ADRL PSD
See Table 18 TCB .
TCB 16
PSD DATA 0
DATA 0
STA TCB+ 10
RCPY L,A
STA TCB+5
RCPYI P, L
B M:SAVE
ADRL TCB
B *$+1

VECTOR
First instruction of users code

DATA ENTRY POINT

If any module with an operand on the END card is loaded
with the Root segment the last '"END' operand will be in-
serted into 'VECTOR' and will be entered when the asso-
ciated inferrupt level is triggered, Otherwise, "VECTOR"
will point ot the first word location cell of the Root.

80 Foreground Initialization/Task Control Block Functions

In the case where the program contains its own TCB, the
operand on the 'END' card will be entered at the level of
RBM. The initialization code in this case must

—

. Insert the PSD address into the dedicated interrupt
location.

2. Armm, endble and perhaps trigger the associated inter-
rupt level,

3. Perform any user-specified functions, such as special
receiver connections, establishing foreground mail
boxes, and so on.

4. Return to the 'L’ register.

In this case, when the initialization routine executes at
the RBM interrupt level, the RBM temp stack is available
to the user code, This will allow enough temp for almost
all monitor service calls.

If HEXDUMP was included ot SYSGEN time, all Monitor
service routines except M:RSVP may be used. If HEXDUMP
was not included, the Monitor service routines M:RSVP and
M:SEGLD may not be used.

For the benefit of segmented foreground programs, the ini-
tialize code (entered by M:LOAD) can assign an infernal
operational label to the foreground ML operational label.
This internal operational label may then subsequently be
used in calls to M:SEGLD, The foreground program may
not use the ML operational label in calls to M:SEGLD,

If there is o loader built TCB, the initialization routine will
be entered at the task level when its interrupt is triggered
for the first time,

When foreground initialization is completed, the routine
retums to RBM via RCPY L, P, Foreground initialization
routines will also be executed any time the system is booted
from the RAD if the task is flagged as a resident foreground
task and resides on the SP, UP, or FP areas.

TASK CONTROL BLOCK FUNCTIONS

The Task Control Block (TCB) is a convenient means for
organizing and storing information necessary to attain pro-
per context switching, define dynamic blocking buffer
pools, define temporary space necessary for reentrancy, and
arm and enable the associated task. A foreground program
may have one or more TCBs within the program (one for each
task), but it is assumed that the first loadable item within a
foreground program is a TCB. The TCBis used by the Monitor
service routines M:SAVE, MEXIT, M:LOAD, and by the
Control Command Interpreter upon encountering a !C:
command,

The TCB consists of 17 words and can be created at assembly
time with Extended Symbol, or at load time by the Overlay

Loader. (A FORTRAN program must have its TCB created
by the Overlay Loader). The TCB is usually a block of
code contiguous to the task it describes, with address literals
pointing to the temporary stack space. A DATA statement
can set the initial code for the interrupt level state for the
task interrupt level. The complete contents of the TCB are
shown in Table 18.

Note: The code in TCB + 2 is the exact code used in the
Write Direct that sets the interrupt level. This code
is described in the appropriate computer reference
manual.

Bit T in word TCB+1 indicates whether the task is using the
Monitor 1/O routines and the floating accumulator; if bit T
is zero, a temporary stack is required and the M:SAVE rou-
time will initialize locations 0001 through 0006, after sav-
ing the previous pointers for the interrupted task. If bit T
is a 1 (meaning no floating accumulator and no temporary
space are required), the M:SAVE routine will not set these
locations, In a real=time environment it is recommended
that a user does not set the T bit to 1 (the floating accumu-
lator and temporary storage pointers are saved). The Moni-
tor service routines M:SAVE and M:EXIT do not, themselves,
use any temporary storage.

When the task is programmed in FORTRAN, the task en-
trance and exit, TCB, and task entrance procedure are set
up by the Overlay Loader. The module load routine
M:LOAD sets the pointer to the PSD into the dedicated

interrupt location and arms, enables, and optionally triggers
the associated interrupt level.

The background program will have a Task Control Block in
protected foreground space,

Caution: Locations 1 through 5 in the zero table are not

saved and are recreated from location 6. Thus,
locations 1 through 5 must not be changed by a

foreground program or they will not be the same
after interrupt has taken place.

When the Overlay Loader creates the TCB for a foreground
task, the items shown in Figure é are generated adjacent to
the task. If the transfer address given in the object deck is
relocatable 0, it is not treated as the entry point to an ini~
tialization routine, but is used as the entry address for that
task. The task will be armed, enabled, and possibly frig-
gered when loaded for execution depending on the contents
of words 1 and 2 of the TCB, supplied to the Overlay Loader
on the 1$TCB card.

After a foreground program is loaded into core, certain
items in the TCB are examined. A fatal load error results
if the number of specified operational labels requiring
blocking buffers exceeds the number of available blocking
buffers (word 15 of TCB). If the number of available block-
ing buffers is sufficient, word 15 of the TCB is adjusted to
reflect the current blocking buffer requirements.

Table 18. Task Control Block (TCB)

Location | Contents

Set by

TCB+ 0 ADRL PSD Assembler/Loader
0 - 3l4[5](6]|7 15
1| R-bit No. T|C | X| Dedicated Interrupt Location Assembler/Loader
For WD P
0{1|2(314!]5 7|8 1112 15
2 ToTD[0[1[0 Code G000 | Inf. Group No, | Assembler/Loader

3 | ADRL TEMPBASE (temporary stack) (FWA)

Assembler/Loader

4 | ADRL TEMPLIM (temporary stack) (LWA+T)

Assembler/Loader

5 | Contents of L register from interrupted task

Current task (on actual entry)

6 | Contents of T register from interrupted task M:SAVE {or current task)
7 | Contents of X register from interrupted task M:SAVE {or current task)
8 | Contents of B register from interrupted task M:SAVE (or current task)
9 | Contents of E register from interrupted task M:SAVE {or current task)

Task Control Block Functions 81

Table 18. Task Control Block (TCB) (cont.)

Location | Contents Set by

10 | Contents of A register from interrupted task Current task {on actual entry)

11 | Contents of location 0006 (K:BASE) from interrupted task | M:SAVE

12 | Contents of Location 0007 (K:TCB) from interrupted task.| M:SAVE

13 | Dynamic base (K:DYN) for temp of current task; Assembler/Loader (changed by M:RES and M:POP)
| initially TEMPBASE + 6.

14 | Buffer pool LWA+1. Assembler/Loader

15 | Bits 11-15 contain number of buffers (0 < n <16). Assemb ler/Loader

Bits 0-7 are reserved for Monitor use and should
be coded as zeros. Bit 8=1 indicates the first buffer
blocked is reserved as a sharable buffer for packed

files.
16 | "Use" bits for buffers in pool (0 if unused). M:OPEN or M:CLOSE
PSD +0 | Interrupt task status flags. Interrupt sequence
1 | Interrupted task P register. Interrupt sequence.
2 | First instruction of current task. Assemb ler/Loader

Remainder of program (the PSD must be contiguous
with the program but need not be contiguous with
the TCB.)

where

ADRL PSD is a poinfer to the Program Status Doubleword. It is the location shown in the dedicated interrupt
location when the interrupt takes place.

R-bit No. for WD is the hexadecimal value (from O to F) that indicates the register bit that identifies the
particular interrupt level within the Interrupt Group (the hardware block of 16 possible interrupts).

T is the flag that indicates whether the M:SAVE and M:EXIT routines should set location 0001 to 0005;
0 means yes, 1 means no. (T must be O if any Monitor service routines are used.)

C is the flag that indicates whether the task is critical (see Glossary); 1 means yes, 0 means no. The default
value is 0. This flag is provided for interpretation and use by the installation; RBM as distributed makes no

distinctions based upon it.

X indicates whether or not the task is to be triggered at load time: T means yes, 0 means no. A code of 7 is
issued subsequent to issuing the code (normally 2, "Arm and Enable") given in word 2.

D when set, indicates that no dismissal on wait 1/O will be performed for this task.

Code is the interrupt system control code that indicates current or desired initial interrupt conirol status.
The codes are 1 = disarm, 2 = arm and enable, 3 = arm and disable, 4 = enable, and 5 = disable, 7 =trigger.

Buffer pool is an amount of space from 1 to 16 buffer areas in length, each of which is equal in size to the
value contained in K:BLOCK.

"Use" bits are bits, from left to right, beginning with zero, showing which of the maximum number of buffers
have been allocated by M:OPEN and have not yet been closed by M:CLOSE.

82

Task Control Block Functions

TEMP BASE - 1 = exloc, specified on
1$ROOT card.
n-word n = temp. specified on
1$ROOT card; first five
words of temp are float-
ing accumulator; sixth
Reserved Area word is used by FIO.
{
TCB Word 0 ADRL Word n : TEMP LIM
1
— Interrupt Information —1 ¢ Supplied on ! $TCB card.
2
3 TEMPBASE Temp Stack FWA.
4 TEMPLIM Temp Stack LWA+1.
5 ,
Reserve for saving con-
12 text of interrupt task.
. . . Initially set to
13 K:DYN (Dynamic Temp Pointer) TEMPBASE + 6,
14 Buffer Pool LWA+1 Set to Common Base.
. Common Base — Last
15 No. Available Buffers Loaded item/K:SEC.
Word 16 Use Bits Initially set to zero.
End of TCB
Word n
| ‘ PSD Reserve || Two-word reserve that
receives the interrupted
task's PSD,
STA TCB+10)
RCPY LA
STA TCB+5 Code to save registers,
P TCB pointers, and temp
RCPYI i P,L -} pointers.
B M:SAVE"
ADRL TCB J
B *4+1
ADRL ENTRY Transfer Address
ENTRY
Foreground Task

Figure 6. Task Entrance Format

Task Control Block Functions 83

In the event of a fatal load error in response to a load
request from a background job stack via an IXEQ or Iname
command, the following message is printed on the DO:

1 IBKGD XE ABORT LOCATION FFFF

If the request came from a queue stack load, the following
message is logged on the DO:

NONRES FGND PGM xxxxxxxx LOAD ERROR

If a program has an initialization routine (that is, an end
transfer address other than absolute or relocatable 0), that
routine is responsible for storing word 0 of the TCB (the ad-
dress to receive the interrupted task's PSD) into the dedi-
cated interrupt location, as well as arming and enabling the
appropriate interrupt level for each task within the program.

The initialization routine may also be used to assign any
specific operational labels required by the program (e.g.,
the operational label or device unit number required) to
read in subsequent segments.

If the program has no initialization routine, word 0 of the
first loaded task (actually word 0 of that task's TCB) will
be stored into the dedicated interrupt location for that task
when the program is loaded. Next, the associated inter-
rupt level is disarmed to remove any waiting interrupts; then
it is armed, enabled, and possibly triggered, depending on
the contents of words 1 and 2 of the TCB.

When a foreground task is activated, control is transferred
to the address given in the dedicated interrupt location,
where the interrupted task's PSD is stored, and execution
resumes at PSD+2 at the level of that foreground program.
This is a hardware function that preserves the interrupt status
and execution location of the interrupted task. Next the
register contents of the interrupted task must be saved.

Normally, the first instruction in a foreground program
will store the contents of the accumulator into word 10 and
the contents of the L register into word 5 of its TCB and then
go to the Monitor service routine M:SAVE which will store
the remaining register's contents into the active task's TCB.
M:SAVE will also store the contents of K:TCB (used exten~
sively by the Monitor to identify the currently active task)
into word 12 of the TCB, and set K:TCB to point to the
active task’s TCB. If the active task requires temporary
storage (word 1, T=0), the contents of K:BASE are stored
into word 11 of the TCB and K:BASE is set to the first word
address of the active task's temp stack. The floating ac-
cumulator is then set to point to the first six cells of the
active task's temporary storage.

When the currently active task has completed all its opera-
tions, it exits through the Monitor service routine M:EXIT
which restores the general register’s contents and resets
K:TCB and, if applicable, K:BASE. M:EXIT also performs
a hardware exit sequence, by which it restores the interrupt
status and the overflow and carry indicators, and returns to
the interrupt task.

84 Foreground Priority Levels and 1/O Priority/Task Dismissal

FOREGROUND PRIORITY LEVELS AND 1/0 PRIORITY

All foreground tasks that have a priority level lower than the
/O priority level and that operate without interrupts inhib-
ited may use the Monitor 1/O routines without any special
restrictions. However, foreground tasks that have interrupts
inhibited or have an interrupt level higher than the 1/0 pri~
ority level must not use Monitor I/O.

The recommended procedure for a task whose interrupt level
is higher than the 1/O priority level is to trigger a task
whose priority is lower than the 1/O priority. This lower
priority task would then perform the required 1/O operations.
Generally, these high-level tasks are for emergency situa-
tions where no 1/O is performed or when the task does its
own 1/O due to special requirements.

TASK DISMISSAL

When the SYSGEN option DISMISS is selected, the resident
M:READ/M:WRITE code is extended so that any foreground

task that elects to wait for on-going 1/O to complete will
be automatically suspended, allowing lower priority tasks

{(e.g., background) to proceed, This is accomplished by

constructing an AIO receiver for the suspended task, which

will reawaken the task when 1/O completes. The implicit

consequences of the scheme are:

1. If the task must forestall lower priority processing, it
must be flagged for "no-dismissal" if 1/O is performed
(see description of TCB "D" bit, above). The RBM con-
trol task is flagged in this fashion,

2, Dismissal is transparent to the task; however, there
is no overlapping of a task's 1/O with computation
while the task is dismissed. Overlapping of compu-
tation and 1/O within a task can only be accomplished
with "no-wait" M:READ/WRITE (and other) service
calls; regardless of whether or not "DISMISS" is
included,

3. Dismissal can occur on "no~wait" 1/O but only when
the requested device is already busy; in which case,
the task will be suspended until the device becomes
free and return will be made after the 1/O is initiated,
Double buffering can be achieved by a "no-wait" Read,
followed by a "WAIT" write from a different buffer,
followed by a "WAIT" check on the original read and
then repeating the process., Such a task will proceed
at the rate of the slower device.

4. By continually accessing only one device, a task may.
prevent lower priority tasks from accessing that device.
Therefore, a foreground task that accesses the system
RAD excessively may effectively suspend background,

AIO RECEIVERS

An AIO Receiver is a means whereby a foreground program
can initiate an 1/O operation, release control to lower
level tasks, and regain control when the 1/O operation is
completed. The AIO Receiver itself is a closed subroutine
which operates at channel end (or zero byte count, if
specified) at the priority level of the I/O interrupt. It is
used in conjunction with an 1/O operation specifying
"initiate only and return" (no wait). Typically, in order
to maximize compute and 1/O overlay, the foreground pro-
gram will issue an 1/O request with the "no wait" option
and specify an AlO Receiver. When the 1/0 operation is
successfully initiated, this foreground task exits from the
active state (by a call to M:EXIT) and is restored to the
active status at channel end by a Write Direct to trigger
the interrupt level (from its AIO Receiver). The next I/O
operation for that device file~number must be a "check"
operation to complete the end-action of the file.

For I/O to RAD files, the AIO Receiver may be activated
before the operation is actually complete. This will happen
whenever a transfer across a disk track boundary occurs,
more than X'IFFF' bytes are requested, or a flawed track

is encountered, The calling task (not the AIO Receiver)

must issue a "check" operation to complete the transfer.

An AIO Receiver specified for the '"check" operation will

be honored,

Special considerations for use of AIO Receivers are:

1. The operation requesting an AIO Receiver is an
“initiate and return" operation. If the device or the
file is busy, the 1/O operation is not initiated and a
busy status is returned. It is the user's responsibility
to determine the course of action to be taken at this
point {(e.g., loop until ready or ignore the operation).

2. If the file being used is a blocked file, an actual 1/0
operation may not be required, hence no channel end
interrupt and no AIO Receiver operation. In this in~
stance, the X register will be set to =1 to inform the
user that the AIO Receiver will not be effective. A
“check" operation is still required on the file before
another I/O operation may be performed.

3. Ifa "check, no wait" is performed on a device that is
busy with some file other than that specified by the
check call, the check operation will be performed
with an implied wait but only until the device is free
for use by the specified file. For example, a busy
status returned on a "check, no wait" operation always
applies to the file specified by the Check call and if
an AIO Receiver was specified, it will be honored.

4, If the AIO Receiver merely retriggers the task that ini-
tiated the operation, a danger exists in that it is quite
possible for the AIO Receiver to operate before the
task exits from its "active" state. Thus, the currently
active task is retriggered, which results essentially in
a no—operation. One means of avoiding this problem
would be to have the AIO Receiver set a flag to inform
the active task that it has run. In this way, the active

task could inhibit interrupts prior to exiting, test
whether the AIO Receiver has already operated, and
if so, restore interrupt status and return to the start of
the task, If examination reveals that the AIO Receiver
has not run, thetask merely exits through M:EEXIT which
will properly restore the interrupt status, Another
means of avoiding this difficulty is fo have the AIO
Receiver trigger a task lower in priority than the active
task. This lower priority task could retrigger the task
initiating the I/O operation, thereby providing a posi-
tive frigger.

The form of the call to the AIO Receiver by the 1/O Inter-
rupt task is

LDA aiodsb (device status byte
from AIO in bits 0-7,
device number in

RCPYI P, L bits 8-12)

B AIO Receiver Address

The AIO Receiver routine must return to the location con-
tained in the L register on entry. All registers are assumed
to be volatile, which means that they need not be saved
and restored to their former contents. Because the AIO Re-
ceiver is processed at the priority level of the /O Interrupt
the processing in this routine should be of very short dura-
tion so as not to interfere with other 1/O operations that
may be in process. See also "End Action" in Chapter 5.

CLOCK1 RECEIVER

Extended zero table location X'1B4' contains a pointer to
the CLOCK] receiver chain. The S24RBM procedure file
equates symbolic reference CLK1RXR to this location,

The receiver is entered at the counter 1=0 level. At entry,
the A register will contain the actual counter 1 =0 reentrancy
count so that if it is desired to avoid repetitive operations
where the counter 1 =0 pulses have effectively stacked up,
the receiver need only test for a change in the contents of
the A register, All registers except A are considered vola-
tile. The SYSGEN specification CLK1FREQ, n specifies the
desired frequency (see SM Reference Manual 90 30 36)
which defaults to 1/10 second but may be set to a value
from 1/100 second to one second,

All receivers connect by first saving the current contents of
the receive location CLKTRXR at their entry address -1 and
then storing their entry address at CLK1RXR,

The delinking process requiresa searchof the receiver chain
for the position within the chain of the delinking task and a
substitution of the delinking's task exit address for that posi-
tion within the chain,

Note that interrupts should be inhibited whenever the chain

is manipulated, The following code might be utilized to
connect and to delink from the chain.,

AIO Receivers/Clock1 Receiver 85

To connect:

INHIBIT R:PSW1

LDA CLKTRXR
STA MYENTRY-1
LDA =MYENTRY
STA CLKIRXR

RESTORE R:PSW1

Assuming tasks A, B, and C had connected in that order to
the CLOCKT receiver, the CLOCK1 receiver chain would
be as follows: .

TASK C EXIT
CLKIRXR —{ TASK C ENTRY

TASK B EXIT
TASK B ENTRY

TASK A EXIT |>Original value of
TASK A ENTRY CLKIRXR

To disconnect:

INHIBIT R:PSW1

LD X =CLK1RXR
SEARCH LDA 0,1

CP =MYENTRY

BNC $+2

B ITSME

RCPY A, X

RADD *Z, X

B SEARCH
ITSME LDA MYENTRY -1

STA 0,1

RESTORE R:PSW1

86 Checkpointing the Background

CHECKPOINTING THE BACKGROUND

A foreground program may require use of the background
area for either instructions or data. A checkpoint feature
is included in RBM to allow access to the background area
by a foreground program by writing any active background
program onto the RAD and extending memory protection to
the background area.

A checkpoint operation is initiated by a call to M:CKREST
with the appropriate option. M:CKREST will return a status
specifying whether or not the request was honored. - The
request will not be honored if the background has already
been either checkpointed by a foreground request or auto-
matically checkpointed as a result of loading a nonresident
foreground program extending into the background. It is
the responsibility of the user to schedule the use of :the
background space by foreground programs. The actual
checkpointing is accomplished either at the priority level
of the RBM Control Task or at the priority of the calling
task. ‘ ’

If the checkpoint is performed at the priority level of the
calling task, a return from M:CKREST with a status of zero
(A =0) indicates that the checkpoint has been performed.
If the checkpoint is to be performed at the level of the RBM
Control Task, the requesting program must exit its "active"
state to allow the checkpoint operation to be performed.
The program requesting the checkpoint would generally
specify a "Checkpoint Complete Receiver", This receiver
is operated at the priority level of the RBM Control Task
when the checkpoint is complete.

The receiver will generally retrigger the requesting pro-
gram fo inform it of the completion of the checkpoint.
Return from the Checkpoint Complete Receiver is to the
location contained in the L registers on entry. All registers
are assumed to be volatile, and need not be saved and re~
stored to their former contents.

When the foreground program no longer requires use of the
background area, it should restart the background task by
a call to M:CKREST with the "restart" option.

7. OVERLAY LOADERS

Two loaders, OLOAD and BLOAD, are provided with RBM,
Functionally, they are quite similar, The two major dif-
ferences are (1) Public Library loading is supported only by
OLOAD, and (2) BLOAD creates aload module one granule
at a time. Thus, OLOAD runs faster than BLOAD, but
BLOAD can load program segments [arger than the available
loading space. In this chapter, statements or paragraphs
applicable only to OLOAD or to BLOAD are indicated

parenthetically.

The Overlay Loaders can be used to create overlay program
load modules for later execution in either the foreground or
‘background. Overlaid programs can be permanently entered
(as a file) into either the system or user processor areas, or
into a temporary overlay file. Since they are stored on the
RAD as an absolute core image, they can be quickly loaded
into memory for execution,

A general overlay structure is illustrated in Figure 7. The
structure is restricted to a pemanently resident root seg-
ment and up to 255 overlay segments, (For background
and nonresident foreground programs, the permanent root
segment is resident only during actual execution.) For fore-
ground programs, the TCB and the initialization routine
(if one is present) must be in the root segment, but data
and instructions can be located in both the root and the
overlay segments,

A Blank COMMON data area can also be established
for use by the root and overlay segments,

Each segment is created by the Overlay Loaders from one
or more object modules (assembly language, FORTRAN,
or RPG output). The control commands required to create
the overlay segments are defined in this chapter. During
execution, the Monitor service routine M:SEGLD is used to
control both the loading and the transfer of control between
various segments,

The overlay segments must be explicitly defined at load
time and explicitly called at execution time. There is no
provision for automatically calling in a new overlay seg~
ment by a subroutine reference. However, the subroutines
on a particular path may communicate with each other, with
the restriction that it is the program’'s explicit responsibility
to ensure that any subroutine referenced is currently in
core,

The Overlay Loaders accept input in Xerox Standard Object
Language from predefined, prepositioned files, and prepare
output in absolute core~image form on the RAD fo be read
by the RBM Loader (M:LOAD) for later execution in either
foreground or background areas, If a resident or nonresident
program can tolerate a loading delay of 20 to 100 milli-
seconds, foreground or background programs of virtually
unlimited size canbe constructed by the use ofoverlays de-
spite limitations in available core storage.

In creating core images on the RAD, the Overlay Loaders
perform the following functions according to user options:

e Satisfy extemal reference/definition linkages and re-
solve forward reference and displacement chains,

e Search specified libraries for unresolved references and
load these selected routines into core memory,

o Build the OV:LOAD table for the loading of overlay

segments,
o Write the overlay cluster onto the OV file,
o Allocate COMMON,

e Allocate temporary storage stacks,

e Create a Task Control Block (TCB) and initialization
information.

o Create the Public Library and associated transfer vectors

(TVECT)(OLOAD only).

e Output maps of segment names and addresses, external
definitions, and information concerning COMMON and
temporary areas to the LO device.

e Allocate, initialize, and satisfy reference linkage for

Labeled COMMON,

OVERLAY CLUSTER ORGANIZATION

The overlay cluster is the collection of absolute overlays
formed by the Overlay Loaders from relocatable binary ob-
ject modules. (Note that the Loaders do not accept an
absolute load origin in any input module.) An overlay
cluster usually consists of two principal sections: the root
segment and the overlay segments although it may consist
of only a root segment. Each segment consists of one or
more binary modules and associated library routines, Over-
lay segments are numbered in any order by the user, except
for the root segment, which is always designated as seg-
ment O, Those segments in core memory at any one time
form a path, An overlay cluster with several paths is shown
in Figure 8, Segments are shown as horizontal lines and,
in this example, are numbered in the order in which they
are built by the Overlay Loaders, Note that a given node,
each path associated with a branch must be completed before
a new branch is connected to this node.

The overlay cluster shown in Figure 8 consists of a root and
segments 1 through 15, Segments 0, 1, 3, 4, 5, 6 constitute
a path. On the RAD or disk pack the root is preceded by
a file header, one RAD granule in length, that contains in-
formation by which the RBM Loader M:LOAD can correctly
read the root. The root is resident at all times during exe-
cution of the overlay program and contains information
(OV:LOAD table) for loading of the remaining overlay
segments,

Overlay Loaders 87

[! | N
| I I N
| | | |
I
l Overlay Segment n
I
' .
I Blank
| ' COMMON
Root Data
(Segment Overlay Segment No. 3
No. 0) Area
| Overlay Segment
| No. 21
' Overlay Segment No. 2
| Overlay Segment
| No. 22
i I
| Overlay Segment No. 1
I i |
I | I !
I | !]
I ! | !
| Root Area l Overlay Area I COMMON |
| l Area |
| ' l {Optional) |
I I | l
| I 1 I
| ! 1 |
_ I |
| [l I
I | l !
: | ' I
I I | I
Low Core High Core
Figure 7. "General Overlay Structure Example
88

Overlay Cluster Organization

‘Li
] 6
5 '
4 7
3 8 ,'
0 9 I
|_. 1
10 L,
12 ! r
11 14 X
13 '
15 .
i

Figure 8. Sample Overlay Cluster Configuration

When' first defined along a path by an object module,
Labeled COMMON will be allocated preceding that mod-
ule, Should the same Labeled COMMON be subsequently
defined by another module, the area prescribed should be
no greater than that already allocated, and reference to
the initial definition will be provided. Allocated space for
Labeled COMMON is cleared to zero entries except where
data is provided by modules of the same segment {(or root),
An XSYMBOL subroutine may access Labeled COMMON
via an external reference (REF or SREF) if the Labeled
COMMON is defined in a previously loaded module.

Library modules of the root may not initialize Labeled
COMMON allocated in the program portion of the root,
The number of Labeled COMMON blocks associated with
a module is limited to 40,

Communication between segments by extemal reference/
definition linkages is subject to the following restrictions:

1. No segment in a path may reference a segment in an-
other path.

2. The user must ensure that all communicating segments
are in core memory during execution.

3. Because the Overlay Loaders will satisfy a linkage only
within a path, identical references and definitions
may be used in different paths that do not contain a
common segment, However, the user must avoid refer-
ences to the same definition in different higher leve!
segments,

4, Library search procedures for a User or System Library
restrict the use of unique library DEFs and REFs to a
maximum of 300 along any path of the program,

5. Forward references in library modules of the root are
disallowed, and it is suggested for good programming
practice that User Library programs not make references
outside the library realm,

To satisfy any remaining unsatisfied primary references, the
Overlay Loaders search the following libraries in the spec-
ified sequence:

1. Public Library
2. Monitor Service Routines
3. Basic or Extended Library (optionally)

4, Main Library

CORE LAYOUT DURING LOADING

Background memory during the operation of the Loader is
divided into four areas:

1. A fixed area large enough to contain the background
temp stack, the Loader root, and the Loader overlays,

2, The segment table, fixed at 10(n+1) where n equals the
number of segments,

3. In OLOAD, a dynamic area in which the segment is
loaded. In BLOAD, a fixed (granule sized) length block
for segment loading.

4, A dynamic area containing the symbol tables (allocation
is five to eight words per symbol).

If areas 3 and 4 overlap at any point in the load process,
overflow occurs and loading aborts,

OVERLAY LOADER OPERATIONAL LABELS

The Overlay Loaders reference the operational labels listed
below, Some assignments are user-defined, while others
are handled internally by the Job Control Processor or by
the Loaderitself. All other operational labels referred to an
ISLD cards must be assigned and positioned by the user prior
to the !OLOAD or !BLOAD command,

Label Explanation

ccC Control commands, If a KP key-in is in effect,
control commands are read from OC,

DO Diagnostic messages, The default assignment is
that given by the Job Conirol Processor on read-
ing a 1JOB card,

GO Sequential-access file that contains object mod-
ules to be processed by the Overlay Loaders,
Object modules are written onto GO by a pre-
ceding processor, The Loaders rewind GO ini-
tially, and also after loading is completed, GO
receives a default assignment by the Job Control
Processor to the permanent file RBMGO in the
System Data area,

.Core Layout During Loading/Overlay Loader Operational Labels 89

{f:]

.
.

[flfz]REF etc.

.

REF

*SEGMENT

*SEGMENT

*ERRSEV = XxxXx

*END MAP

Label Explanation Label Explanation
LO Maps. 1D execution time., If the user éssigns ID, the
N . . (cont,) assignment must be for a packed file that has a
L1 Assigned intemally for file I/0. record length of five words, By default, ID is
LL Log of control commands, assigned by the Job Control Processor to RBMID
-sector file) in th tem D .

OoC Abort messages and Overlay Loader messages that (a one-sector file) in the System Data area
require operator attention. Control commands
are read from OC if a KP key~in is in effect. MAP

oV Output file (random format) for the Overlay .

Loaders containing the completed overlay cluster. Three types of maps may be output to the LO device fol-
If the user wishes to have the overlay cluster in fowing PASS2, according to one of three Map control
a permanent file, he must key in SY (for write- commands that may be input: a Short Map (I$MS), Long
protected files)and assign OV fo that permanent Map (¥$ML), or Program Map (F$MP). If no Map control
file, By default, OV is assigned to the permanent command is specified, no map will be output.
file RBMOYV in the System Data area,

: Fi 9 sh .

PI Used for loading the Overlay Loaders' own over- Ure 7. Shows the format for a Long Map. Note that
| Pl ianed by the Job Control P DEFs in the Permanent Symbol Table are mapped after
ays. Flis assigned by the Jobt.onirol Trocessof. the Overlay Task line. The format for a Program Map

X1 Temporary RAD or disk pack scratch file contain- would be the same as the Long Map except that library
ing the symbol table for each segment. X1 is and Permanent Symbol Table symbols are suppressed. The
assigned by the Job Control Processor, lines of the map that are flagged with an asterisk (*) show

' . the format and output of a Short Map {in an actual Short
D An optional operational label used to write the Map no asterisk would appear in the “Sf»ing). A definition
idents of nonlibrary programs for use by Debug at of each item of the map is included in Figure 9.
*MAP
FO :
*OVERLAY TASK {BA} ORG = xxxx HLLOC = xxxx CBASE = xxxx CSIZE = xxxx UMEM = xxxx SECT = xxxx
*ROOT ORG = xxxx LWA = xxxx LEN = xxxx TRA = {S:SE} SEV = xxxx OV:LOAD = xxxx
L S|{B
[fl] DEF symbol {I} UI{E yyyy DEF symbol...etc.
P} M
L Si B
[flfz]REF symbol [11 Ut{E zzzz REF symbol...etc.
PJ M
*SEGMENT IDENT NODE ORG LWA LFN TRA SEV
KXXX XXXX XXXX XXXX XXXX XXXX XXXX
DEF etc.

“Figure 9. Long (Load) Map Format

90

Overlay Task Keywords

where header keywords have the following meaning:

ORG

HLLOC

CBASE

CSIZE

UMEM

SECT

Root Keywords

ORG

LWA

LEN
TRA

SEV

OV:LOAD

General Keywords

fify

DEF
REF

symbol

First word address of the Overlay Task area. It is the FWA of the Temp stack.

Last word address of longest segment.
Base of Blank COMMON.

Largest Blank COMMON size encountered,

The number of locations between the end of the longest path, and either the beginning
of Blank COMMON or the end of the assigned task area,

The number of sectors required to store entire overlay cluster.

FWA address of the root. In the foreground, this is assumed to be the address
of the TCB; in the background, it is the FWA of the root.

Last word address of the root segment. The area from ORG to LWA includes
the root code and the OV:LOAD table (and in the foreground, the TCB).

LWA-ORG+]1.

Background — last end fransfer encountered on a module used to form the root. If there
is no transfer address, 'NONE' is output.

Foreground — the entry address of an initialization routine that arms and optionally
triggers interrupts at run time. If the Loader builds the TCB, it is assumed that no
such initialization exists and TRA=NONE.

Error severity encountered during loading binary modules. Taken from the END item of
the binary module.

Address of the OV:LOAD table.

Error and identifier flags preceding external definitions and references. Possible flags
are:

D Double definition or reference.

LC Labeled COMMON

(DEF) — a definition declared, but given no value.
(REF) — reference unsatisfied in this path.

Primary reference.

“w W C C

Secondary reference.
An external definition.
An external primary or secondary reference.

DEF/REF name of one to eight EBCDIC characters.

Figure 9. Long (Load) Map Format (cont.)

21

General Keywords (cont.)

L/1
S/u/p
B/E/M
Yyyy

zzzZ

Segment Keywords

Library or Input REF/DEF.
System, User, or Public Library.
Basic, Extended, or‘Main mode.
Value of a DEF.

The number of the segment in which this reference was satisifed. For unsatisfied
references, zzzz is blank.

IDENT Numerical identifier of this segment as found as the first parameter on the 1$SEG card.

NODE The numerical identifier of the segment to which this one will be attached. If NODE
is the root, 0 is output.

ORG Beginning location (execution) of this segment. The point in core at which loading
begins. The first reserves before data in a segment are not output.

LWA LWA of this segment. Includes areas defined by RES and ORG.

LEN LWA-ORG+1.

TRA The last encountered transfer address is placed as an entry point in the OV:LOAD table
for this segment.

SEV Same as for ROOT.

ERRSEV Total error severity for loading process. If any SEV > 0 or there are unsatisfied primary
references, ERRSEV=1. Only in forming a PUBLIB do double DEFs or unsatisfied secondary
references cause ERRSEV=1, Errors in the input binary may cause ERRSEV=2,

END MAP Completion of loading process.

Figure 9. Long (Load) Map Format (cont.)
Certain reserved DEFs will be output by the Loaders, These CALLING OVERLAY LOADER
are:
The Overlay Loaders are requested via an !OLOAD or
P:FWA Program First Word Address IBLOAD command which causes the root segment of the

P:LWA Program Last Word Address
P:TCB Primary TCBFWA (if the Loader builds the TCB,

Loader to be read into core memory from the RAD, The form
of the command is

otherwise, not generated) IOLOAD [segments, {g} ,$,D, X, emn][,R]

P:RLWA Root Last Word Address is an overlaid program
(suppressed for root-only programs)

or

IBLOAD [segments, {E} S, D, X, emn][, R]

These are treated as external definitions and may be refer-

enced by the program, where

t d tes th b f ts i
P:LWA and P:RLWA are restricted todefinition by the Loader, segmz: esrlo CT::::,S I? ..::mm::“:., ?:g:; etnss eI:i ﬂﬂ;;
User definition of these symbols will result in indeterminate a zeroyis used .denoﬁn: that only a roofpsegmen;

r

results, They may, of course be referenced by user code. is to be loaded. The value of the segments param-
P:FWA and P:TCB may be user defined, but they will be eter may exceed the actual number of segments to
flagged as duplicates and otherwise ignored, ' be loaded.

92 Calling Overlay Loader

ForB specifies either a foreground (F) task or a
background (B) task, The default case is
background.

S specifies a step mode of loading to be used for

paper tape input.

D indicates the ident of each nonlibrary module is
to be written to operational label ID for use by
Debug at execution time,

X indicates that the Loader is to abort the job if a
severity error greater than zerois encountered dur-
ing loading. The loading procedure is completed
and the map is output,

cmn for background tasks, cmn denotes an optional
Blank COMMON size, For foreground tasks, cmn
denotes a base for Blank COMMON. A check is
made at the end of the load to determine whether
the Blank COMMON allotment overlaps the root,
If it does, the warning message $$ ERR CO is
printed but no error severity level is set,

R for foreground tasks only, specifying this param-
eter causes only the root size to be entered into a
sector header (OV:LOAD table) instead of the pro-
gram's longest path,

This action is intended for the use of a foreground
program that only occasionally uses a large data
buffer. A program of this nature can reside in
foreground without checkpointing background until
such time as it requires background space. Caution
must be exercised in the use of this parameter,
since the background must be explicitly check-
pointed and restored, when necessary, by the fore~
ground task,

When the step mode of loading is defined, the operator is
notified after the loading of each module from paper tape
by the message

HIBEGIN WAIT

Depressing the console interrupt button and keying in an S
will initiate either the loading of the next module from the
paper fape unit or the reading of the next control com-
mand. An X response causes the loading process to abort.

In allocating COMMON for background programs, the
Overlay Loader compares the cmn parameter with the first
nonzero COMMON size allocation value encountered in
loading and employs the larger of these two values. The
COMMON base is set by subtracting the COMMON size
from K:UNAVBG.

BLANKCOMMON ALLOCATION IN FOREGROUND LOADING

For foreground loads, the Overlay Loader allocates Blank
COMMON and blocking buffer pools in accordance with
the rules delineated in Table 19,

Reading an IEOD control command causes the Overlay
Loader to satisfy forward references, output any specified
map, close files, and return control to RBM via M:TERM.
The form of the command is

IEOD

CONTROL COMMAND FORMAT

Except for the OLOAD and [BLOAD commands which are
read by the Job Control Processor, the Overlay Loader
control commands are read from the CC device under Loader
control, unless a KP key-in is in effect, in which case con-
trol commands are read from the OC device. The general
format of control commands is

! $mnemonic parameter

where

! identifies the record as a control command.

$ indicates that the control command is unique to
the Overlay Loader.

mnemonic is the code name of an Overlay Loader
control command and begins immediately following
the 1$ characters.

parameter is a series of optional or required param-

eters unique to the specific command.' The formats
of parameters are (1) a decimal integer of up to
five positive numbers but having a value less than
32,767; (2) a hexadecimal string of the form
dxxxx; (3) an EBCDIC string of up to eight char-
acters but not exclusively characters 0 through 9;
or (4) a string of the form EBCDIC string £ hexa-
decimal number. V

From one through eight blanks are permitted between the
mnemonic and the first parameter. If more than eight
blanks are detected, the parameter list is considered empty.

The only allowed delimiter between parameter fields is a

comma; no embedded blanks are allowed in or between any
fields. A single blank terminates the parameter string.

Two successive commas indicate an empty field. Com-

ments are allowed on a control card.

CONTROL COMMAND REPERTOIRE

BLOCK The 1$BLOCK control command will allocate
blocking buffers from unused memory space as requested

Control Command Format/Control Command Repertoire 93

Table 19. Foreground Load Blank COMMON Allocation

Program Type cmn Specification CBASE Program Limit BB Pool End -
Resident Foreground < Program origin cmn FGLWA ISBUFEND (required)

> Program origin cmn cmn I$BUFEND (required)

Not specified FGLWA-CSIZE CBASE V$SBUFEND (defaults to CBASE)
Nonresident < Progrdm origin cmn BGLWA I$BUFEND (required)
Foreground > Program origin cmn cmn I$BUFEND (required)

Not specified FGLWA-CSIZE CBASE 1$BUFEND (defaults to CBASE)
Nonresident < Program origin cmn BGLWAT 1$BUFEND (required)
Foreground with > Program origin cmn ~cmn | 1$BUFEND (required)
R Option Not specified BGLWA? CBASE 1$BUFEND (required)
where

CBASE is the first word address of COMMON.

CSIZE is the size of the first COMMON declaration encountered.

FGLWA
BB POOL END

BGLWA is the last word address of background.

cmn is the COMMON specification parameter on the 1OLOAD command.

is the last word address of foreground (K:BACKP-1).

is the blocking buffer poo! last word address plus 1.

"If Blank COMMON is encountered in the root, a waming is issued ($$ ERR C1), CBASE is set to FGLWA~CSIZE and the

R option is ignored,

t
If the root exceeds FGLWA, a warning is issued and automatic checkpoint will occur at program core-load time.

either by a count or by defining operational labels that
may require blocking buffers at run time. The list of such
labels along with limits of available memory will be passed
via the file header to M:LOAD, which will allocate a
blocking buffer pool at run time. The pool will be uti-
lized dynamically to provide blocking buffers in cases
where a call to RBM routines M:READ or M:WRITE is not
preceded by a call to M:OPEN. A call to M:CLOSE may
release any such buffers. Thus, if two operational labels
were to use a blocking buffer area at different times, the
first might release the area for use by the second. Only
one of the two labels would be required on the 1$BLOCK
command.

M:LOAD checks which of the operational labels are as~
signed to block files at run time to make the pool alloca-
tion. If such an allocation overflows the available memory
space (between the end of the longest path and COMMON),
the execution aborts. However, the user may define his
own blocking buffer by specific calls to M:OPEN. Such
an area should be in a reserved area of his own path. He
should not use the dynamically allocated pool area, and
blocking buffers may not be allocated in temporary stacks.

94 Control Command Repertoire

Only one !$BLOCK command is allowed in a single job
step, except when used with multiple !$TCB commands.
The format of the 1$BLOCK command is

oplby [,oplby, . . .,0plb,]

I$BLOCK{ALL [.s]
¢ :
where
oplb; defines an operational fabel (which is a two-

letter mnemonic or a FORTRAN device unit num-
ber;e.g., Bl, SI, F:106, The oplb; parameter may
not be a device-file number or file name, The
oplb must be assigned to a blocked file, Only 10
operational labels will be read; additional oneswill -
be ignored. In lieu of operational labels, the user
may provide a count (c)of blocking buffersrequired.

ALL results in the entire area of unused memory
(UMEN) being used as blocking buffers to a maxi-
mum of 16,

c defines a count of buffers required to a maximum
of 16,

S indicates that the first of the indicated buffers is

to be set aside as sharable by packed random files
(see "Blocking Buffers", Chapter 5).

BUFEND The !$BUFEND command must be used to
specify the LWA+1 of the blocking buffer pool for fore-
ground loads if required by the rules specified in Table 19.
Only one !$BUFEND command applies during a load se~
quence, Buffer requirements must be specified by an
1SBLOCK command, The lack of buffer specification, or
overlap with COMMON, program, Public Library, or Monitor
areas will cause an Overlay Loader error message ($$ERR BU),
The format of the command is

loc
CB
PP
BL
NL
RL
PF |

1$BUFEND

where

loc is a decimal or hexadecimal address,
CB indicates that pool LWA+1 = CBASE.

PP indicates that pool LWA+1 = program LWA plus
pool size,

BL indicates that pool LWA+1 = BGLWA,

NL indicates that pool LWA+1 = nonresident
FG LWA,

RL indicates that pool LWA+1 = resident FG LWA,
PF indicates that pool LWA+1 = program FWA,

See also "COMMON Allocation for Foreground loading. "

LIB The !S$LIB control command specifies the library
search sequence for the entire load process, or from that
point in the OLOAD control command sequence at which

it occurs, If the ISLIB command is not present, OLOAD
follows the default case (Basic System Library search), The
format of the command is

I$LI B[m X [,y]] [,N P]
where
m specifies the search mode and is one of the fol-

lowing EBCDIC codes:

Code Search Mode

B Basic {and Main)
E Extended (and Main)
M Main only
x[ry] specify the order of search, and are either of

the following EBCDIC codes:

Code Library

S System
U User

The order in which x and y are specified deter-
mines the order of library search, If only x is
specified, y will not be searched.

NP specifies suppression of Public Library linkage
if the I$LIB command precedes a I$ROOT com-
mand. If the NP parameter occurs on a LIB com-
mand following a ISROOT command, or in a
PUBLIB load, NP is ignored; any other param-
efers in the command are inferpreted as described,
however.

An ISLIB command with no parameters or with only the
NP parameter will suppress nonresident library search from
the point of ifs occurrence in the OLOAD control com-
mand stream.

MS,ML,MP The Map control commands specify that
map information is fo be output on LO. The three forms
of map commands are shown below.

If the 1$MS (Short Map) control command is specified, only
root and segment headers will be output. Also output is a
summary containing the origin of the overlay program, the
length of the longest path, temp stack size, memory that is
available for the blocking buffer pool, and the COMMON

base. The format of the command is

1$MS

Control Command Repertoire 95

If the !$ML (Long Map) control command is specified, the
short map plus external references and all external defini-
tions and their values including the libraries and permanent
symbol table are output. Double definitions, and definition
declarations that were not given a value are flagged D
and U, respectively. Unsatisfied primary references are
flagged with UP, unsatisfied secondary references with US.
The format of the command is

1$ML

The output of the |$MP control command is identical - to
that of 1$ML, except that library definitions and references
and the permanent symbol table are suppressed. The format
of the command is :

SMP

If relevant, information concerning the Public Library is
also mapped.

TCB The I$TCB control command indicates (for a fore-
ground task only) that the Overlay loader must create a
TCB and reserve a PSD location, and must generate a call
to RBM routine M:SAVE. M:FSAVE will be called if the
set multiple precision mode exists. In addition, information
to initialize the TCB at run time will be passed in the file
header. If no 1$TCB command is present, it is assumed that
a TCB has been assembled into the root segment. Since the
background TCB lies in protected memory, it cannot be as-
sembled into the root of the background overlay cluster, but
the necessary informationis passed by the Loader to M:LOAD
via the file header. Therefore, the TCB option applies to
foreground tasks only. Multiple 1$TCB commands may be
used internal to the root program. Each [$TCB command
would connect a separate interrupt function to the root pro-~
-gram and be followed by 1$LD commands to load associated
modules. The !$TCB may be followed by a 1 $BLOCK com-
mand that would identify independent buffer blocks with its
function. Individual temp stacks will be reserved by other
than the initial 1$TCB command that must precede the
1$ROOT command. The format of the command is

1$7CB Wy W, [,femp]

where
are the values to be placed in words 1 and 2

w],w
o% the created TCB (see "Real-Time Programming, "

Chapter 6).

temp defines the size of the temporary stack to be
reserved for a TCB other than the initial TCB.

96 Control Command Repertoire

The Overlay Loaders will handle specific and default cases
of program execution and TCBinitialization within the frame-
work of the following restrictions:

o The Overlay Loaders define all background Task Con-
trol Blocks completely, using the value of the temp
parameter on the !$ROOT card, load information, and
the 1$BLOCK parameters.

o In foreground tasks, if the user assembles the TCB as
part of the program, it either must contain all informa-
tion as data or as external references satisfiable at
load time, or be initialized by the task itself. A trans-
fer address is assumed to be a transfer to an initializa-
tion section that will do any required housekeeping,
arming, enabling, or triggering the task. If no trans-
fer address exists, M:LOAD will arm and enable and,
optionally, trigger the task using information in
words 1 and 2 of the TCB.

e If the Overlay Loadersinitializes the TCB by means of
the TCB parameters, they do so completely, using load
information and values on the !$TCB and ! $BLOCK
cards. No partial initialization of a TCB is allowed
with the exception of the blocking buffer pool. If a
user builds his own TCB, the TCB must begin at the
execution location plus the "temp" value specified
on the 1$ROOT command. ‘

e For foreground tasks for which the Loader builds a TCB,
the Loader will create the PSD reserve and a call to
M:SAVE. The user's root is then entered either at the
location specified in the transfer address, or at the
FWA of the root when the transfer address is missing.
The map will indicate a transfer address of "NONE"
for the root.

e Where multiple 1$TCB commands are used within the
root program, the transfer address for the program is
established by the modulespreceding a second use of the
1$TCB. FORTRAN generated programs do not provide
a transfer address. If no transfer address exists, each
subtask within the root program will be initialized by
M:LOAD using the information in words 1 and 2 of
their respective TCB. If a transfer address is provided,
M:LOAD will not initialize any subtask.

The user exits with either a call to the RBM routine M:EXIT
or by a standard exit procedure.

Public Library routines and Monitor service routines called
by the user program will require temporary storage areas
that are dynamically allocated at execution time. These
temporary storage areas mustbe allocated in a fixed storage
stack that is reserved by the Loader at load time on the
basis of the temp parameter on the I$ROOT control com-
mand. In addition, the Loader will insert in the TCB the
first and last word addresses of the area.. The temp area
will be allocated preceding the root segment. It need not
be a reserve in the module.

For more information on initialization and structure of

TCBs, see Chapter 6,

ROOT The 1SROOT command specifies that the modules
that follow it constitute the root segment of the overlay
cluster, A 1SROOT command must precede all 1$SEG com-
mands, and may be followed by !$LD, ISINCLUDE,
I$EXCLUDE, !STCB, ISLCOM, ISRES, !$MD, !$LIB, and
I$LB commands, which cause the loading of those modules
that form the root segment. Loading of the root will begin
at the first cell following the temp stack for the background
task, An execution bias may be specified. The user must
ensure that the root segment, exclusive of any library load-
ing, is less than 32K bytes. The root and its library are
written as two records, Therefore, the library portion of
the root may also be a maximum of 32K-1 bytes, which
gives a maximum root size of approximately 32K words, The
format of the command is

ISROOT [temp,exloc,oplb,n] [,DT]

where

temp defines the size of the overlay cluster's tem-
porary stack needed for the largest possible nesting
of Public Library and Monitor service routines.
The default size is 80 cells, If a TCB has been
assembled into a foreground program, zero should
be used for temp.

exloc specifies the beginning location of the area
in memory that the overlay cluster will occupy at
execution time. The default case is K:BACKBG
for a background task and K:NFFWA for a fore-
ground task, The temp stack will be allocated at
exloc.

oplb,n specifies that n modules are to be loaded
contiguously from the operational label oplb,

DT specifies that calls to M:PUSH, M:PUSHK,
M:PUSHC, M:PSHC, and M:RES are modified to
dynamic-temp storage (in the calling sequence,
“ADRL temp" is changed to "DATA 0", and trail-
ing reserve is stripped). This is done only for
those ROMs (including library modules) loaded by
this command,

Note that if the oplb parameter is absent, !$LD (Load) or
I$SINCLUDE control commands must follow !$ROOT to
specify loading. If oplb is present but the n parameter
is not, loading proceeds from oplb until an EOF status
is encountered.

LD The !$LD control command identifies one or more
modules to be loaded as part of a segment, Each input file
must be ordered in the same sequence as the !$LD cards in
the control stack accessing that file. The Overlay Loader

reads only relocatable binary modules from the GO file and
other input files specified on I$LD, 1$SEG, and I SROOT
cards. All files must be pre-positioned (GO is rewound by
the Loader), and the modules must be in the same position
on each file as calls on that file. The use of the IDNT on
the I$LD card ensures the loading: of the proper module.
Note that the file must be positioned to the proper moduie
in the file when the Loader reads from that file. Since
there are no file-positioning control commands recognized
by the Overlay Loader, each file must be constructed in
correct sequential order. The form of the command is

ISLD [0p|b][,{‘de"*}][,DTJ

nm

where

oplb is the operational label of the medium from
which the binary module is to be loaded. The
default case for an empty field is GO. 4
ident . . .
[} ident is an EBCDIC representation of the
nm IDNT of the program to be loaded. It is
used for checking purposes only. If nm is speci-
fied, it indicates the number of modules to be
loaded from oplb; no check of any ident is made.
If this parameter is an ident, one module is

loaded. If empty, loading proceeds until an EOD
is encountered. :

DT specifies that calls to M:PUSH, M:PUSHK,
M:PUSHC, M:PSHC, and M:RES are modified to
dynamic-temp storage (in the calling sequence,
"ADRL temp" is changed to "DATA 0", and trail-
ing reserve is stripped). This is done only for
those ROMs (including library modules) loaded by
this command.

LB The !1$LB command controls the search of libraries
(for this segment only) to satisfy external references en-
countered during the loading of modules forming the seg-
ment. If the 1$LB control command is omitted, the
Overlay Loader will first attempt to satisfy all references
by definitions in other segments of that path or from the
root, and then will search the libraries specified by 1$LIB
or by the default case. Individual !$LB cards supersede
IS$LIB or default for that segment only. Libraries are
searched only on occurrence of a 1$SEG or !EOD control
command. 1$LIB and !$LB cards only set the mode and
sequence of search. Only libraries on the RAD or disk pack
may be loaded selectively using the I$1B command. To

Control Command Repertoire 97

input "library” programs from other media, the user must
use standard 1$LD commands. The format of the com-
mand is

I$1B m,x [,y]

where

m specifies the search mode and is one of the fol-
lowing EBCDIC codes:

Code Search Mode

B Basic {(and Main)
E Extended (and Main)
M - Main only

x[,y] specify the order of library search and are
either of the following EBCDIC codes:

Code Library
S System
U User

If y is not specified, only x will be searched.

There are no default values for m, x, ory.

INCLUDE The 1$INCLUDE control command specifies
external definitions in those library modules that are to be
loaded with this segment, even though they are not refer-
enced in the segment. Their definitions will be included
in the Symbol Table for use by higher-level segments.
More than one !$INCLUDE command may be used. Li-
braries are searched according to a preceding ! $LB or I$LIB
card or the initial default case. The format of the com-
mand is

1$INCLUDE defl[,defz, .o.def]
n

where def; is an external definition of a library program to

be included in the segment.

EXCLUDE The 1$EXCLUDE control command inhibits
library search and linkage for the named definition(s) even
though an external reference occurs in a module of the seg-
ment. The format of the command is

1$EXCLUDE def],defz, . ,dei:n

where def. is the external definition for a library routine
that is not defined along the current path. If defi is one
of several definitions associated with a specific library

98 Control Command Repertoire

program, then excluding the one def is sufficient to fore-
stall loading of its associated library module.

MD The 1$MD (modify) control command is used to
change core locations at load time before the absolute
overlays are written out onto the OV file. 1$MD commands
must be inserted within a SEG sequence and apply only to
the segment being loaded. A check is made that the
effective address of the 13SMD command lies in the segment
and that any labels used are defined for the path the seg-
ment fies in. The Overlay Loader aborts if the modifica-
tion location lies outside the limits of the segment. In-
serted values are not tested for range. External symbols
{definitions) used in loc or value must have been previ-
ously defined. The format of the command is

1$MD loc, value[,volue],voluez, - ,volueq]

where

loc specifies the execution location of the first
modification, relative to the FWA of the current
segment.

value, is the hexadecimal quantity to be inserted
af loc +i (for example, value is inserted at loc,
volue] at loc +1, etc.).

Both the loc and the value; parameters are subject to the
restrictions set forth in "Control Command Format, " i.e.,
hexadecimal notation must be indicated by a leading + or -,
Note that it is not possible to modify alibrary module by use
of an 1$MD control command,

RES The IRES control command allows the user to re-
serve an area at the end of the segment (root) program for
run-time patching. The format of the command is

I$RES def,size [,def,size] yee [,def,size]

where
def is the name of the area to be reserved.
size is a decimal value specifying the number of -

words in the reserve area.

LCOM The 1$LCOM control command allows the user
to allocate labeled COMMON blocks within a segment
(root) program. 'The format of the command is

1$LCOM block,size [block size]. . . [,block,size]

where

biock is the one-to-eight character EBCDIC name
of the labeled COMMON block. '

size is a decimal value specifying the words to be
allocated for the block.

SEG The 1$SEG control command defines the modules
that will form a segment. Numbers used to define a seg-
ment must be unique. Segment identifier numbers need not
be consecutive. A segment, including its library, is re-
stricted to a maximum of 65,534 bytes provided enough
background is available.

Each 1$SEG or 1$ROOT control command may be followed
by 1$LD, !$MD, ISINCLUDE, !$LIB, and }$LB commands
to load the modules to form that segment. The loading for
a segment terminates on a new !$SEG control command.
The control commandstack is terminated by an IEOD. The
user may defer the loading of a specific library routine
through the application of the |$EXCLUDE command. The
Loader will attempt to satisfy all references present at a
level from the libraries specified on I$LB, 1$LIB, and
ISINCLUDE commands or from the default library case. A
given library is searched only once per segment. The
format of the command is

1$SEG si,snf,oplb,n] [,DT]

where
si is a number less than or equal to X'FF' used fo
identify the segment being loaded. It will be
used to call the segment at run time.
sn is the number of the segment to which this seg-
ment is attached.
oplb,n specifies that n modules are to be loaded

contiguously from the operational label oplb.

DT specifies that calls to M:PUSH, M:PUSHK,
M:PUSHC, M:PSHC, and M:RES are modified fo
dynamic-temp storage (in the calling sequence,
"ADRL temp" is changed to "DATA 0", and trail-
ing reserve is stripped). This is done only for
those ROMs (including library modules) loaded by
this command.

The following rules should be observed in defining segments
for the overlay cluster: :

1. In OLOAD, the longest segment must fit into core with
the Loader and- its tables, If a segment is too long, it
may be reassembled as two modules and loaded as two
segments,

In BLOAD, segments (and the root) are loaded one
granule at a time, so that all background (less the
space required by BLOAD and its tables) is available
for symbol tables,

2. The loader will first attempt to satisfy library refer-
ences using the Public Library and then will search the
appropriate libraries on the RAD or disk pack. Using
the 1$INCLUDE command, other often-used library
routines can be loaded with the root where they will
be accessible to all segments. However, library routines

loaded in any segment will be accessible only to
segments in the same path,

3. Where segment content {not the root) is preceded by
reserve area, such area does not consume space during
the loading process, However, if a Labeled COMMON
block is initially defined by the first module of a
segment, it is considered a data area that will precede
all reserve areas which will consequently consume space
during Loader processing.

PUBLIB (OLOAD only) The 1$PUBLIB control command
indicates that the Overlay Loader is to create a Public Li-
brary using modules that follow and/or modules from selected
libraries. The Public Library isbiased atthe location specified
in K:PLFWA of the RBM zero table. Each symbol is flagged
as Extended, Basic, or Main according to control information
on the ISPUBLIB card. However, a library may contain

routines of more than one mode. Such identical definitions
of different modes are differentiated in the Symbol Table
(LIBSYM) and are not considered duplicate.

When library routines are part of the Public Library, they
must be reentrant and therefore must use the dynamic tem-
porary stack (specified as the temp field on the I$ROOT
command) for their temporary storage space. The loader
will change the calling sequences of any calls to M:RES,
M:PUSH, M:PUSHK, M:PUSHC, or M:PSHC to indicate dy-
namic temporary stack; and will delete trailing reserve from
ROMs containing these calls.

A severity level of 1 is set if unsatisfied references or
double definitions are encountered during the loading of a
Public Library, and the library will not be written onto the
PUBLIB file. When a Public Library is being created, the
Overlay Loader creates a new Public Library on the RAD
or disk pack. The Public Library just loaded is written
onfo the PUBLIB file in the User Processor area. The total
length of the Public Library must not exceed 9191 words.
The Monitor Services Transfer Vector (TVECT) file is read
from System Processor area, and the Public Library section
is updated and written onto TVECT. A new Public Library
Symbol Table is written to LIBSYM file in the System Data
area. The new LIBSYM is incompatible with the Public
Library currently in core. All files are closed and nor-
mal termination through M:TERM takes place. The new
Public Library is then loaded into core by rebooting the
RBM. The format of the command is

1$PUBLIB library-mode[,oplb n)

where
mode mustbe one of the following EBCDIC codes:

B Basic
E Extended
M Main

Control Command Repertoire 99

“Anew !$PUBLIB control command must be pro-
vided each time mode is to be changed.

oplb,n specifies that n modules are to be loaded
contiguously from the operational label oplb.

!$LD, 1$1B, !$INCLUDE, and !$MD commands are hon-
ored when using 1$PUBLIB in the same manner as for the
I$SEG command. I$ROOT, I$TCB, and !$SEG commands

~may not be used in conjunction with the I$PUBLIB command.

END The I$END command is freated exactly like an
IEOD command. - Itshouldbe usedin place of lEODwhen-
ever multistep job stacks are to be prestored on a RAD file.
The Utility COPY routine will not interpret this command as
end-of-file (EOF). The format of the command is

I$SEND

LOADER ERROR MESSAGES

The Overlay Loader program outputs messages on both OC
and DO concurrerntly with the load operation. IfOC and
DO are assigned to the same device, duplication of mes-
_sages on DO 'is suppressed. The Overlay Loader error mes-
sages are given in Appendix D. '

100 Loader Error Messages

The format of the 'encoded' error messages is

$$ ERR xx

where xx is a two=letter mnemonic that identifies rhe error
(as descnbed in Appendix D).

The types of Overlay Loader messages are as follows:

1. Warming mess'ages (W), after which loading continues.

2. Response messages (R), requiring an'S or X key-in from
the operator, in whuch case the message

IIBEGIN WAIT

is written on OC. The operator activates the console
interrupt and keys in either of the following codes.

Code " Meaning
s Continue.

X - Abort Overlay Loader with code 'OP"
and return control to JCP.

3. Abort messages (A), upon which the Overlay Loaderexits
via the RBM routine M:ABORT (see also Appendix D for
abort codes, abort messages, and their meanings).

The Overlay Loader 'plain text' error messages are largely self-
explanatory but are also further described in Appendix D.

8. RAD EDITOR

The RAD Editor controls RAD and disk pack alflocation by
maintaining file directories for all resident standard areas.
A resident standard area is one that has its area mnemonic
in the RBM Master Directory (either as a permanent area
defined at SYSGEN or a temporary area defined by the
Mount key-in) and is not checkpoint (CP), background
temporary (BT) area, or of any area whose mnemonic begins
with the character X. (X identifies a nonstandard area.)
Through its control commands the RAD Editor can

® Add entries to or delete entries from file directories

Copy data from one random file to another

® Maintain libraries in the system library (SL) and user
library (UL) areas for use by the Overlay Loaders

e Copy an object module contained in a library
® Map file and library module allocations

e Dump contents of RAD files, RAD areas, or RAD-type
devices in hexadecimal format.

e Save the contents of areas or files in a format restor-
able by the RAD Editor, or save the contents of areas
in a rebootable format on magnetic tape (which may
also be restored by the RAD Editor))

e Clear an area or file

e Truncate a file or all files within an area

o Output messages to the operator

e Initialize file directories for new disk packs

e Flaw bad disk pack tracks and allocate alternates.

The RAD Editor generates and maintains directories for the
following permanent areas:

® System Processor area (SP)
e System Library area (SL)
e System Data area (SD)

e User Processor area (UP)
e User Library area (UL)

e User Data area (UD and aa)

Size and location of each permanent area are contained
in the RBM Master Directory, The RAD Editor allows map-
ping of all areas, including Checkpoint and Background
Temp areas, and the dumping of all random-access files.

STANDARD RAD/DISK PACK AREA ORGANIZATION

Every area contains its own file directory. Each file is
identified by a file directory entry that indicates the name,
format, and location of the file. The areas and their file
directories are software write-protected (at SYSGEN) and
may have any of the following four write-protect codes:

Code Meaning

NO only files with a write-protect code of NO
may be added to the area.

BG only files with write-protect codes of NO
or BG may be added to the area. Back-
ground programs may write on any file in
the area, but foreground programs may only
write on files with NO write-protect codes.

FG only files with write-protect codes of NO
or FG may be added to the area. Fore-
ground programs may write on any file in
the area, but background programs may only
write on files with NO write-protect codes.

SY files with any write-protect codes may be
added to the area.

For areas with BG or NO write-protect codes, any RAD
Editor conirol command may be used without the need for
an SY key-in. However, for areas with FG or SY write-
protect codes, the following RAD Edit control commands
require that an SY key-in be in effect at the time the con-
trol command is executed:

1#ADD

1 #DELETE

1 #TRUNCATE
1 #SQUEEZE

1 #RESTORE
1#CLEAR

Space within an area is allocated sequentially; the first file
in the area begins in the first sector following the first file
directory. The second file in the area begins in the next
available sector following the first file. Normally, as each
file is added to the area, the next available sector is used
as the start of the new file; however, the control command
used to allocate space for the file may specify that the file
begin on the next available track (or cylinder) boundary.

In this event, any space bypassed will remain unused and
the RAD Editor will not attempt to fit a new file into the un-
used space. New files are always added at the end of the
currently allocated space within an area.

RAD Editor 101

When a directory entry (and, effectively, its corresponding
file) is.deleted, the area formerly occupied by the file is
left unused. In normal operation, the RAD Editor makes no
attempt to recover these unused areas. Therefore, the
addition of a file may cause overflow of the permanent area
although ample space may be available. However, RAD

" squeezing can be requested via an Editor 1#SQUEEZE com-
mand to overcome this problem. Squeezing recovers the
unused storage within a permanent area by regenerating the
directory and moving files.

Before any permanent file can be written (using the Moni-
tor routine M:WRITE), space must be allocated for the
file. This is accomplished by requesting the RAD Editor
to add a new entry ot the designated directory. Con-
trol commands allow directory entries to be added or
deleted.

Warning: While processing the commands ADD, DELETE,
' TRUNCATE, SQUEEZE and CLEAR, foreground
files that may become active are the user's
responsibility.

DATA FILES

Ordinarily, data is not written in permanent files by the
RAD Editor. Data files are normally written by user pro-
grams. However, a RAD Editor control command can be
vsed to copy data from one random-access file to another.
Copied files may be temporary or permanent files.

LIBRARY FILES

System and User Library files, which are searched by the
Overlay Loaders for external references, are generated and
maintained by the RAD Editor (the only processor that
writes in these files).

A library area (either the System Library area or the User
Library area) contains six files:

1. Module Directory File (directory of library modules).
2. EBCDIC File (list of all library definitions/references).

3. Extended DEF/REF File (index to extended precision
definitions/references in EBCDIC file).

4. Basic DEF/REF File (index to standard precision
" definitions/references in EBCDIC file).

5. Main DEF/REF File (index to main definitions/
references in EBCDIC file).

6. Module File (library object modules).

The extended and basic DEF/REF files (items 3 and 4) are
optional.

These files are generated and maintained from information

in control commands and object modules placed in the

102 Standard RAD/Disk Pack Area-Organization

fibrary by the RAD Editor. Special commands are supplied
to allow the addition and deletion of object modules; these
control commands will cause the six files in the RAD Li-
brary area to be updated. A control command allows an
object module contained in a library to. be copied onto BO.

Any random-access or sequential-access file (either tem-
porary or permanent) can be dumped on LO.

The RAD Editor can save the contents of a permanent area
and the RBM bootstrap in a self-reloadable form. The
saved image contains a bootstrap loader, the execution of
which restores the RBM bootstrap and the permanent area
on the RAD or disk pack. '

Updating or squeezing of permanent areas and library files
that contain information for real-time programs must not
occur while the foreground is using these permanent areas

‘or files. The user must ensure that the RAD Editor is not

modifying a permanent area while a foreground program is
using it.

The names for the library files must be one of the following:

Code File

MODIR Module Directory

EBCDIC EBCDIC

EDFRF Extended DEF/REF (optional)
BDFRF Basic DEF/REF (optional)
MDFRF Main DEF/REF

MODULE Module

The DEF/REF file needs to be added only as required. The
System Library (SL) requires only the MDFRF file.

ALGORITHMS FOR COMPUTING LIBRARY FILE SIZES

The following algorithms may be used to determine the
lengths of the six files in a library area: :

The number of granules in the MODIR file is

n 9
where
i is the number of modules to be plﬁced in the

library (including main, extended-precision, and
single-precision routines). i must be equal-to or
less-than 1023.

g is the granule size in words.

The number of granules in the EBCDIC file is

n g

where
d is the number of unique DEFs and REFs in the
library (including main, extended-precision, and
single-precision routines). d must be equal-to
or less-than 8191.

g is the granule size in words.

The number of granules in the EDFRF file ‘is

n
2+§(2+fa+dﬁ)

EDFRF = L
n g
where
n is the number of routines in the extended-

precision library.

r) is the number of REFs in the extended-precision
library.

dg is the number of DEFs in the extended-precision
library.

g is the granule size in words.

The number of granules in the BDFRF file is

n
240 (241 *d,)
o1 <k

BDFRF =
n g
where
n is the number of routines in the single-precision
library.
T is the number of REFs in the kth library routine

in the single-precision library.

d is the number of DEFs in the kth library routine
of the single-precision fibrary.

g is the granule size in words.

The number of granules in the MDFRF file is

n
24y (2+ i d)
.:, |

MDRFR = —1
n g9
where
n is the number of routines in the main library.

., is the number of REFs in the jth library routine
in the main library.

d. is the number of DEFs in the jthilibrary routine
' in the main library.

g is the granule size in words.

The number of records in the MODULE file is

n
MODULE = z::] (c,)

where
n is the number of modules in the library (includ-
ing main, extended-precision, and single-
precision routines), and n must be equal to or
less than 1023.
c is the number of record images in the ith library

routine.

RAD EDITOR OPERATIONAL LABELS

The RAD Editor uses the temporary background operational
labels X0 through Xé6. These labels must not be assigned at
the time the. IRADEDIT control command is executed, nor
may they be used on 1#DUMP or 1#*FCOPY commands.

The following labels must be assigned before requesting the
RAD Editor: :

Label Explanation

BI Object module input (and Restore) to System
and User Library.

BO Object module output (and Save) from the
System and User Libraries. _

CC Control command input. If KP is in effect,
control command input is read from oplabel
'‘OC’,

RAD Editor Operational Labels 103

Label Explanation
DO Log of error messages and operator key-ins.
LL Log of control commands.
LO Maps of directories and dumps of files.
OC Messages to the operator and key-ins from

the operator. Control commands are read
from OC if a "KP" key~-in is in effect.

CALLING RAD EDITOR

The RAD Editor is requested with.a 1RADEDIT control com-
mand. The IRADEDIT control command is read from CC
and cduses the root segment of the RAD Editor program to
be loaded into core memory from the RAD. 1t has the format

IRADEDIT

Reading an !EOD from CC causes the RAD Editor program
to return control to the Monitor. If CC is assigned fo
magnetic tape or a RAD file, an EOF condition encoun-
tered while reading control commands from CC will cause
the RAD Editor to return control to the Monitor. The form
of the command is ' : :

IEOD

CONTROL COMMAND FORMAT

All RAD Editor control commands are input from CC (or
from OC if a "KP" key-in is in effect) and listed on LL.

The general format is

#menmonic specification

" where
1 identifies the record as a control command.

{f} indicates that the control command is unique to
the RAD Editor.

mnemonic is the code name of a RAD Editor com-
mand immediately following the 1 characters.

specification is a series of required or optional
parameters unique to the specific command. The
conventions used in specifying parameters are
(1) a string of up to five decimal digits, having
a value less than 65,535, denotes a decimal in-
teger; (2) a string of the form +xxxx is treated as
hexadecimal; (3) dll other strings are assumed to
be nonnumeric.

One or more blanks must separate the mnemonic and speci-
fication fields, but no blanks may be embeddded within a
field. An empty parameter in the specification field is
denoted by a comma. However, commas may be omitted
for empty trailing parameters. A control command is
terminated by the first blank after the specification field.
If the specification field is absent and a comment follows
the mnemonic field, the command is terminated by a period.

The first two characters of the mnemonic portion of the
command are sufficient to define the command; the re-
maining characters may-be omitted since they are ignored
if they are present. '

In the descriptions of the following individual commands,
certain terms are used that have specific meanings for the
RAD Editor. The terms are:

Term Meaning
area The two-character alphanumeric

mnemonic foraresident standard area.
The area mnemonic must be currently
present in the RBM Master Directory
and, generally, may not be BT, CP,
or Xn.

For the commands !#LADD,
1#LREPLACE, '#LDELETE, 1#LCOPY,
1#LMAP, and 1#LSQUEEZE, orea must
be eitherSLorUL. If neither is speci-
fied, SL is.assumed by default.
filename Three to eight alphanumeric characters
denoting a file contained within (or
to be added to)an area file directory. At
least one character must be alphabetic.

The library routine name denoted by .
the Extended Symbol IDNT directive,
which is located in the start module
load item of an object module.

identification

library An object module library (within the
System or User Library) denoted by one
of the codes

Code Library

M Main
E Extended
B Basic

For the commands !#LADD,
1#LREPLACE, and FLDELETE the de-
fault library is'M (main).

ADD The !fADD command adds a new entry to the
specified permanent file directory. It defines the name,

104 Calling RAD Editor/Control Command Format/Control Command Repertoire

size, record length, format, and write protection for the
new file. It may also declare that the file will contain
a resident foreground program, and will be maintained start-
ing at a cylinder or track boundary. Space is allocated for
the new file and the first sector of the file is set to zero
if it has random format. The form of the command is

1#ADD arec:,fi|enc|me,<[ALL }[,[S }][,filefmf]
nrec srec _]

L [{EF}] e]

where

ALL indicates the file will be allocated to extend
to the end of the area, After an EOF has been
written on the file, it may be truncated to recover
the unused space.

nrec is the number of records in the file and may
not exceed 65, 535.

S indicates that the record size is equivalent to
sector size and that nrec is to be used to determine
the number of sectors to reserve.

srec is the maximum number of bytes per record
which must be even and may not exceed 65, 534,

If filefmt is R, srec is used as the granule size.

The following default values are provided, depend-

ing on the file format,

Default Record Size

e 120 for file format, Band P

e Sector size, in bytes, of the device contain-
ing the area for file format R or U

e 80 for file format C. Since compressed files
may contain records of variable length, this
value is used for allocation purposes only.
The S character may be used to force the
allocation of a specific number of sectors for
a compressed file. In this case, nrec indicates
the number of sectors to reserve for the com-
pressed file,

filefmt is the structure of the file, as denoted by

one of the following codes:
Code Format

B blocked sequential-access file with a
fixed record size

C blocked (and compressed) sequential ac-
cess file with a variable record size

P blocked (packed) random access file,
fixed record size

R unblocked random access file

U unblocked sequential access file.

If the format parameter is omitted, the default for-
mat is determined by the area mnemonicas follows:

Default Area Mnemonic

R SP,SL,UP,UL,FP, BP

B any other

wp specifies the write-protection level for the file,

as denoted by one of the following codes:

Codes Write-Protection Level

NO (or N) No write-protection; background
or foreground programs may write
on the file.

BG (or B) Write permitted by background
programs only.

FG (or F) Write permitted by foreground
programs only.
Background programs may write on
the file if an SY key-inisineffect.

SY (or R) Write permitted by RBM only.

Foreground or background programs
may write on the file if an SY
key=-in is in effect.

If the wp parameter is omitted, the default write-
protection level is NO.

RFor F specifies that the file will contain a resi-
dent foreground program that isto be automatically
loaded at boot time, and therefore the area mne-
monic must be SP, UP, or FP (the order of search).

CYL specifies that the BOT of the file is to be
allocated and maintained on a cylinder boundary
if the area is on a disk pack.

TRK specifies that the BOT of the file is to be
allocated and maintained on a track boundary.

DELETE The !#DELETE command deletes on entry from
the specified permanent file directory. The space formerly
allocated to the file becomes unused. The space is recov-
ered if the file being deleted is the last file in the area.
The Form of the command is

1 #DELETE area [,{Slenume}], ..

rea

If no filename is specified, all files in the area are deleted,
If there are active filesin the area, the operation is not per-
formed, Under no condition can the SParea be deleted. In-
stead, the following messages are output

##OPEN FILES, NO CHANGE: area, filename

NO CHANGE: area

If the write-protect code for the area is SY or FG, the SY
key-in must be in effect at the time the control command is
executed,

Control Command Repertoire 105

FcopY The FCOPY (File Copy) command copies data
from one random-access file to another. The file copy pro-
cess terminates when EOF is encountered on an input file or
when an end-of-tape is encountered on either the input or
the output file. The form of the command is

“ 1#/ECOPY oplb,oplb,

where

oplb; is the operational label or FORTRAN device
unit number (e.g., F:109) of a temporary or perm-
, anent random-access file. The Utility COPY
- Routine (see Chapter 9) must be used to copy
sequential-access files.

oplby ~ is the input file.
oplby is the output file.

DPCOPY The 1#DPCOPY (Disk Pack Copy) control
command copies data from one disk park or cartridge disk
to another. The entire contents of the pack or cartridge is
copied and a checkwrite is performed on the copied data.
The form of the command is

1#DPCOPY +device , +device

2
where
device) is. the hexadecimal device number of the
disk pack
deviceg "is the hexadecimal device number of the

disk pack to copy to, which may not contain any
currently "mounted"” areas,

Note: The bootstraprecord is not copied to sector zero.
The INITIALIZE command always writes the
bootsirap record to sector zero,

LADD The 1#LADD (Library Add) command adds an
object module to the designated library. The object
module is read from Bl, checked for sequence and checksum
errors, and stored in the Module File within the library.
From the data in the object module and on the control com-
mand, the information about the module is extracted and
placed in the Module Directory File (MODIR), the EBCDIC
File, and one of the three DEF/REF Files (either MDFRF,
BDFRF, or EDFRF File) as indicated in the library param-
eter. BImay be assigned to any device; if Bl is assigned
to the RAD, it must be sequential file. The object mod-
ule on BI must be in standard object language. Any blank
card or binary card on Bl that contains only zerosisignored.
The form of the command is

1#LADD [area J{ident][library]

where ident is the program name located in the start module
item of the object module on BI.

106 Control Command Repertoire

The library routine may be selectively added to the SLor UL
area from a file of library routines, If the identification
parameter is omitted, all object modules on BI will be added
to the library up to, but not including, the file mark or EOD
on Bl

Within a permanent area (SL or UL), each object module
ident must be unique except as follows: an object module
ident in the Main library cannot exist in either the Basic or
Extended library. An object module with the same ident can
exist in both the Basic and Extended libraries,

If identification is present, the start module load item of
the first program read from Bl must be the same as shown by
the identification parameter. . :

LREPLACE The !#LREPLACE (Library Replace) command
replaces an object module of the same identification in the
designated library. The object module is read from BI and
checked for sequence checksum errors. The object module
on BI must be in standard object language. = Any blank card
or binary card (on Bl) that contains only zeros is ignored.
The form of the command is '

1#LREPLACE [area,] ident [library]

where ident is the program name located in the start module
item of the object module on Bl. The object module on
BI replaces the module in the library having the same
identification,

LDELETE The !/LDELETE (Library Delete) command
deletes an object module from the designated library. The
form of the command is

| #LDELETE [area,] ident [, library]

where ident is the program name of the object module to be
deleted,

LCOPY The 1#LCOPY (Library Copy) command copies
an object module from the designated library onto the BO
device. The form of the command is

1#Lcopy [area,]ident

where ident is the program name (located in the start module
item) of the object module to be copied onto the BO device.

LSQUEEZE The I#LSQUEEZE (Library Squeeze) com-
mand will squeeze designated library areas. Unused space
is recovered by regenerating the directory files and

squeezing (compacting) the module file. The form of the
command is

1#LSQUEEZE [areq]

MAP The !*MAP command causes the specified direc-
tories to be mapped on LO. For each permanent RAD area,
the beginning and ending RAD addresses for the area are
mapped. For each file, the contents of the directory entry
describing the file are printed. This information includes
name, format, write-protection, foreground task indicator,
beginning address, EOF address, and EOT address for each
file. For files on disk packs, the map also includes the
cylinder/track/sector values for BOT. For files on RADs,
the map also includes the track/sector values for BOT. The
form of the command is

!#MAP [area]] [,areoz] ... [,areqn]

where area must be a currently defined area, If no area
parameter is included, all currently defined areas are
mapped.

LMAP The !#LMAP command causes the library files of
the specified areas to be mapped on LO. For each area,
the beginning and ending addresses for the area are mapped,
followed by a map of the library files in the area. The
library map includes the following information for each
routine:

Library B (basic), E (extended) or M (main)

e Identification of routine

e Length of routine in words

e Sectorwithinthe MODULE file that contains the routine
e DEFs in the routine

e REFs in the routine.

The form of the command is

1#LMAP [area Lared]]

pump The ¥DUMP command dumps a RAD file, a RAD
area, or a RAD-type device in hexadecimal format on the
LO device. Records are dumped beginning with the first
record of the file (record 0) unless an optional starting rec-
ord number is given. The dump is terminated by an EOF,

EOT, or by having dumped the requested numberofrecords —
whichever occurs first. The form of the command is

oplbl
!#DUMP[c:reo [fi lename] [start[, number]]

+device-number

where

oplbl is the operational label or FORTRAN device
unit number (e.g., F:109) assigned to o RAD file.
Operational labels X0 through X6 may not be used
because they are reserved for use by RADEDIT.

device-number is the hardware device number of
the RAD or disk device. This number must be
preceded by a + (plus character) and must match
a RAD or disk device number input at SYSGEN.,

start is the relative record (or sector) number at

which the dump is to begin. For RAD files, this
number represents the record relative to the first
record of the file. For RAD areas, it represents
the sector relative to the first sector of the area.
For device~number, it represents the sector rela~
tive to the first sector of the device. If start is
omitted, the dump begins at the first record rela-
tive to the BOT of the file, area, or device.

number is the number of records (or sectors) to be
dumped. If number is omitted, the file, area, or
device is dumped until an EOF or EOT is encoun-
tered. If the file format is random (R) or packed
(P), the EOF is ignored.

SAVE The !#SAVE command saves the contents of areas
of specific files. Each file is written on the BO device,
along with all pertinent information about the file. The BO
media may be magnetic tape, unblocked file, paper tape, or
cards. Ifthe media is magnetic tape and an end-of-reel condi-
tion occurs, the operatoris expected fo mount the nextreel to
be used for output. If themediais paper tapeand an 'ATTEND
command has been input for the current job, the message

nnnn FT. OK?

will be output on the OC device. If there is more than nnnn
feet of paper tape available, the operator is expected to
type in Y. This process will continue until all files speci-
fied by the 1#SAVE command have been output, or until
the operator determines that the required amount of tape is
not available. Any input other than Y causes the pro-
gram to output an end-of-reel record followed by blank
trailer, The program then outputs the message

HIBEGIN WAIT

on the OC device. The operafor must then mount a new reel
of tape, interrupt, and key-in S. The program then out-
puts blank leader, a_save-continuation record;, and proceeds
as described above.

Control Command Repertoire 107

The BOoutput can be restored via the !# RESTORE command,
The form of the command is

1#SAVE [FILE,][areq][,{;’i":me}, .] ...

where FILE indicates that the output format contains all
necessary information for the restoration of specific files,
Each file saved is followed by an 'EOD (or file mark in the
case of magnetic tape). If another !#SAVE FILE control
command follows immediately, the additional files are ap-
pended to the previous output.

Note: !#SAVE FILE éommqﬁd does not save the following
- files from the SP and SD area:

SP, BOOT -
SP,RBM
SP, TVECT
SP, RADEDIT
SP, OLOAD
SD, RBMGO
SD, RBMOV

~ SD, RBMAL
SD, ERRFILE
SD, RBMID
SD, RBMSYM
SD, RBMPMD

When a control command is encountered that is not a
1#SAVE FILE command, an additional EOF is written and
the BO device is rewound before the next command is
executed,

The FILE keyword may be omitted only if the BO operational
label is assigned to magnetic tape, causing a bootstrap pro-
gram to be output on BO followed by the contents of the
specified areas, No filenames may be specified in this
case, since the allocated portion of an area is saved as if
it were a single file, The specified areas are followed by
two file marks and the tape is rewound.

When the output magnetic tape is booted, the bootstrap
program will restore the saved areas and then initiate an
RBM boot process.

The user must not mix the output of the 1#SAVE command
with the 1#SAVE FILE command on the same magnetic tape.

VERIFY The IfVERIFY command checks the output of
the ¥ SAVE command to ensure that it can be correctly pro-
cessed by 1#RESTORE at a later time. The form of the com-
mand is

I#VERIFY [oplbl]

where oplbl is the operational label of the medium from
which the #SAVE output is to be read. If no oplbl is pres-
ent, the oplbl BO is assumed by default.

108 Control Command Repertoire

RESTORE The !#RESTORE command restore the contents
of areas or specific files that have been saved via the
#SAVE command. The files are selectively restored from
the Bl device. The form of the command is

L area
I#RESTORE [area [,{memme}, .] v

If the file being restored does not have a corresponding en-
try in the area file directory, a new entry is made and the
file is copied into ifs allocated region. If the file being
restored already has an entry in the area file directory the
file will be copied info the currently allocated region unless

e There is a format conflict
e The allocated region is too small
e The proper level of write authorization isnot in effect, that

is, SY key=in not performedand file is write-protected.

If an end-of-reel condition is encountered while reading
from BI the operator will be requested to mount the next reel
in sequence, as created by the I#SAVE command.

If the Bl input is a rebootable save tape, no filenames may
be specified —each area is restored in its entirety.

SQUEEZE The ¥ SQUEEZE command compacts the desig-
nated fileareas, Unused space isregained by regenerating the
directoriesand moving files. The form of the command is

1#SQUEEZE orea[,area}. .. [,urea]

The areas BT, CP, and any area beginning with the letter X
are never squeezed. An explicit request to squeeze any of
these is ignored, If the area being squeezed contains a file
that is assigned to an operational label and the file can be
moved, the following message will be output.

OPEN FILE, NO CHANGE: areaq, filename

File is not moved and squeezing continues,

File directory information may be destroyed if an area being
squeezed contains a file that is assigned to an operational
label being used by an active foreground program,

Care shouldbe exercised when SQUEEZEing areas thatmay be
currently in use by foreground programs in order to avoid file
conflicts,

CLEAR The 1#CLEAR command zeros out the specified
RAD area or file, The form of the command is

I#CLEAR area |,§ "¢ }
‘ filename

If no filename is specified, all filesin the area are cleared,
including file directories. If there are open files in the
area, the operation will not be performed. Instead, the
following message will be output

OPEN FILE, NO CHANGE: areq, filename

If the write—protect code for the area is SY or FG, the SY
key=-in must be in effect at the time the control command is
executed,

BDTRACK The !#BDTRACK command specifies the disk
pack and the track numbers for which alternates are to be
provided,

Two methods of selecting alternate tracks are used: the
flawed headers and the bad track list.

The disk packs, Models 7242/46, use flawed headers. The
original track will have its headers rewritten with a flaw
mark and a reference to the altemate track. The headers
of the alternate track will be rewritten to refer to the
original track, The cartridge disks, Models 3231/32/33 and
7251/52, utilize a bad track list which is written on cyl-
inder 0, track 0, sector 2. The bad track numbers are written
into the list and the corresponding altemate tracks are se-
lected during the read-write process. The form of the com-
mand is:

ALL
1#BDTRACK +dn, {+number{, +number]... [, +number]
decimal [,decimal] .o [,decimal]

where

dn is the device number of the disk pack,

number is the hexadecimal track number on the de~
vice starting with 0,

decimal is the decimal track number on the device
starting with 0,

ALL indicates that a bad track list is to be con~
structed from the flawed headers previously written
on the 323x device, Once thisis done, #BDTRACK
commands can be used to enter track numbers into
the bad track list on the device.

Note: See the Unsolicited Control section as to how
bad track lists are entered (Mount) and re-
moved (Remove) from the system tables,

Example:

1#BDTRACK +E5, +325, +297

GDTRACK The 1# GDTRACK command specifies the disk
pack and the track numbers for which alternates are to be
eliminated, This may be used if it is suspected that a desig-
nated flawed track is good.

On the disk packs, Models 7242/46, for each track spec—

ified, its headers will be rewritten to clear the flaw mark
and the headers of the assigned alternate track will be re-
written to free the alternate track,

On the cartridge disks, Models 7251/52 and 3231/32/33,
which utilize a bad track list, a "blank" bad track list can
be written on cylinder 0, track 0, sector 2 of the device
using the "ALL" option, If a bad track list exists on the
device, bad tracks can be eliminated as described above,
The form of the command is:

ALL
1#GDTRACK +dn {+number [, +number]... [, +number]
decimal [,decimcl]. .. [,decimal]

where
.dn is the device number of the disk pack.

number is the hexadecimal track number on the de-
vice starting with 0O,

decimal is the decimal track number on the device
starting with 0,

AlLL indicates that a "blank" bad track [ist is to be
written on the device,

INITIALIZE. The '#INITIALIZE command provides disk
pack serialization (including date) and allocation of data
areas. The form of the command is

I#INITIALIZE +dn[, serial-number], DO

where

dn is the hardware device number of the disk pack
to be initialized, The device number must match
a disk pack device number input at SYSGEN,

serial number is any combination of eight characters,
excluding blanks or commas., If the disk pack is
Xerox Model 7242 or 7246, the serial number is
writfen on cylinder 202, track 19, sector 0, to-
gether withthe current date, For Xerox Models 725x
and 323x, the serial number and date are written
on cylinder 0, track 0, sector 1,

DO indicates that the file directory on the device
is not to be initialized,

Control Command Repertoire 109

The WINITIALIZE command may be followed by a set
of area definition cards that have the format

Harea=tracks[wp]

where
area is an area mnemonic from the following list:
SP BP SL UpP
Sb cp BT UL
FP SK (skiptracks) ao
tracks is the number of tracks to be allocated

for the area. A parameter of 'ALL' allocates
all the remaining tracks on the device.

wp is the write-protect code to be used for the
area. This code is tested whenever any of the
following operations are performed:

ADD DELETE SQUEEZE
CLEAR RESTORE TRUNCATE

See "Standard RAD/Disk Pack Area Organization”
for write—protect codes.

MESSAGE The 1#*MESSAGE control command writes
messages to the operator on the OC and LO devices. The
form of the command is

1#MESSAGE message

where message is any EBCDIC character string up to a full
card image.

PAUSE The 1#*PAUSE control command causes a message
to be written on the OC and LO devices followed by a wait
for the operator's response. The form of the command is

1#PAUSE message

. where message is any EBCDIC character string up to a full
card image. The format of the output is:
1#PAUSE message
1IBEGIN WAIT

It is necessary for the operator to activate the control panel
INTERRUPT switch and key-in an S to continve.

TRUNCATE The !*TRUNCATE command eliminates un-
used space from the end of specific files by setting the

EOT pointer equal to the EOF pointer. If an EOF has not
been written on the file, the file EOT will not be changed.

110 RAD Editor Messages

All compressed files or files containing programs loaded by
the Overlay loaders (or with the Monitor 'ABS command)
will have an EOF pointer. The space is recovered if the file
being truncated is the last file in the area. The form of the
command is

HIRUNCATE area [,{“'e“ H -

filename

If no filename is specified all files in the area containing
an EQOF are to be truncated to the EOF. If the area is SD
and no filename is specified, the following message will be
output on the DO device and the OC device (if KP is in
effect) and providing oplabels are not assigned to same device.

NO CHANGE: SD

If the write protect code for the area is SY or FG, the SY
key-in must be in effect at the time the control command
is executed,

END The HEND command is used exactly like the IEOD
command; that is, it transfers control from the RAD Editor
to the Monitor. The form of the command is

HEND

This command should be used in place of IEOD whenever
multistep job stacks are to be prestored on a file. The
Utility COPY routine will not interpret this command as
an EOF.

RAD EDITOR MESSAGES

The RAD Editor program issues the error messages listed in
Appendix D (Table D-4)on DO, If a KP key=in is in effect,
the error message is output on OC and DO unless OC and DO I
are assigned to the same device. The wamning (W) messages

in Table D~4 are written on the OC and DO devices to
provide a record of operations not performed or of critical
operations in process. If an operator response’ is required,

the R-type error message is followed by the RBM message.

VIBEGIN WAIT

written on OC, The operator activates the PCP interrupt
and keys in one of the following:

Key-In Meaning

SY, S Suspend disk write-protect and continue.
S Continue.
X Abort RAD Editor and return control to RBM.

RAD Editor initiated aborts are identified by the abort
code 'RE', If the abort is operator-initiated, this is indi-
cated by the abort code 'OP',

9. UTILITY

INTRODUCTION

The Utility program operates in the background under the
Real-Time Batch Monitor. It contains routines that:

e Copy variable-length binary or EBCDIC records from
' one medium to another (Copy).

e Dump records onto an output device in either hexa-
decimal or EBCDIC format (Dump).

e Generate or update files that contain Xerox Standard
Object Language modules (Object Module Editor).

e Generate or update symbolic files (paper or magnetic)
that contain source data (Record Editor).

e Edit card imagesby sequence number (Sequence Editor).

Routines in the Utility program are device-independent.
Utility handles anyblocked or unblocked, sequential-access
RAD file. Use of a sequential-access RAD file is similar to
that of a magnetic tape, as it has a beginning-of-tape, an
end-of-file (if one has been written), and an end-of-tape.
Note, however, that a sequential-access RAD file cannot
be forward-spaced or backspaced over more than one file
mark. A rewound sequential-access RAD file is positioned
at beginning-of-tape. For both blocked and unblocked
files, a record skip is a logical record skip.

UTILITY PROGRAM ORGANIZATION

The Utility program consists of two major sections: the Util-
ity Program Control routine (always resident when the Utility
program is operating), and the currently operating Utility
subroutine. The Utility Program Control routine contains
four interdependent elements:

1. The Program Executive, which initializes the program
(upon entry from RBM), interprets the IUTILITY con-
trol command {explained in "Calling Utility"), exer-
cises control over the flow of control commands, handles
normal and abort exits to the Monitor, and performs
all 1/O checking for the Utility program.

2. The Source Input Interpreter, which reads and scans
Utility control commands for the Control Function Pro-
cessor and the current Utility subroutine.

3. The Control Function Processor, which executes con-
trol function commands common to all Utility subroutines.

4. The Operator Communication routine, which outputs
messages to OC and DO andreceives key~-in responses.

UTILITY PROGRAM EXECUTIVE

When RBM reads a IUTILITY control command control is
transferred to the Program Executive routine. The IUTILTY
control command is then scanned for parameters. If the
name parameter is omitted (see "Calling Utility" below),
it is assumed that only the Control Function Processor will
be used. Utility control commands are read from the source
input (SI) device unless a KP key-in is in effect, in which
case commands are read from OC,

If a specific Utility subroutine is requested, the Program
Executive verifies that the subroutine is in storage; if
not, an error message is written and an exit to RBM is taken,
terminating the background operation. If the subroutine is
present, initialization of tables and flags occurs.

The Program Executive then transfers control to the requested
Utility subroutine. The Utility subroutine uses the Source
Input Interpretfer to read all commands, and uses the Control
Function Processor to execute control functions. All other
control commands are interpreted and executed by the Uti-
lity subroutine itself.

SOURCE INPUT INTERPRETER

The Source Input Interpreter, which is called by the Program
Executive routine, processes all control commands that are
read by the Utility program. Utility control commands are
input from the SI device (unless a KP key~in is in effect)
and listed on the LL device as they are interpreted.

Upon reading a command, the Source Input Interpreter de-
termines whether the command is valid. If the syntax for a
command is invalid, the following message is writtenon OC

and DO:

** INV CTL

The Utility program then reads the next command or enters
the wait state if attend mode is in effect.

If the command is valid, it may be interpreted and executed

either by the Utility subroutine or by the Control Function
Processor,

CONTROL FUNCTION PROCESSOR

The Control Function Processor interprets and executes com-
mands that are common to all Utility subroutines. If any of

Ukility 111

the control commands interpreted and executed by the
Control Function Processor contains an invalid operational
label, the following message is output:

** INV OPLB

The Utility program then reads the next command or enters
the wait state if attend mode is in effect.

CONTROL ROUTINE OPERATIONAL LABELS

Four operational fabels are reserved for the Program Control
routine. Their use is restricted to the functions below; they
‘may not be used in place of the labels required by the vari-
ous Utility subroutines explained later.

Labe! Explanation

St Device for Utility control command input, and
various modification source inputs, (I a KP
key-in is in effect, control commands are read

from OC.)

DO Device for listing of messages, error conditions,
operator responses, etc. K OC and DO are
assigned to the same device, duplication of
messages is suppressed.

LL Log of conirol commands.

oC Device for messages to the operator, key-in re-
sponses from the operator (always via the keyboard/
printer), and controf-command input if a KP
key~in is in effect.

X5 Temporary RAD file used for prestoring commands
read from SI.

Utility functions are generally executed dynamically; that
is, control commands are interpreted and executed as they
are read. However, when several operational labels are
assigned fo the same device-file as SI, it is impractical to
execute dynamically. In this case, commands must be pre-
stored to avoid confusion with data from that device. This
decision to prestore is made by the Utility program with one
exception: the !*PRESTORE conirol command allows the
user the option of prestoring control command input until
an EOD card image is encountered. For RBM Ukiilities, pre~
stored commands are written on a temporary RAD file (using
operational label X5) and read from the RAD for interpreta-
tion and execution. '

112 Calling Utility

CALLING UTILITY

The Utility program is requested via a TUTILITY control com-
mand, which causes the root segment of the Utility program
to be loaded infa core memory from the RAD, The FUTILITY
control command has the format ,

TUTILITY [nome]f, parameter}

where
name is the name of a Utility routine or may be
omitted. I may be any of the following:

COPY {Copy)
DUMP (Dump)
OMEDIT (Object Module Editor)
RECEDIT (Record Editor)
SEQEDIT' (Sequence Editor)

parameter represents the series of optional param-

eters that are unique to each Utility routine. Pa-
rameters are fully explained in the description of
the individual routines.

When RBMreads the IUTILITY command, it loads the Program
Control routine (root segment) from the RAD and #ransfers
control to the Program Executive which controls the operation
of the Utility program. The Executive first scans the
IUTILITY control command parameters, If the name pa-
rameter is omitted, the Executive assumes that the control
commands that follow use the Control Function Processor
only. If a specific Utility routine is referenced with the
name parameter, the Program Executive checks the name
for validity. If the name is invalid, the message

** UT NT RES

(Utility not resident) is written on OC and DO and the
Utility program aborts, If the name is valid, the overlay
segment containing the Utility routine is loaded from the
RAD, flags are initialized, and control is transferred to the
named routine.

When the Program Control routine encounters an IEOD card
image from SI, it terminates processing. The form of the
IEOD command is

tEOD

This causes the Utility program to transfer control back to
RBM. : ,

"he Sequence Editor always reads from S1, whether or not
a KP key-in is in effect,

If a Utility routine encounters the control command WUT [name]
" [,parameter], normal termination occurs and the named rou-
tine is loaded and given control without return to RBM,

CONTROL COMMAND FORMAT

All Utility program control commands are input from SI and
are listed on the LL device as they are interpreted. The
general format is

*mnemonic specification

“where
! identifies the record as a control command.
* indicates that the control command is unique to
the Utility program.
mnemonic is the code name of a Utility command
and beginsimmediately following the ! * characters.
specification is a series of parameters unique to

the specific command. The conventions used in
specifying parameters are (1) a string of up to five
decimal digits having a value less than 32, 768
denotes a decimal integer and (2) a string con-
taining more than five characters is always assumed
to be EBCDIC, regardless of -content.

One or more blanks separate the mnemonic and specifica-
tion fields, but no blanks may be embedded within a field.
A control command is terminated by the first blank after the
specification field; or, if the specification field is absent
and a comment follows the mnemonic field, the command is
terminated by a period. No control command record may
contain more than 80 characters, The first two characters
of the mnemonic portion of the command are sufficient to
define a control command; the remaining characters may
be omitted, since they are ignored when present,

CONTROL FUNCTION COMMANDS

The Control Function Processor interprets and executes con-
trol commands that are common to all Utility subroutines,
These control function commands are given below. Unless
otherwise noted, "oplb" is the operational label of the de-
vice, "number" is the number of file marks or records to
skip (if omitted; the number is assumed to be 1), and "de-
vice" is the device type and physical device number.

FBACK The I*FBACK command backspaces a magnetic
tape over a specified number of file marks or a sequential-
access RAD file to beginning-of-tape (BOT), The form of
the command is

I*FBACK oplb{, number]

The *FBACK command cannot be used fonj random files.

FSKIP The !*FSKIP command spaces a magnetic tape
forward over a specified number of file marks or a sequential-
access RAD file over its end-of-file, The form of the com-
mand is

I*FSKIP oplb[, number]

The I*FSKIP command cannot be used for random files.

MESSAGE The 1*MESSAGE command writes messages
to the operator on the OC and the DO devices. The form
of the command is

I*MESSAGE message

where message is any EBCDIC character string up to a full
card image,

The format of the output is
I*MESSAGE message
PAUSE The !*PAUSE command causes a message to -be

written on the OC and DO device followed by a wait for
the operator's response, The form of the command is

I*PAUSE message

‘where message is any EBCDIC character string up to a full
card image.

The format of the output is

I*PAUSE message
HIBEGIN WAIT

PRESTORE The *PRESTORE command causes all control
commands to be read from the SI device, but not to be in-
terpreted or executed until an IEOD is read. The prestored
commands are written on a temporary RAD file (using opera-
tional label X5) and are read sequentially from the RAD,
(The prestore mode is set automatically when a name param-
eter appears on the 1UTILITY command and one or more
operational labels have been assigned to the same device

or RAD DFN as SI.) The !'*PRESTORE control command
must immediately follow the IUTILITY control command

and must precede any other control commands for the Util-
ity program. The form of the command is

I*PRESTORE

Control Command Format/Control Function Commands 13

REWIND The I*REWIND command causes the specified
magnetic tape or sequential-access RAD file to be rewound.
The form of the command is

I*REWIND oplb

RBACK The -1 *RBACK command backspaces a magnetic
tape or sequential-access RAD file over a specified number
of records. The form of the command is

1*RBACK oplb[,number]

If oplb is assigned to a blocked sequential-access RAD file,
the number parameter is the number of logical records fo be
skipped. The !*RBACK command cannot be used for random
files or compressed RAD files.

RSKIP The !*RSKIP command spaces forward the indi-
cated magnetic tape or sequential-access RAD file over the
specified number of records. The form of the command is

1*RSKIP oplb[,number]

If oplb is assigned to a blocked sequential-access RAD file,
the number parameter is the number of logical records to
skip. The I*RSKIP command cannot be used for random
files but can be used for compressed RAD files,

UNLOAD The I*UNLOAD command unloads a magnetic
tape or closes a sequential-access RAD file, The form of
the command is

1*UNLOAD oplb

END The I*END command is treated exactly like an
IEOD; that is, transfers control from Utility to the Moni-
tor. This command should be used in place of IEOD when-
ever mulfiactivity job stacks are to be prestored on a RAD
file. This command will not be interpreted as an EOF when
read from UL, The form of the command is

*END

114 COPY Routine

WEOF The "WEOF command writes a file mark, EOD,
or end-of-file pointer if appropriate to the device, The
form of the command is

I*WEOF oplb

ASSIGN The 1*ASSIGN command allows a Utility user
to assign any operational label to any other background
operational label, device-file number, or RAD file. The
form of the command is

oplb
1*ASSIGN oplbf 7} |4
, J [file,area
fdun.
where
dfn is a device-file number.
file fs a RAD file name.

area - is the RAD area within which the RAD file is
defined.-

fdun 7 is a FORTRAN device unit number’.‘

COPY ROUTINE

COPY provides the ability to copy variable-length binary
or EBCDIC records from cards, paper tape, magnetic tape,
keyboard/printer, and sequential-access RAD files to cards,
paper tape, magnetic tape, line printer, keyboard/printer,
and sequential-access RAD files. Using control functions
of the Control Function Processor, records and files can
be skipped except for random files. The COPY routine
also provides for file verification (separate from the copy
operation). If the binary mode is requested for either copy=
ing or verifying, file marks are recognized for paper tape,
magnetic tape or sequential RAD file. An IEOD card is
recognized as a file mark. The number of records and files
read or verified is listed upon completion of the COPY or
VERIFY operation. : :

Since COPY uses RBM routines M:READ and M:WRITE for
all reading and writing, files copied with the COPY routine
will be treated according to the default conventions of the
FORM, size, and BIN parameters of the !*COPY command.
Deviation from inherent conventions is accomplished via
FORM, size, and BIN parameter options.

For records being copied to the card punch, records con-~

" taining a first byte of X'1C', X'3C', X'9F', X'BF', X'DF',

X'FF', X'00', or X'78' are always punched in the binary
mode; all other records are punched in EBCDIC, For all
other devices, the distinction between binary and EBCDIC
modes is meaningless because records are copied directly

without translation, Therefore, attempting to copy binary
data to an EBCDIC device will result in meaningless output.

For paper tape, if BIN and size are not specified, the
length of each binary record (first byte of X'1C', X'3C!,
X'9F', X'BF', X'DF*, X'FF', X'00', or X'78') is always
120 bytes. When M:READ reads EBCDIC records from paper
tape, it transmits only the number of bytes specified by the
calling sequence to memory. Ordinarily, the COPY rou-
tine assumes that paper tape EBCDIC records have a byte
count of 120. The size specification allows the user to
override the standard count,

By assigning the X4 oplb to a RAD file or paper tape device
before the !*OPLBS command is read, records copied from
UI are adjusted to a 80- or 120-byte length, depending upon
the contents of the first byte.

When copying or verifying a 9-track magnetic tape to a
7-track magnetic tape, Ul and X4 should be assigned to
the 9-track device.

If a record copied to the line printer or keyboard/printer
confains more than 132 characters, only the first 132 are
printed. Normally, the first character of the record is
printed and single spacing is forced. Therefore, even if
the first character is intended for format control, it will be
printed as the first character of the print line in the normal
mode. If the format option is specified, the first character
is interpreted as a format control character and is not
printed.

The BIN option should be used to copy nonstandard binary
records, Paper tape codes NL, EOM, and £ are not inter-
preted as editing characters. All records are copies on a
byte-for-byte basis. If paper tape is the input source,
leading blanks are ignored and trailing blanks are included
in the byte count, Paper tape IEOD NL is recognized as
a file mark if it occupies the first five bytes of a record.

COPY OPERATIONAL LABELS
The following operational labels are used by the COPY
routine in addition fo the Utility subsystem operational

labels:

Label Usage

Ul Copy input,
X4 Verify input,
uo Default copy output or second verify input.

Other operational labels may be used by COPY (at the op-
tion of the user) to specify a second input device for veri-
fying or an output device for copying.

COPY OPERATING CHARACTERISTICS

The COPY routine checks whether input/output operational
labels are assigned to the same physical device or same disk
file as control input. If so, all control commands are read
from the SI device and stored in memory prior to interpre~
tation of the control commands to begin copying. When the
SI and any input or output operational labels are assigned
to the same physical device and attend mode is in effect,
the message

** LD INPUT UI, ddnn
11BEGIN WAIT

is written on the OC and DO device. The operator should
load the input at this point and enter an S key-in to initiate
the actual copy procedure.

If the operational labels are not assigned fo the same physi-
cal devices, interpretation of control commands takes place

as they are read from SI, and copying begins immediately
without any message being output on the OC device.

CALLING COPY

The COPY routine is requested with the control command

IUTILITY COPY[, CORE]

where CORE specifies that, for the first | *COPY or I *VERIFY
command, the records from the input device are stored in
core in addition to being copied or verified. For subsequent
I*COPY or I*VERIFY commands, these records in core,
rather than those on the input device, are used as the input
source. Following any '*COPY or '*VERIFY commands,
record and file counts are displayed on the DO device.

After interpretation of the IUTILITY control command, con-
trol is transferred to the COPY routine which interprets the
control commands listed below,

COPY CONTROL COMMANDS

OPLBS The 1*OPLBS command identifies the operational
labels of output devices to be used in COPY requests and
input for comparison for VERIFY requests. The input for
COPY operations is read from Ul. For VERIFY operations,
X4 isread. Operational labels may be assigned to any de-
vice. The form of the command is

1*OPLBS oplb], - ,oplbn

COPY Routine 115

where oplb; (i < 8) is the operational label or fdun for an
output device for subsequent ! *COPY commands, or for an
input device for subsequent !*VERIFY control commands.
Ul or X4, may not be specified. In the absence of an

1*OPLBS command, the default is UO, (Sl prestore mode
is determined after each ! *OPLBS command.)

coOPY The 1*COPY command causes records from the
input device (UI) to be copied on the output device {speci-
fied in the 1*OPLBS command) until the requested number
of IEOD:s or file marks has been read and copied, or until
the specified number of records has been copied. The form

of the command is "
BIN]]
ETALI[, P}
ATE

1*COPY type [, number] [, FORM] [size],[

where

type is R if the number parameter refers to records,
or F if the number parameter refers to files.

number has different meanings, depending upon
the type parameter that precedes it. If the type
parameter is R, "number" is the number of records
to be copied, but refers to logical records for a
blocked, sequential-access- file. If "type" is F,
"number" is the number of files to be copied, or
is ALL, indicating that all files should be copied
unfil two consecutive EOD images or file marks
are copied, If "type" is F and any of the input/
output devices is a sequential-access RAD file,
"number"” is 1 or it is omitted, If the number pa-
rameter is omitted, one record or file is copied.

FORM applies only if data is being copied onto
the line printer or keyboard/printer, If the FORM
parameter is omitted, single spacing of printed
output is the format, If FORM is used, the first
character of each record is used for format control
and is not printed,

size specifies the maximum number of bytes in each
record. If dota is being copied to or from a
sequential-access RAD file, "size" is the maximum
logical record size and must be an even number.
If "size" is omifted, all records areread and written
in the standard record size (120 bytes). An IEOD
card will not be recognized by M:WRITE if an odd
byte count is specified or if a byte count of less
than four bytes is specified.

BIN if omitted, mode (BIN or EBCDIC) is deter—
mined according to byte 1 of the record. If pres-
ent, all copying is done in binary, either with
the count specified in "size" or the standard rec-
ord size (120 bytes) by default.

116 DUMP Routine

ETA specifies that the data read from the input
operational label is to be converted from EBCDIC
to ASCII before copying out to the devices speci-
fied on the 1*OPLBS control command. Refer to
Appendix E for the EBCDIC -— ASCII translation
table.

ATE specifies that the dota read from the input
operationa! label is to be converted from ASCII
to EBCDIC before copying to the devices speci-
fied on the 1*QPLBS control command. Refer to .
Appendix E for the EBCBIC — ASCII translation
table.

P specifies that a page eject is to be performed on
all I*OPLB line printer devices prior to and after
execution of the current command.

BCOPY The !*BCOPY command causes records from

a user blocked disk file or magnetic tape to be copied on
the output device (specified on the ! *OPLBS command) until
the requested number of records or a complete file has been
copied. This command allows for the case where the last
record written is a short record by setting the SR flag on
the write operation (see M:WRITE). The form of the com-
mand is:

1*BCOPY type|, number;l . r5iZ€ [,{i].é }]

where type, number size, ETA, and ATE are defined as
for the *COPY command. Size must be specified equal
to or greater than the actual record size o prevent loss of
data.

VERIFY The I*VERIFY command requests comparison of
data on the X4 device with data in core (CORE option) or
with data from devices specified in the !*OPLBS control
command. The form of the command is

BIN

il

ETA
AT

I*VERIFY type[, number][, size][,

The parameters are defined as for the !*COPY control
command.

Before the I*VERIFY control command is issued, itisassumed
that all files have been repositioned, if necessary, by use
of I*REWIND and other file positioning control commands
(described in "Control Function Commands"). The entire
verification process is completed when the number of files
or records for verification has been compared.

DUMP ROUTINE

The DUMP routine is used to dump records or files onto an
output device in either hexadecimal or EBCDIC format,

DUMP uses M:READ and M:WRITE for all input/output. If
no mode is specified for dumping, all records are dumped
according to the contents of the first byte of each record.
Any record having a first byte of X'1C', X'3C', X'9F',
X'BF', X'DF', X'FF', X'00', or X'78' is assumed to be a
binary record containing 120 bytes, and is dumped with
each data word being represented in EBCDIC as a 4-digit
hexadecimal number. Any record that does not contain one
of these characters in its first byte is assumed to be in
EBCDIC and is dumped as such.

The user has the option to specify the byte count for paper
tape record input, since M:READ pads all EBCDIC records
with trailing blanks so that they appear to be fixed length
in memory.

The HEX option for dumping should be used to dump non-
standard binary records. The option causes all records that
are to be dumped to be read in binary and dumped with each
data word represented in EBCDIC as a four-character hexa-
decimal number. Since no editing is done when a binary
read is specified, NL, EOM, and ¢ are not interpreted as
editing characters. 1EOD is recognized as a file mark.

DUMP OPERATIONAL LABELS

The DUMP routine uses the following operational labels:

Label Explanation
LO Output device for dumping.
Ul Input device for dumping, unless some other

input device is specified.

DUMP OPERATING CHARACTERISTICS

If both SI and DUMP input are assigned to the same device,
all of the control commands on the SI device are read and
stored in memory before inferpretation of the commands and
dumping of the input tape begins, When this occurs, the
message

** LD INPUT UI, ddnn
HBEGIN WAIT

is written on the OC and DO device. The operator mounts
the input tape and enters an S key-in to confinue,

If ST and the tape device to be dumped are not assigned to
the same device, no message is written and control com-
mands are interpreted as they are read. The DUMP conirol
commands are then listed on LL and dumping is performed.

. CALLING DUMP

The DUMP routine is requested with the control command

IUTILITY DUMP[,0plb]

where oplb is the operational label or device input number
of the input device. If the oplb is omitted or empty, the
operational label is set to UL

DUMP CONTROL COMMAND

DUMP The 1*"DUMP command causes records to be read
from UI and written on the LO device in the specified mode
unfil an IEOD or file mark is read, or the specified number
of records has been read. The form of the command is

1*DUMP [number] [,mode][,size]

where

number is a decimal integer, Only the specified
number of records is dumped. If "number" is omit-
ted, the file is dumped to an EOF or file mark. If
"number" is ALL, the dump is performed to double
file marks or 1EODs,

mode indicates that all records on Ul, regardless
of the content of the first byte of each record, are
wriften on the LO device in the mode specified.
"Mode" is HEX for hexadecimal and EBCDIC for
EBCDIC, If omitted, therecord first byte sets mode.

size specifies the maximum number of bytes to be
read in each record. If the dump "input" is a
sequential-access RAD file, the size parameter
must be an even number. For a blocked sequential-
access file, "size" is the maximum logical record
size. If it is omitted, the standard record size is
used,

OBJECT MODULE EDITOR ROUTINE

The Object Module Editor is designed to maintain files con=-
taining sets of Xerox Standard Object Language modules.
It generates or updates files by inserting and deleting object
modules according to the program name in the start module
item for each module, For each output file written, a list
of module names is printed in the order of their appearance.

Object Module Editor is also used to list files containing

object modules and to verify that the input object records
contain no checksum or sequence errors,

Object Module Editor Routine 117

A binary object module is defined as a sequence of binary
records in Standard Binary format, each of which begins
with a nonblank name item and terminates with a record
whose first byte is X'9F' (END card) indicating that the
record contains an end item,

A set consists of one or more object modules and is termi-
nated by a file mark or IEOD. A tape may contain one or
more sets and is terminated by double file marks or 1EODs.
Only one set of object modules can be contained in a
sequential -access RAD file,

Note that the Object Module Editor routine does not main-
tain the object modules in the System Library and User
Library areas on the RAD. These permanent areas are main-
tained via the RAD Editor (see Chapter 8).

0BJECT MODULE EDITOR OPERATIONAL LABELS

The Object Module Edifor uses the following operational
labels:

Label Explanation

BI Device~file from which binary object
modules are to be inserted..

LO Device-file for listing either Ul or UO

object module names,
Ul Input device-file.

uo Qutput device-file.

OBJECT MODULE EDITOR OPERATING CHARACTERISTICS

Object Module Editor operates in two modes: list and
modify,

In the list mode, only Ul is read. The names of the object
modules are printed on LO, and the checksum and sequence
for each record are verified. After interpreting the !*LIST
control command, the Editor checks if any two of SI', BI,
and Ul are assigned to the same device or disk file. 1f so,
the message

** D LIST UL, ddnn
11BEGIN WAIT.

is written on OC, The operator responds by preparing Ul
and entering an S key-in. Listing of the modules proceeds,

If no two of the labels SIf, BI, or Ul are assigned to the
same device, confrol commands are interpreted as they are
read and are written on DO. If the Ul device is assigned
fo a sequential-access RAD file, the Object Module Editor
leaves the list mode after reading the end-of-file.

118 Object Module Editor Routine

In the modify mode, any modules to be inserted are read
from the BI device and written on UO, as indicated by the
control commands. If there are input files to be updated,
they are read from Ul. The names of all object modules
written on UO are listed on LO. The object modules on
BI must be in the same order in which they are to be in-
serted on UO, or BI must be rewound before each INSERT
command, If Bl is a disk file it is rewound with each
INSERT command.

The Object Module Editor operates in the "prestore” mode
{reading and storing commands before interpreting) when
the conditions shown below sccur; otherwise, the Editor
operates dynamically.

Operational Labelst Assigned

to Same Device-File Prestored Data

S, Bi ‘ S1
S1, Ul S1
BI, UI BI
SI, BI, Ul S1, BI

Bl is never prestored if assigned to a disk file,

After entering the modify mode, the Object Module Editor
operates as follows:

If any two of the operational labels SIf, BI, and Ul are as-
signed to the same device-file. Object Module Editor fol-
lows the steps below:

1. Interpretation of control commands begins. If any ob-
ject modules are to be inserted, and if SI and Bl are
assigned to the same device, the SI device is read until
an 1EOD is encountered and the message

** {D INSERTS Ul, ddnn
JIBEGIN WAIT

is written on OC and DO. The operator loads the mod-
vles to be inserted on the BI device and keys in an S.

If SI and BI are assigned to different devices or files,

no message is written. The Editor then reads in all the

modules on Bl until either an 1EOD or any other record
with a first byte different from X'FF' or X'9F' is read
from Bl. Blank records are ignored.

2. I there are input files to be updated, the message '

** LD INPUT UI, ddnn
1IBEG IN WAIT

is written on OC and DO. The operator must prepare
Ul and enter an S key~-in,

3. The mode modification control commands are inter-
preted, causing updating or generation to proceed. Each
control command is listed on LL as it is interpreted,

TSubstitute OC for SI if a KP key=in is in effect.

If no two of the operational labels sif, BI, and UI are
assigned to the same device-file, control commands from SI
are read and interpreted dynamically. Records are read
from BI and UI and written on UO in response fo each mode
modification control command. Every control command is
listed on LL.

Object Module Editor uses M:READ and M:WRITE to perform
all input/output. Each object module is identified by the
program name stored in the start module item. No modules
with blank names are even written on the UO tape.

CALLING OBJECT MODULE EDITOR

The Object Module Editor is requested with the control
command

IUTILITY OMEDIT

After interpretation of the IUTILITY control command,
control is transferred to the Object Module Editor routine.
The control command and options available to OMEDIT are
described below.

Object Module Editor begins reading control commands
until an 'EOD or an !*END is read, which terminates
the input.

OBJECT MODULE EDITOR CONTROL COMMANDS

LIST The 1*LIST command causes the Editor to enter the
list mode. The names of the object modules on Ul are read
and listed on LO, Any checksum errors detected cause
error messages to be written on LO, but listing continues.
If the record is an IEOD, it is listed. If two consecutive
IEQODs are encountered, the Editor leaves the list mode and
the next control command is interpreted. The form of the
command is

I*LIST

fSubsfii‘ute OC for SI if a KP key-in is in effect.

MODIFY The '*MODIFY command indicates that ob-
ject modules are to be output on the UO device and causes
the Editor fo enter the modify mode. The modify mode ter-
minates when an IEOD command is interpreted from SI.

The form of the command is

o

where

GEN is an optional parameter indicating that ob-
ject modules are to be selectively input from BI
and that files are to be generated on UO, Ulis
not read. The control command *MODIFY GEN
may be followed only by !*INSERT control com-
mands (GEN implies I*INSERT) used to define the
elements fo be selectively copied from Bl to UO,
No !*DELETE control commands may be used in
the GEN mode,

INSERT must be specified if insertions from BI are
to be read. If BI and Ul are assigned to the same
non-disk device, the complete Bl file (up to an
IEOD) will be prestored. Modules can be selected
from BI by names on the I*INSERT control com-
mands. The inserts must be in proper order. This
command is used to update (input both I*INSERT
and !*DELETE commands) Ul and to write UO,

Note: If INSERT and GEN are omitted from the !*MODIFY
control command, only !*DELETE control commands
may be inpuf.

MODIFY SYSTEM RBM SYSGEN magnetic tapes or any
object module file can be rapidly and easily updated by use
of ' *MODIFY SYSTEM, a UTILITY OMEDIT control com-
mand. This command updates Ul to UO with new object
modules inserted from Bl. Deletion and insertion are done
in the sequence; read Bl for IDENT, record back BI, delete
Ul object module with IDENT corresponding to that just read
from BI, and insert new object module from Bl. This process
continues until the specified number of files are updated and
written to UO, BI is rewound with this command. Ul may
contain mixed EBCDIC (80 byte) and standard RBM binary
(120 byte) records.

Note: The first six records of the RBM SYSGEN system
are nonstandard binary records and are copied

automatically.

The form of the UTILITY OMEDIT control command is:

F*MODIFY SYSTEM, n

Any number of files (n) may be copied to UO from Ul with
binary object modules inserted from BI modules replacing
those containing the same IDENT from UI, All BI object

Object Module Editor Routine 119

modules are inserted until an EOF is encountered, Ul is
copied to UO until n files (default = 31)are written to UO.
An additional EOF is then written to UO and return is to

RBM JCP. No I'*END or IEOD control command is required.
(Note that I*END control command will cause a monitor
CC abort,) BI must be assigned to a RAD or magnetic tape

file with an EOF terminating the object modules. Object
modules from Bl must be in the order that they are encoun-

tered on Ul, Appropriate error messages followed by aUT
background abort results when errors are detected,

INSERT The 1*INSERT command causes an object mod-
ule to be inserted and is effective only in the modify mode.
The form of the command is

I*INSERT name, [,namez]

where

namej is the name (up to eight EBCDIC characters)
of the object module to be inserted.

name, is the name (up to eight EBCDIC characters)
~of the object module on Ul that the name object
module must follow. If name, is omitted, the
name; module is written following the module
previously written on UO,

Modules to be inserted from BI must be in the same order as
in the INSERT control commands. If GEN is specified on
the MODIFY command, only the namet parameter in the
INSERT command is required; if a namej is specified, it is
ignored, If Bl is a disk file, it is rewound with each IN-
SERT command.

DELETE The DELETE command causes object modulesto
be deleted and is effective only in the modify mode. The

form of the command is

1*DELETE name, [,nomez]

where

namey is the program name (up to eight EBCDIC
characters) of the first or only module on Ul to be
deleted,

name, is the program name (up to eight EBCDIC

characters) of the last module on Ul to be deleted,

If absent, only one module is deleted.

The ! *DELETE control command must name modules in the
same order as their occurrence on Ul,

120 Record Edifor Routine

RECORD EDITOR ROUTINE

The Record Editor is used for source editing by record
number from any sequential device to any other sequential
device. Record Editor provides the following capabilities:

1. Generates files containing source data.

2, Lists files containing source imagesin addition to asso-
ciated line numbers.

@

Lists selected records in a file.

>

Modifies files containing source images.

RECORD EDITOR OPERATIONAL LABELS

The following operational labels must be assigned in addi-
tion to the standard Utility program operational labels:

Label Explanation

S1 Input device for control commands,

LO Qutput device for listing source images.
Ul Input device.

uo Output device,

Note: Substifute OC for SI if KP key-in is in effect.

RECORD EDITOR OPERATING CHARACTERISTICS

The Record Editor routine operates in two modes: list and
modify.

In the list mode, the Editor reads source images from Ul and
lists them on the LO device, It associates each image with
a decimal line number, starting with 1,

In the modify mode, the Editor either updates or generates
files on the UO device.

Record Editor uses M:READ and M:WRITE to perform all
input/output. Therefore, all the paper tape editing and
keyboard/printer editing that is standard to these routines
is performed.

CALLING RECORD EDITOR

The Record Editor is requested with the following control
command

YUTILITY RECEDIT

After interpretation of the IUTILITY control command, con-
trol is transferred to Record Edifor, which begins reading
control commands,

RECORD EDITOR CONTROL COMMANDS

A command requesting either the list or modify mode must
immediately follow the IUTILITY command. All other con-
trol commands are interpreted as subcommands under each
mode.

If a binary record is read from UI, Utility aborts after issu-
ing the following message on OC and DO:

** MODE ERR Ul, device

LIST The {*LIST command (list mode) causes the previous
mode to terminate, The source files are read from Ul and
listed on LO. Each EBCDIC source image is listed along
with an associated line number up to and including the
first IEOD source image or file mark read. After the
required number of files has been listed, another control
command is read, Each !*LIST control command, file
mark, or !EOD causes the line numbering fo restart with 1.,
The form of the command is

I*LIST [number]

where number indicates the number of filesto list. Listing con-
tinues until two consecutive !EODs are encountered or the
specified number of filesislisted. If "number"isomitted, one
fileislisted. If number is zero, the from/to parameters form
limit pairs that define inclusively the records to be listed from
the current file. Limit pairs must be in ascending order,

except that two equal pairs cause onlyone record to be listed.

A 1*MODIFY, !*END, or !IEOD control command causes
the list mode to terminate,

MODIFY The *MODIFY command informs the Record
Editor that files are to be either generated or updated. It
terminates the previous mode and initiates the modify mode.
The form of the command is

*MODIFY [LIST][, GEN]

where

LIST indicates that a listing of records deleted or
inserted will be produced on LO. If LIST is the
only parameter used, the listing will contain the
UI line numbers (the number deleted or the num-
ber preceding the one inserted). If GEN is also
present, the UO line numbers will be listed.

GEN indicates that records are to be read from SI
(there is no input on Ul) and written on UO, If
updating is to be performed (that is, there is input
tobe read from UT), the parameter field is left empty.

The modify mode is terminated whenever a [*LIST,
I*MODIFY, !*END, or IEOD conirol command is input
from SI. When the modify mode is ferminated and GEN is
specified, an IEOD or file mark is written on UO. When
the modify mode is terminated and GEN is not specified,
the remaining source images of the file on UI (until an EOD
is encountered) are written on UO, followed by an EOD or
file mark, ‘

DELETE The !*DELETE command causes the indicated
record source images fo be deleted and is effective only in
the modify mode. The form of the command is

I*DELETE number] B numberz]

where

number is the line number of the first (or only)
source image to be deleted.

number? is the line number of the last source image
to be deleted.

INSERT The !*INSERT command causes record source
images from S1 to be added to Ul and written onto UQ, and
is effective only in the modify mode. The form of the com-
mand is

1*INSERT number

where number is the line number that the insertions are to
follow. If a line number of 0 (zero) is used, the insertions
will precede the first line.

Every source image on SI following the I*INSERT control
command is inserted until a new Record Editor control com-
mand is encountered.

CHANGE The ! *CHANGE command causes the indicated
source images to be deleted, and the source images fol-
lowing the CHAN GE command to be written on UO. The
command is effective only in the modify mode. The form
of the command is

1*CHAN GE number 1 [, number2]

where
number | is the line number of the first source image
to be deleted.
number?p is the line number of the last source image

to be deleted. If omitted, only one source image
will be deleted.

Following the 1*CHANGE control command, every source
image on SI is inserted until another Record Editor control
command is encounfered,

Record Editor Routine 121

SEQUENCE EDITOR ROUTINE

The Sequence Editor edits EBCDIC card images by sequence
number. It is more flexible than the Record Editor in that
multiple programs or sections of programs may be updated
and sequenced individually within single or multiple files.
It provides greater protection from updating in an incorrect
sequence, or from accidentally updating the wrong program,
Another feature of the Sequence Editor routine is that update
card images may be inserted without changing the existing
sequence numbers. Thus, update decks may be cumulative
and will reflect the development of a source program.

The Sequence Editor is primarily intended for installations
where EBCDIC source programs are kept on magnetic tape.
It is somewhat impractical for paper-tape-oriented systems
or systems without a line printer.

Editing isaccomplished by designating columns 73 through 80
of a source card image as the "sequence field", This field
consists of two parts, the ident and the sequence number.

The optional ident is that portion of the sequence field that
uniquely identifies a program or program segment, If de-
fined, the ident begins in column 73 of the card image and
is from one to six alphanumeric characters in length.

The required sequence nuniber is that portion of the sequence
field that is sequenced numerically. It consists of from two
through eight decimal characters and ends in column 80 of
the card image. The user can specify the value by which
successive sequence numbers are incremented. In general,
a large sequence increment will allow larger insertions
without affecting the existing sequence numbers.

Together, the ident and sequence number must not total
more than eight characters. Any unused columns will be
between the ident and the sequence number and will be
ignored by the Sequence Editor.

SEQUENCE EDITOR OPERATIONAL LABELS

The following operational labels are used by the Sequence
Editor routine:

Label Explanation

SI Update data (includes card images and con-
trol commands). Not effectedby KP key=in,

LO Annotated listing of added and deleted
card images.

Ul Input device.

uo Output device.

Device, above, refers to any permanent storage device such
as magnetic tape, paper tape, or RAD (single sequential
file). Note that LOshouldnot be assigned to the keyboard/
printer, because the sequence number portion of the print-
out is truncated on that device.

122 Sequence Editor Routine

SEQUENCE EDITOR OPERATING CHARACTERISTICS

The Sequence Editor performs two separate and distinct
functions: generates files on UO from source images input
on Ul and updates files from Ul onto UO, taking updates
from SI. Only one of these functions can be performed per
call to the Sequence Editor (SEQEDIT).

The file generation (GEN) function is used to create the
permanent files initially. It is required that files be se-
quenced as they are generated. The user can generate one
file (teminated by a file mark) wherein a single file mark
is written on UO, or multiple files (terminated by two file
marks) wherein two file marks are written onto UO and UO
is backspaced one file.

The update function is used to update Ulbyreplacing, delet-
ing, or inserting card images from SI and writing the updated
files onto UO. The files can be resequenced as they are
written. The user canupdate one file (terminatedby an EOF
from UI) wherein an EOF is written onto UO, or all files
(terminated by logical end-of-tape or two EOFs from UI)
wherein two file marks are written on UO and UO is back- -
spaced one file. With the ALLoption, it is not necessary to
update each file, but all files will be copied onto UO.

Sequencing is a separate operation in that the card images
are sequenced as they are written on UO, Thus, it is possible
to update an existing file by ident and sequence number while
placing anew ident and sequence number on the update file,

CALLING SEQUENCE EDITOR

The Sequence Editor is requested via the control command

1TILITY SEQEDIT,[GEN](,IGN][,ALL]

where

GEN indicates that output files are being gener-
ated on the UO device and that there are no input
files to be updated.

IGN in update mode indicates that Ul sequence
errors are to be ignored if Ul is being updated. If
IGN is used, no sequence error messages are
printed.

In GENmode, IGN indicates that UQ isnot lisfed.

ALL indicates that the function is to continue until
two EQOFs are encountered from UI,

The leading comma must be specified,

~ The Program Executive transfers control to the Sequence

Editor, which interprets and validates the parameters. If
illegal parameters are input, the Utility program aborts with
a code of UT. If this is an update (the GEN option was not
specified), the following message is outputon OC and DO.

** | D INPUT U, ddnn
TIBEGIN WAIT (if attend mode only)

SEQUENCE EDITOR GENERATE CONTROL COMMAND

SEQUENCE The !'*SEQUENCE command is used to
sequence columns 73 through 80 of the card images on UO.
Only one file can be sequenced with each *SEQUENCE
command. The form of the command is

1*SEQUENCE sequence field, increment

where

sequence field contains the sequence number of the
first sequenced card image to be written on the
output tape.

increment is the sequencing increment number, If
omitted, an increment of 10 is used. It is the re-
sponsibility of the user to ensure that the sequence
number does not get incremented past the size of
the sequence number field. No warning is issued
if this overlap occurs,

SEQUENCE EDITOR UPDATE CONTROL COMMANDS

IDENT The !*IDENT command defines the breakdown .
of the sequence field into the ident and the sequence num-
ber. It applies to card images from Ul and SI only. If used,
it should precede the update cards to which it applies, If
omitted, the ident field is considered empty and the se-
quence number is eight characters in length. The !*IDENT
control command is used whenever it is necessary for the
Sequence Editor to know the size and content of the ident
field (that is, when Ul contains multiprogram files or single-
program files with nondecimal characters in the sequence
field). It is not to be used when files are being generated.
The form of the command is

1*IDENT [ident][,sequence-number]

where

ident isaninteger n| (0 <nj=<6) that specifies
the number of characters in the ident subset of the
sequence field starting from column 73, If "ident"
is omiited, theident field does not exist.

sequence-number is an integer ny (2< ny < 8) that
specifies the number of characters in the sequence
number subset of the sequence field ending in
column 80. If omitted, sequence number is set

equal to the difference (8 - ident).

The user should note that if a nonzero ident field has been
specified on an [*IDENT command, the idents on each card
image from Ul must match exactly or resequencing will be
suspended when the first nonmatching ident is encountered.
Hence, if Ul is known to have nonmatching idents (for ex-
ample, a file that has never been sequenced or one that has
been updated and contains some blank sequence fields), a
separate sequence operation should be performed (without

a simultaneous update) specifying an empty ident field.

Replacement. The update card itself, rather than a control
command, is used to replace a card image from Ul, The
sequence number on the update card must equal the sequence
number on the Ul card image to be replaced. The card im-
age for Ul and the message "DELETED", followed by the
card image from SI and the message "INSERTED" are output
on LO.

Insert. The update card itself, rather than a control
command, is used to insert a card image on UO. The se-
quence number on the update card must be between the
sequence number of the two continuous Ul card images
where the update card is to be inserted, The card image
from SI and the message "INSERTED" are output on LO.
Cards without sequence numbers are inserted immediately
following the sequenced card preceding them. Thus, a
large block of card images can be inserted by placing the
proper sequence number on the first card only. The nonse-
quenced cards will be written on the output tape without
sequence numbers. It is recommended that the tape be re-
sequenced as it is being updated if unsequenced cards are
inserted.

DELETE The I*DELETE command deletes one or more
card images from Ul. Nonsequenced cards can only be de-
leted by deleting from the last sequenced card preceding
the nonsequenced card(s) up to and including the next se-
quenced card. Deleted card images are listed on LO. The
form of the command is

73 : 80

I*DELETE [sequence fie|d2] sequence field]

where

sequence field indicates that the images are to be
deleted from the ident and/or sequence number in
sequence field) up to and including the ident and/
or sequence number in sequence fields.

sequence field contains the ident and/or sequence
number of the first or only card image to be de-
leted from UL, This parameter is required.

SUPPRESS The I*SUPPRESS command is identical to the
I*DELETE control command except that no deletion and
images are listed on LO. The form of the command

73 80

I i
T T

1 *SUPPRESS [sequence fieldz] sequence field]

Sequence Editor Routine 123

SEQUENCE The !*SEQUENCE command is used to
resequence columns 73 through 80 of the card images on
UO. Only one program can be resequenced with each
I*SEQUENCE command. Therefore, resequencing is sus-
pended when either a file mark or a card image with a
sequence number identifying a new program is written on
the output tape. Resequencing is also suspended when
another I'*SEQUENCE command is executed; therefore,
parts of a program as well as entire programs can be rese~
quenced, The form of the command is

73 80

I*SEQUENCE seq. Field2 , increment seq.fieldll

where

sequence fieldy contains the ident and/or sequence
number of the first resequenced card image to be
written on the output tape and does not neces-
sarily have the same fields as defined in the
I*IDENT command. (The !*IDENT command
defines sequence fields for the input tape and
update data only.) If omitted, resequencing is
suspended,

increment is the resequencing increment number,
If omitted, an increment of 10 is used. It is the

124 Utility Error Messages

responsibility of the user to ensure that the
sequence number does not getincremented past the
size of the sequence number field. No warning
is issued if this overlap occurs,

sequence field contains the ident and/or sequence
number from Ul at whichthe ! *SEQUENCE command
becomes effective. If omitted, the !*SEQUENCE
next card image to be written on UO,

UTILITY ERROR MESSAGES

Table D-5 of Appendix D lists the error messages issued by
the Utility Subsystem, Unless otherwise noted, the folow-
ing definitions apply in these messages:

Code Explanation
oplb Operational label of the device.
device Device type or physical device number.

The operator response to a ! IBEGIN WAIT message on OC
may be any valid, appropriate, RBM unsolicited key-in,
such as S to continue processing, or X to abort job. Other
appropriate key—in may precede an S key-in if desired.
The ! IBEGIN WAIT message is used only if attend mode
is in effect,

10. PREPARING THE PROGRAM DECK

The following examples show some of the ways program
decks may be prepared for RBM operation, Unless stated
otherwise, standard default cases for device assignments
are assumed,

EXTENDED SYMBOL EXAMPLES

ASSEMBLE SOURCE PROGRAM, LISTING OUTPUT
AND BINARY QUTPUT

I"Source deck

| IXSYMBOL BO, LO
1JOB

In this example, the symbolic input is received from the

SI device (always defaulted), the binary output is received
on the BO device, and the listed output is received on the
LO device. Note that although BO and LO are normally
default cases, they must be specified if output to the GO
file (also a default) is not desired.

ASSEMBLE IN BATCH MODE, LISTING OUTPUT AND
BINARY OUTPUT WITH SYMBOL CROSS-REFERENCE

Source deckv 2

'EOD (optional)

Source deck 1
[1XSYMBOL BA,LO,BO, CR
1JOB

In this example, the source decks are assembled in batch
mode (BA). In this mode, successive assemblies may be
performed with a single !XSYMBOL command until a
double |EOD command is encountered. The parameters
defined on the IXSYMBOL command will hold true for
each assembly in the batch. Each assembly will be fol-
lowed by a Symbol cross-reference (CR).

ASSEMBLE, LOAD, AND GO FROM USER DEFINED
OV FILE, LISTING OUTPUT

| IxEQ
[1EOD
|tsrOOT ,,GO
| roLoaD
IASSIGN OV=USEROV, UP

[1eOD
—1 Source deck

[1XsymBOL LO, GO
1JOB

1EOD
| 1#ADD UP, USEROV, 4
— IRADEDIT
| tPAUSE KEYIN SY, S
| TATTEND

1JOB

In this example, the user is defining his own OV file
through a call to the RAD Editor. After assembly, the OV
file is assigned to the user defined file. The call to the
Overlay Loader (1OLOAD) causes it to load the module
defined on the !$ROOT command to the USEROV file for
execution. The advantage to assigning the program to a
user-defined OV file rather than using the RBMOV file is
that the program can be loaded into core for execution
repeatedly without reassembly. Conversely, the contents
of RBMOV cannot be guaranteed to be saved from one job
fo another.

Preparing the Program Deck 125

ASSEMBLE SOURCE PROGRAM,
LISTING OUTPUT, LOAD AND 60

[Xeq
| teop
[1sroOT ,,GO
IOLOAD

; SOUrce deck
] IXSYMBOL LO, GO
'JOB

In this example, the binary object module is loaded into
the RBMGO file located in the System Data area. The call
to the Overlay Loader (!OLOAD) causes it to load the mod-

ule defined on the I$ROOT command to the RBMOV file for
execution. The double comma on the I$ROOT command
informs the Loader that l'he temp, exloc parameter options
are defaulted.

BASIC FORTRAN IV EXAMPLES

COMPILE MULTIPLE PROGRAMS

Source Deck(s)

IFORTRAN XP

7 Source Deck(s)
| IFORTRAN LO, XP

| 1assicN Go=0
1JOB

126 Basic FORTRAN IV Examples

In this examble, output to the GO file is not desired in the
first job, so the GO oplb must be assigned to 0 (see Appen-
dix E and !ASSIGN command writeup in Chapter 2). An

_ object listing is desired (LO) and extended precns:on real

data is spec:fred

The second job will receive a source listing by default and
extended precision real data is again specified. Since the
parameters are different on the two IFORTRAN control
commands, the jobs cannot be run in batch mode,

COMPILE, LISTING OUTPUT, LOAD AND 60

IFIN
1EOD

Data deck’
IXEQ

| 1EOD
- _|isrooT ,,G0
L TsmL

| 1OLOAD

IEOD

Source deck

_| IFORTRAN \

| IATTEND

1JO8B

In this example, the IATTEND command specifies that |

the Monitor is to go into a "wait" state instead of
aborting the job in case of irrecoverable error (gener-
ally recommended for "load and go" jobs). Binary out-
put will be received on both the BO and GO devices
by default, and standard precision mode is also assumed
by default. The binary object module is loaded into
the RBMGO file located in the System Data area.

The call to Overlay Loader (!OLOAD) causes it to

load the module defined on the 1$ROOT command to
the RBMOV file for execution. The double comma on
the 1$ROOT command informs the Loader that the temp,
exloc parameter options are defaulted. The Loader is

requested to output a LONG map (1$ML). The IXEQ
command causes the executable program to process the
data deck.

COMPILE AND EXECUTE FOREGROUND PROGRAM

This example would be used for debugging purposes only.

[1XEQ
[teop
[1SROOT ,+1800, GO
4 l 1$TCB +DBOD, +1200
[1oLoAD ,F

IPAUSE KEYIN FG, S \

IEOD

-————{?ORTRAN source statements

[FORTRAN
| 1ASSIGN BO=0
1JOB

In this example, binary output to the BO device is
suppressed. The IFORTRAN control command specifies
that the binary output is to be received on the GO file
by default and standard precision mode is assumed. The
IPAUSE command permits the operator to key in FG, S
to access protected foreground memory. The program is
defined to the Overlay Loader as a foreground program
(YOLOAD, F) and the COMMON base is set to the
FWA of the background. The Loader is to create the
Task Control Block, the first two words of which are
defined on the I$TCB command. These two words spe-~
cify that the task is to be connected to interrupt loca-
tion X'10D' (Intergral interrupt number 2, priority level 8,
within group 0).

The I$ROOT command specifies that the root is to be
loaded from the GO file, and will start execution at
location 1800 in foreground memory. The core image

form of the program is loaded on the OV file (RBMOV),

The !XEQ command loads the executable program into
core, When loaded, the task is armed, enabled, and
then triggered.

SEGMENTED PROGRAM EXAMPLES

ASSEMBLE SEGMENTED BACKGROUND PROGRAM,
LOAD AND GO

seg 1

. Root (seg 0) seg 2

4

seg 3

-t

| 1xEQ
| teoD
| 1smp
| 155€G,3,0,GO, 1
| 1$SEG 2,0,GO, 1

1$SEG 1,0,G0O, 1 \

| 1sr00T ,,GO,1
| 1OLOAD 3,8

IEOD

Source deck 4

IEOD

Source deck 3

Source deck 2

IEOD

J Source deck 1

——:l IXSYMBOL BA

| IATTEND

1JOB

Given the program tree structure shown above, the sample
deck setup illustrates a background program with a root and
three overlay segments. These are assembled and loaded
into the RBMGO file. The !OLOAD command specifies
that these three segments are to be loaded, and defines it

Segmented Program Examples 127

as a background program (B). The $SEG commands specify
that segments 1 through 3 are attached to the root, and the
modules are to be loaded from the RBMGO file to the
RBMOV file for subsequent loading into core for execution.
A load map is output (1$MP).

LOAD AND EXECUTE MULTIPLE OBJECT MODULES

seg 4
seg 1
Root seg 5
et R LA
seg 2
seg 3
| IXEQ
1SEND

T Object m .l.;le
' 1$SEG 3,0,BI, 1

2 Object modules
1$SEG 2,0,B1,2

1 Object module
$SEG 5,1,B1,1

1 Object module
| $SEG 4, 1,BI, 1

1 Object module
1$SEG 1,0,BL,1

3 Binary object modules
— I1SROOT ,,BI, 3

| toLOAD 5,8
1JOB

128 RAD Editor Examples

Given the sample program tree structure shown above, the
iltustrated deck would load and execute the segmented
program, The program is loaded from either the device or
file assigned to the BI operational label. No load map is
requested (on !$ML, !$MS, or I$MP command could be
inserted after the lOLOAD command if a map was desired).
Although the segments could be loaded in any order, the
proper calling sequence is the responsibility of the user.

RAD EDITOR EXAMPLES

BUILD PUBLIC LIBRARY

Relocatable binary module 5

{ Relocatable binary module 2

Re[ocafublmry module 1
| 1spUBLIB E,BI,5
| 1oL0AD
| !ASSIGN OV=PUBLIB, UP

IEOD

1 1#ADD UP, PUBLIB, 48,0, R, R

| 1#ADD 5D, LIBSYM, 20,0, R, R
| IRADEDIT
| IPAUSE KEYIN SY, S

1JOB

The Public Library is core resident. In this example, the
user must create two RAD files to set up the Public Library:
the LIBSYM file and the PUBLIB file. The LIBSYM file
contains the Symbol Table for the Public Library and is used
by the Overlay Loader to satisfy references to the Public
Library. The PUBLIB file contains the Public Library and

is booted in with RBM. (RBM must be rebooted to load the
updated Public Library.)

LOAD ROUTINES IN USER LIBRARY

1#END

J Object module (RMAX
1#LADD UL,RMAX, B

Object module (TUU ident)

1#LADD UL, TUU, E

| Object module (RDATA ident)

1 1#/LADD UL,RDATA, M

E#ADD UL, MODULE, 150,120,P,R

| 1#ADD UL, MDFRF, 2,0,R, R
1#ADD UL,BDFRF, 2,0,R,R

| 1#ADD UL, EDFRF, 2,0,R,R
| 1#ADD UL, EBCDIC,6,0,R,R

——— 1#ADD UL, MODR,3,0,R,R

| 1rADEDIT
| 1PAUSE KEYIN SV, S

1JOB

In this example, the User Library requires the following
six files fo be allocated in the User Library area (UL):

MODIR, EBCDIC, EDFRF, BDFRF, MDFRF, and MODULE,

The 1#LADD command enfers the routines into the defined

four files, depending on the library code parameter on the
1#LADD command: Basic (B), Main (M), or Extended (E).

The same basic method is used to set up the System Library.

UTILITY EXAMPLE

CREATE A CONTROL COMMAND FILE

{1EOD
1JOB

Control command deck

1JOBCt

[1*END
| 1copy F

——— (*OPLBS UO

_| 1*ASSIGN UO=CCFILE, UD N\

I*ASSIGN UI=SI \

| IUTILITY COPY
[1#enD

—— (#ADD UD, CCFILE,5,80,C,N
| IRADEDIT

1JOB

In this example, the job stream will create the compressed
file CCFILE in the User Data area. Control commands will
be read from the SI device info file CCFILE, The job
stream on CCFILE may now be executed by assigning

CC = CCFILE, UD. Note that CCFILE must not have a
1JOB command on its first entry, since this would imme-
diately transfer CC back to the SYSGEN assignment. How-
ever, it is often convenient to end the control command
file with a 1JOB command to initiate a return to the
SYSGEN assignment,

fA 1JOB .command must not be the first card in the control
command deck; 1JOBC is permissible.

Utility Example 129

11. SYSTEM STARTUP

The startup of an established RBM system (that is, subsequent
to system-generation time) is normally performed either by
"booting” from a self-loading ‘'system-save tape', or by
booting directly from the system disk! if the latter has not
been disturbed (e.g., used for another purpose) since the
previous shutdown of the system. As part of this startup
process, updating of the public library and the resident
foreground can be achieved, as well as absolute system
patching applied to both core and RAD images.

Other forms of initial system loading and system updating
are described in the RBM/SM Reference Manual, 90 30 36.

SYSTEM SAVE TAPE

A system save tape is produced by assigning operational
label BO to magnetic tape and using the #SAVE function of
the RAD Edifor, omitting the FILE parameter, while the
system is in an operational state (e.g., prior to shutting
down). All RAD and/or disk pack areas necessary to sub-
sequent system operation should be specified to be saved.
The tape will contain a first block boofstrap routine, a
restore program, and the saved disk areas. After the restor~
ation of the system disk image, the restore program auto-
matically initiates an RBMboot from the systemdisk device.

The restore program issues the following message:

RESTORING VERSION xx OF mm/dd/yy hrmn

As each area is restored, the message

RESTORING area TO dn

(dn = device number)

is issued, unless DATA switch 2 is up. [f the area is the
first area being restored to a disk pack or cartridge disk,
the message

IDLE, RUN TO WRITE

is issued. [f it is permissible to write on the indicated de-
vice, the operator must move the COMPUTE switch to IDLE
and back to RUN in order to continue.

If an end-of-tape condition is sensed, the resfore program
will rewind the tape off-line (i.e., set it to the manual
mode), output the message

MOUNT NEXT REEL

*RAD or disk pack.

130 System Startup

and attempf fo read the original tape device number. The
restore operation will continue when the next reel is
mounted and the tape drive is placed in the automatic mode
(by pressing START on the tape drive control panel).

Table 20 lists the error messages that may be output while
restoring the system to the RAD/disk.

Table 20. Save-Tape Restore Error Messages

Operator

Message Restore Program Action | Action

WRITE PRO RAD | Keep trying fo perform | Reset RAD
write operation. write—
protect
switches.

SEQ ERR Keep trying to read Restart or

the tape successfully. abort'.

CHECK WRITE Keep trying to per- Restart or
ERR form write/check- abort! .
write operation.

CHSM ERR Keep trying fo read Restart or
the tape successfully. | abort!.
TAPE TRANS. Keep trying to read Restart or
ERROR the tape successfully. | abort!.
RAD TRANS. Keep trying to per- Restart or
ERROR form write operation. | abort .

i.To restart, rewind tape and reboot; to abort, activate
PCP interrupt which causes loading of the current area
to be abandoned. Following the abort, the tape is
searched for the next area to be restored.

RBM BOOT PROCEDURE

The RBM boot procedure is essentially the same whether the
system is loaded directly from the system disk or from a self-
loading save tape (of the form described above) via the disk.
The principal difference is that in the former case a standard
hardware-load operation is initiated from the system-disk
device; in the latter case, from the tape drive on which the
save tape is mounted (the subsequent load from disk is auto-
matic). In either case the actual boot process is effected
by the loading to memory and execution of the RBM booi-
strap record.

The RBM bootstrap will initially move itself to h?gh core and
then read in RBM from the system processor area of the RAD.
The information necessary to read in RBM is contained in

the bootstrap and is supplied at system generation time
when the bootstrap is written on the RAD. After the resi-
dent portion of RBM is loaded, control is transferred to an-
other bootstrap that loads the remainder of the RAD. This
second bootstrap functions in the overlay region of the RBM.

The second bootstrap initially inputs the Transfer Vector
Table to complete the loading of the resident portion of
RBM. Next, if DATA switch 4 is not set, an attempt is
made to assign an operational label to the PUBLIB file in
the user processor area. If a Public Library is present, the
assignment will be made and the bootstrap then inputs the
Public Library. If DATA switch 4 is set, the Public Library
will not be loaded. After the Public Library is processed,
a Hex Corrector paiching routine (see below) will be acti-
vated if DATA switch 1 is set. If DATA switch 3 is not set,
the bootstrap then searches the SP, UP, and FP area direc-
tories (in that order) for all files flagged as a resident fore—
ground file. All such files are loaded one at a time as they
are encountered in the file directory and their initialization
routine is executed if one exists. The initialization routine
can do any required housekeeping (such as repositioning all
appropriate files), arm and enable the appropriate interrupts,
and then return control to bootstrap. (The initialization
routine is linked by an RCPYI P, L instruction.) It expects
to have control returned to the address in the L register.
Hence, the bootstrap will read in the resident foreground
programs one by one and execute any initialization routine
unless DATA switch 3 is set.

The system is then completely loaded and the-bootstrap sets
the protection registers, outputs the following messages (if
DATA switch 2 is not set), and enters a wait state:

I1AFTER '"WAIT' SET PROTECT
PISET PARITY
HKEY-IN'S' TO BEGIN

If the computer enters a "wait" state before the above mes-
sages are output, the bootstrap was not successful in loading
the required data. This would usually be caused either by

a parity error while reading the RAD or by a faulty fore-
ground program.

Note that if the above messages are inhibited by setting
DATA switch 2 prior to execution of the boot, the opera-
tions indicated by the messages should still be performed,
however, in order to ensure system integrity.

PUBLIC LIBRARY CREATION OR UPDATING

The Public Library can be created and thereafter can be
completely regenerated any time the user desires. A file
with the name PUBLIB will have to be defined via the RAD
Editor in the User Processor area for the Public Library, and
a file named LIBSYM must be defined in the System Data
area of the RAD. The relocatable binary decks of all rou=-
tines fo be specified as being in the Public Library are
loaded by the Overlay Loader (via the 1$PUBLIB control
command) and an absolute core image version is written by
the Overlay Loader on the RAD file defined as PUBLIB.

Before executing the Overlay Loader, the operator must
key in SY so that the Loader can write in a protected RAD
file.

When a Public Library is successfully loaded, additional up-
dating of RAD files will be done by the Overlay Loader.
The Public Library Transfer Vector Table will be input from
the RAD and either created (for an initial load) or updated
for succeeding loads. This process consists of linking each
Public Library definition (DEF) in the Symbo! Table to a
transfer vector and linking the transfer vector to the value
of the DEF. When the linkage is completed, the Overlay
Loader writes the new Public Library Symbol Table into a
previously defined file (called LIBSYM) in the system data
area of RAD. For an initial load, this file will be previ-
ously defined, via the RAD Editor, with the name LIBSYM.
The new Transfer Vector Table is then written on the RAD
(replacing the previous one), and the Loader exits to
M:TERM. (Note that RBM must be rebooted from the RAD
in order to load the Public Library into core memory.) The
Public Library should not be loaded into core (by rebooting
the system from the RAD) until the user has reloaded all
foreground and background routines that use the Public
Library.

RESIDENT FOREGROUND CREATION OR UPDATING

Resident foreground program files must be defined via the
RAD Editor. These files may be in the System Processor (SP),
User Processor (UP), or Foreground Program (FP) area of the
RAD. Also, the parameter (RF) on the !*ADD command
specifying that this is a resident foreground file will have
to be set. One RAD file can be defined for each fore-
ground program, thus allowing an update to be done on a
program basis as opposed to the entire resident foreground
area. The Overlay Loader reads in a relocatable binary
deck of each foreground program and creates an absolute
core image version of the program in its predefined RAD
file. Foreground programs assembled as absolute sections
must be loaded with an ABS control command. Prior to ex-
ecuting the Overlay Loader, the user may key in SY to
specify that the protected RAD files can be written on.

For an update, only those programs being modified need be
reloaded. However, if a program exceeds its allocated core
space, other programs must be reloaded and relocated at a
new absolute address in a different area of core.

The Overlay Loader (or the Absolute Loader) will store in
the first sector of each file the appropriate header informa~
tion that the RBM bootstrap needs to load and initialize each
foreground program. The information needed by the boot-
strap consists of the following items:

1. Load address.

2. Number of bytes in program.

3. Entry address of initialization routine (if present).

If no initialization routine is specified, the RBM bootstrap
will initialize the task's interrupt level from information in

RBM Boot Procedure 131

the TCB. The task may also be triggered at this point if
the TCB so specifies.

After a resident foreground program is created on the RAD
and is flagged for automatic boot-time loading in its file-
directory entry, it is brought info core by manually reboot-
ing the system from the RAD. It can also be brought into
memory by inputting a Iprocessor or IXEQ command with
oplabel OV assigned to its RAD file.

SYSTEM PATCHING

Patches to the Monitor or Public Library may be loaded at
boot time if DATA switch 1 is set. Monitor patches will
also be written to the RAD, thus ensuring a permanent
change to all future boots. All patch cards have the form

aaaa,cccey [,ccccz,ccccn][*commenfs]

where
aaaa is the first (or only) absolute core memory lo-
cation to be modified.
ccec; are the desired (hexadecimal) contents of

aaaa and the following n-1 locations.
Patches may also be loaded dynamically to user program
(or the Monitor) in either of two ways.

1. Following a HEX control command.

2. Following an unconditional H key-in.

132 System Patching

Al patch decks are terminated by an EOD control command.
To patch relative fo the start of program modules, a bias
card may be used. lts form is

ot

where

bbbb is the bias (load origin of the program) and
the following correctors are loaded relative to
that location.

PA means that the following patches are to be
loaded relative to the RBM Patch Area.

XX is an RBM overlay ID; thus the corrections fol-
lowing the bias card are loaded relative to the
overlay base.

Note: All patches at boot time to the monitor or a monitor
overlay will be written to the RAD. At other times,
three cells of the RBM Patch Area are needed for
each overlay patch. The overlay length is also ex-
panded to the next sector boundary (or maximum of
512 words) to allow use of the end of the overlay as
a dynamic patch area.

Any value on a patch card preceded by an R (Rccce;) will
have the current bias added to it. Any value on a patch
card preceded by a P(Pcccc;) will have the bias of the RBM
Patch Area added to it. Any value on a patch card preceded
by an O(Occcc;) will have the bias of the RBM overlay area
added to it. Any value on a patch card preceded by a
J (Jecec;) will have the bias of the JCP added to it.

The programmer must not modify the first and last cells of
the Patch Areaq, as the first contains the length of the Patch
Area and the last contains the number of temporary RBM
overlay patches. As mentioned previously, three words of
the Patch Area are needed for each overlay patch, taken
from the top of the Patch Area downward. When an RBM
overlay is read into core, the Patch Area is searched for
patches for that overlay. If any are found, they are ap-
plied before control is passed to the overlay.

12. DEBUG

INTRODUCTION

This chapter describes the use of Debug and its interface
with RBM,

GENERAL DESCRIPTION

The RBM Debug package is a debugging tool primarily de-
signed for nonoverlaid background programs, with limited
facility for foreground programs. It provides the user with
the following capabilities:

1. To transfer control to the control device from a speci-
fied location in the user's program or through the Con-
trol Panel Interrupt.

2. To dump selected core and registers on the keyboard/
printer or the line printer.

3. To modify memory locations and registers.
4. To logically insert code at specified memory locations.

5. To begin or continue execution at a specified memory
location (i.e., selective execution).

6. To perform conditional memory dumps (snapshots) of
registers and selected core locations at a specified
location and optionally transfer control to the con-
trol device.

7. To step through a program.
FOREGROUND USER'S DEBUG CAPABILITY

Debug can be used to aid the checkout of a foreground pro-
gram operating at priority levels lower than the Control
Panel Interrupt level. To accomplish this, Debug is moved
to the Control Panel Interrupt level, where it may be di-
rectly entered by pressing the Control Panel Interrupt switch.
The Control Task remains at the lowest interrupt level.
Key-ins requesting Control Task functions may be made by
typing a “"slash" (/) followed by NEW LINE (@) in re-
sponse to the DKEYIN message. Snapshotsmay be placed
in all tasks whose interrupt level is lower than the Control
Panel Task.

OVERLAY USER RESTRICTIONS

When a snapshot is inserted in a currently resident seg-
ment using @ Debug control command, the snapshot is
valid only until the segment is overlaid, since Debug
operates only at execution time on resident programs.
This problem is reduced by allowing the user to assem-
ble Debug calls into his program.

RBM AND FOREGROUND USER’S INTERFACE

Debug is normally a subtask of the RBM Control Task with
a priority just below the IDLE subtask. Debug is triggered
by any of the three resident Monitor routines (D:SNAP,
D:KEY, or D:CARD), by the KEYIN subtask, or by the Job
Control Processor (JCP). JCP triggers Debug when it re-
ceives an XED command, and the system loader transfers
control via D:KEY. When a foreground user wishes to use
Debug, he gives control to Debug by an }XED card or by
an unsolicited key-in of DE. After Debug has control, the
foreground user moves Debug to the Control Panef Task level
with a Define command. After debugging, the foreground
user issues the Debug command Q which restores Debug to
its original level.

MEMORY REQUIREMENT AND iNSERTION
BLOCK DEFINITION

The executive portion of Debug is a foreground program that
may be resident or nonresident. If the program is resident,
it must be so specified when the Debug file is created with
the RAD Editor. It is read into core when RBM is booted.

If the program is nonresident, it is loaded like any other
foreground program (see Chapter 6). Debug has the follow-
ing core memory requirements:

1. Executive 440 locations

Zero table 35 locations
RBM overlay space

2
3. Overlays
4 User-defined

Insertion block
The insertion block is an area of core that stores user—

inserted code, and the zero table cells are used to refer-
ence these insertions (see Appendix C).

DEBUG CONTROL

Control can be given to Debug in the fol lowing ways:

—
.

A direct call to Debug.

The execution of a snapshot.

An unsolicited key~in of DE.

The Debug execution card (1XED).

Al

Control Pane! Interrupt (see Foreground Capability,
above).

A direct call on Debug is a user-coded ‘request for Debug to
read a command. The call has the form

RCPYI P,A
B D:KEY or D:CARD

Debug 133

When the entry is D:KEY, Debug prints the message

HDKEYIN

ADebugcommand will then be read from the proper device-
file number assigned at SYSGEN.

Note that after the initial direct call on Debug a foreground
task will have to exit in order to move Debug to a higher
interrupt.

D:KEY, D:CARD, D:SNAP (shapshot) are small reentrant
routines that actually trigger Debug. An unsolicited key-in
during Debug will not harm the user's environment. The

I XED command performs the same function as the ! XEQ
command except that Debug is called via D:KEY before
executing the user's program.

'DEBUG COMMANDS

After Debug has control, it interprets the following
commands:

Code - Function

D Define

f—

Logically insert code
Insert snapshot
Step (move) snapshot

Remove snapshot or insertion

- ™ X wun

Perform selective dump on keyboard/
printer and Debug output device

P Perform selective dump on Debug output
device

(@]

Set Debug input device to the card reader

Set Debug input device to the keyboard/
printer

Modify memory
Branch (i.e., return control to program)

Exit from interrupt level

Omwg

Terminate Debug
G Global symbol table pointer

Debug uses M:READ and M:WRITE for input/output; and
hence the keyboard character NEW LINE terminates a line,
EOM deletes a line, and cent (#) deletes the previous
character. Debug interprets the semicolon character (;)

(if not in the message field of a snapshot) as a continua-
tion character. The semicolon will terminate the line (or
card and continue the command to the next line {or card).
Blonks are ignored except within the message field of a
snapshot.

134 Debug Commands

Most Debug commands specify registers and memory loca-
tions. Registers are specified as follows:

RP Program address register

RL Link address register

RT Temporary register

RB Base address register

RX Index register

RE Extended accumulator

RA Accumulator

RR All of the above
Locations are specified in one of the following forms:
1. One to four hexadecimal digits.

2. SNAME, where NAME is an IDNT and its value is the
load origin of such module. The Overlay Loader D
option must be invoked if the user is to use IDNT names
with Debug.

3. Sums or differences of values of either of the above two
forms. ’

Examples:

Al4

SSQRT
ABC+5SUB1+1492
SSUB1 - SSUB2

If the SNAME option is invoked, the user must define an in-
sertion block (see the Debug Define command, below), and.
the fast K:BLOCK words of the insertion block are used as
a buffer for the IDNT names.

D (Define)
The Define command is used to define an insertion block
when the Debug commands S or I or the SNAME option is to

be used.

The form of the Define command is

D [sfcrr ,end][,CP]

where
start is the memory location of the first cell of the
insertion block.
end is the memory location of the last cell of the
insertion block.
CP is an optional request fo move Debug to the

Control Panel Interrupt level. The default level
is the RBM Control Task level. An unsolicited
key-in of FG must be in effect when the level is
specified.

l (Insert)
The Insert command designates the insertion of one or more
instructions logically before (IB), after (IA), or replacing

(IR) the instruction at the designated location (loc).

The form of the Insert command is

B
llA} Ioc,insf] s« -,inst

R n
where
1B designates Insert Before

IA designates Insert After
IR designates Insert Replace

The instructions may be designated in one of the following
forms:

1. op*loc

where op isatwo-digit hexadecimal value representing
the operation code and address modification. The sec-
ond digit (i.e., address modification) must be one of
the following:

0 designating direct addressing

2 designating indexing

4 designating indirect addressing

6 designating indirect addressing and indexing

This instruction form relieves the user of creating the
actual address structure for Sigma 2/3. It does not apply
to the conditional branch instruction (operation code
6) nor to the register copy instructions (operation
code 7). Debug will actually expand an instruction
designated in this form into more than one instruction;
for example, 82*1492 will expand into

8E02 LDA *$42,1
4802 B $+2
1492 DATA X'1492'

See "Debug Expansion of Instructions”, later in this
chapter, for a description of the expansions,

2. 6x*loc

where x designates the desired conditional branch;
for example, 6E*1492 designates a BAN 1492 and will
expand into

6E02 BAN $+2
4803 B $+3
4C01 B *$+1
1492 DATA X'1492'

See "Debug Expansion of Instructions®, later in this
chapter, for a description of the expansions,

3. hex value

which is inserted with no expansion.

4. Any mnemonic copy instruction in the Sigma 2 and
Sigma 3 Computer Reference Manuals. The comma
between the register specifications must be omitted.

The results of an insertion are defined in "Debug Expansion
of Instructions", later in this chapter.

An example of the insert command is as follows:

1B $SUB+1000, 80*$SUB+25, 75A1, 40*SSQRT+O,;
RCPYIPL,ROR*LT,REOR XB

S {Insert Snapshot)

The Insert Snapshot command inserts (in the same manner as
the instruction Insert Before) a snapshot at the designated

location so that when control passes through loc, the fol-
lowing transpires prior to executing the instruction that was
at-loc:

1. The optional conditions are evaluated, and if false,
the snapshot is bypassed.

2. If the conditions are true (or if none are specified), the
following is output:

SNAP AT loc
message (if any)
followed by the designated dumps.

Such output is always transmitted to the Debug output de-
vice; and if any of the dumps designate the keyboard/
printer, then the SNAP and the message line also will be
transmitted to the keyboard/printer. A user can make a
maximum of 32snapshot and instruction insertions (see "De~
bug Insertion Structure", later in this chapter, for the call-
ing sequence for a Snapshot command.) The form of the
Insert Snapshot command is

S[SK] loc[/conditions/ ['message'] [dump requests]

where
S is a request to snapshot and resume execution.
SK is a request to snapshot and transfer confrol to

the keyboard/printer for Debug input.

SS is the same as SK, but may be stepped (see
Debug command X).

conditions
message
dump requests

are as described below.

Debug Commands 135

Conditions. The format of the conditions is

" {ﬂ 2 {ﬂ 3" {%} "

where r, is a relational expression of the form
') - .

loc = loc
< .
constant [*] > constant
<=
, >=
register <> register

where constant is the same form as a loc preceded by a #,
for example, ‘

#1492 or #$SUB+57

The meaning of the operations in hierarchical order are
as follows:

= equal

< less than

greater than

<= less than or equal to

>= greater than or equal to

<> not equal

& logical and

I logical or

The comparison is arithmetic unless the operator is preceded
by an asterisk (*), in which case the comparison is logical.

Message. Message is a string of any EBCDIC characters ex~
cept quote ().

Dump Requests. The format of the dump requests (if any) is

register register
(1] {1oc vrs [T] loc
loc ... loc loc ... loc

where T designates a particular dump to be output on both
the keyboard/printer and the Debug output device. If T is
absent, the dump will be output to the Debug output device
only. Only one dot (.) is necessary in specifying a block
of memory locations. Extra dots are ignored.

An example of the snapshot command is as follows:

S$SUB+505/RA=# 081492<1496/'TABI FULL',
STABI...STABI+256, RR

X (Step Snapshot)

If control is at the Debug input device as a result of a
stepping snapshot (SS), the X command moves the snapshot

136 Debug Commands

to memory location n, keeping the same conditions, mes-
sage, and dump requests. Control is then transferred to the
branch location.

The form of the Step Snapshot command is

X [n [:,branch]]

‘where
n is the memory location.
branch is the branch location.

If the snapshot was executed at location ALPHA, the de-

fault cases are branch = ALPHA and n = ALPHA+I.
R (Remove Snapshot or Insertion)

The Remove command restores the displaced instructionto its
original memory location. The command releasesthe zero table
entry and, if the entry is the latest snap or insertion, re-
leases its space in the insertion block. Note that the space
in the insertion block is regained only if the Remove com-
mand aoffected the latest entry in the insertion block,

The form of the Remove command is

KQ |oc][,loc2,...,locn]

where loc is the memory location.

T (Selective Dump on the Keyboard/Printer and the
Debug Output Device)

The T command outputs the contents of the requested loca-
tions and registers in hexadecimal on both the keyboard/
printer and the Debug output device. Console interrupt
will transfer control to the keyboard/printer after the cur-
rent line is output.

The form of the T command is

T dumps

where dumps (i. e., dump requests) have the following forms
(there can be several dump requests in any order separated
by commas): ‘ ‘

loc SSUB+3

loe ... loc $SUB ... 3FFF
register RA |
all registers RR

P (Selective Dumps on the De'bug Output Device)

This command is identical to the Tcommand except that the
dumps go only to the Debug output device.

The form of the P command is

P dumps

c (Debug Input Device)
The C command gives control to the Debug input device.

The form of the C command is

C

K (Keyboard/Printer)
The K command gives control to the keyboard/printer.

The form of the K command is

K

v M (Modify Memory)
The M command modifies memory locations or registers,

The form of this command may be either of the following:

M register,word

M [{?}] Ioc,wordo, ... ,wordn

-where

loc is the first memory location to modify.

word; is the hexadecimal value (or mnemonic reg-
ister operation; see item 4 under the Debug I
command) to be stored in the designated register
or at location loc+i.

P if present, is a request to print the hexadecimal
value of the effective location, its previous value,
and its new value.

T if present, is a request to type the hexadecimal

value of the effective location, its previous value,
and its new value.

Examples of the M command are

1. MS$SUB+I, 4, 1, $SUB+2, RADDIZE

where the following cells are modified if SUB is lo-
cated at]0016:

toc Value
0101 0004
0102 0001
0103 0102
0104 7Cé8

2. MRA, $5UB

This sets the A register to 0100. Note that an MRP
command will change the program address portion of
the program status doubleword.

3. MT 149A, RCPYIPA

This will produce the following output if the contents
of location 149A was FFFF prior to the command
149A: FFFF — 75F1.

B (Branch)

The Branch command allows the user to insert loc into the
program address portion of the program status doubleword
and fo exit from Debug. If loc is not present, the user just
exits from Debug.

The form of the Branch command is

8 [loc]

E (Exit From Interrupt Level)

The E command allows the user to force an unusual exit from
the highest active interrupt level below Debug. Debug will
still have control after this command.

The form of the E command is

E

Q (Quit Debug)

The Q command causes Debug to reset its internal flags and
zero table cells, restore RBM's original interrupt level,
trigger the Job Control Processor, and exit. If the X option
is present, Debug will also disconnect (i.e., unload) itself
from the system.

The form of the Q command is

Q [x]

Debug Commands 137

G (Global Symbol Table Pointer)

The G command specifies the first location of a symbol table
separately created at assembly time, or by the use of modify
(M)commands, The symbols may be used in any of the com-
mands in place of a location or a value by preceding the

symbol with an @ sign. The symbol is assigned its corres~
ponding value as part of command processing. The symbol

table is composed of a set of five-word entries for each

symbol, followed by one word set equal to zero. Each sym-
bol must be left-justified and padded with blanks for a total

of eight characters, The value of the symbol is placed in

the fifth word,

The form of the G command is

G start

DEBUG EXPANSION OF INSTRUCTIONS
EXPANSION OF INSERTED INSTRUCTIONS
Class 1 instructions that are inserted via the insert (1) com~
mand are expanded into more than one instruction if desig-

nated in the op *address form, (Note that expansions of.
indirect instructions are not reentrant.)

Op is direct (0):
op *$+2

B - $+2
DATA address

Op is indexed (2):

where start is the location of a symbol table,

DEBUG ERROR MESSAGES

Error messages are shown below:

Méssage
ERROR SYNTAX

ERROR COMMAND

Meaning

Syntax error

Command error

op *$+2,1
B $+2
DATA address

Op is indirect (4):

STA $+6
LDA *$+7
STA $+5
LDA $+3
op *$+3
B $+4
DATA 0
DATA 0
DATA address

ERROR FOREGRND Command attempts to affect
foreground without a hard-

ware interrupt level specified
for Debug (see Debug D

command)

ERROR OVERFLOW

Either insertion block or zero
table overflow

ERROR IN/OUT Input/output error

When Debug encounters an error, it aborts a background job
if there is no IATTEND card, Otherwise it requests further
commands from the keyboard/printer. At this time, Debug
will not have modified the environment, allowing the user
to attempt recovery, (It is assumed that the user will re-
specify any erroneous commands.)

A KEYIN error message issued as the result of an unsolicited
key=-in of DE, or an abort code of DE issued as the result of
a direct callon Debug, implies that Debug is not part of the
system, This can be corrected by queueing in Debug (i.e.,
an unsolicited key-in of Q DEBUG).

138 Debug Commands

Op is indirect and indexed (6):

STA $+6
LDA *$ + 7
STA $+5
LDA $+3
op *$+3,1
B $+4
DATA 0

DATA 0

DATA address

Class 2 instructions are expanded as follows:

op $+2
B $+3
B ¥+ 1
DATA address

EXPANSION OF MOVED INSTRUCTIONS

An instruction ‘that is moved from the point of insertion to
the insert block will require expansion if its addressing is
relative or if it is a register copy instruction in which the
P register is the source.

The relative instructions are expanded the same as the
inserted instructions discussed in the first part of this ap-
pendix. In the case of Insert Before (IB) or snapshots,
register copy instructions in which P is the source and the
clear bit is set will be expanded in one of two ways:

1. If the destination is the A register:

LDA $+3
op A A
B $+2
DATA a+1

2. If the destination is not the A register:

STA $+5
LDA $+5
op AR
LDA $+2
B $+3
DATA 0
DATA a+1

In the above expansions, a is the location (point) of the
insertion and op has the appropriate settings for the incre-
mentation and inversion bits,

-Debug has no facility for expanding a copy instruction where
either (1) the P register is the source, the A register is the
destination, and the clear bit is reset, or (2) the P register
is the destination and the clear bit is reset., In this case a
Debug syntax error is generated,

DEBUG INSERTION STRUCTURE
An insertion at location @ will result in the following:
a B *B

B DATA 7Y

moved instruction expansion if IA command

inserted instructions or snapshot call code

74
moved instruction expansion if IB or snapshot

command

B *$+ 1
L DATA a+1

where B is one of the Debug locations in the zero table and
y is an area in the insertion block.

DEBUG SNAPSHOT CALLING SEQUENCE

A snapshot inserted at location awill generate the following
calling sequence (which. is inserted in the insertion block
similar fo a Debug IB command): .

al DATA D:SNAP
a? DATA block
instruction that was at location a

entry WD , X'FC' (foreground only)
STA *Q2
RCPY1 P,A
B *al
DATA a
DATA key
conditions if any
DATA -1
message if any
DATA -1
dumps if any
DATA -1
expanded instruction from location a
B *$ + 1
DATA a+1

where
block is the address of the first word of the insertion

block and is used to save the A register.

key (bits 0-2) designates type of snapshot: setting
bit O designates stepping snapshot; setting bit 1
designates line printer snapshot output; and setting
bit 2 designates keyboard control requested.

message is the string of EBCDIC characters, if any.

condition is a string of relational expressions sepa-

rated by logical operators, A relational expression
occupies three words as follows:

loc, reg, or constant

M| M2 ClEJL]|G

loc, reg, or constant

where

M1 (bits 0-1)
first word:

designates the type of quantity in the

00 location
01 register
10 constant

M2 (bits 2-3)
third word.

designates the type of quantity in the

C (bit 12) designates comparison where 0 = arith-
metic and 1 = logical.

Debug Commands 139

E (bit 13) designates equal comparison.

L (bit 14) designates less than comparison.

G (bit 15) designates greater than comparison,
A logical operator occupies one word:

0 logical or
1 logical and

dumps are two-woid or three-word items: ~

1T

register dump

register number

140 Debug Commands

or

loc 1 memory dump

loc 2

where

T=1 designates keyboard/printer and line printer
output,

T=0 designates line printer output,

A zero register number designates all registers.

13. BASIC SPOOLING SYSTEM

- PURPOSE

The Basic Spooling System (BSS) provides the following:

1. Allows programs to execute at a speed not limited by
peripheral speeds by providing a disk buffering file
during periods of high peripheral utilization,

2. Through use of the disk buffer file, BSS will maintain
efficient peripheral utilization by smoothing the peaks
and valleys of peripheral usage thereby driving per-
ipheral devices at or near rated speed.

3. Resolves contentions for a peripheral device between
foreground and background or between foreground tasks
themselves such as XSP and IDEN by spooling output
from one or all of the conflicting tasks.

4, A convenient point-to-point foreground utility utilizes
a disk buffer file to synchronize speed and availability
of peripheral devices.

IMPLEMENTATION PHILOSOPHY

A capability is provided whereby tasks may output through
conventional operafional labels or FORTRAN device unit
numbers and merely through reassignment (or default assign-
ment), have the output directed to an intermediate spooling
file. No modification to foreground or background tasks is
required.

The disk buffering employed utilizes conventional RBM ran-
dom files and standard RBM 1/O to provide alow overhead,
high reliability spooling system. The disk allocation is
circular in nature with output occurring in a first in, first
out (FIFO) fashion,

BSS itself operates as a resident, semiresident or nonresident
foreground task. Multiple copies of BSS may be used to
provide multiple concurrent spooled operations. Asimplified
overview of BSS operating as a line printer spooler is shown
in Figure 10,

BSS is implemented as a foreground task which reads from a
foreground operational label and writes to a circular disk
spooling file. Concurrently BSS reads from the disk file and
outputs through an operational fabel to a physical device.
It is through the use of RBM-16logical devices (Version GO0
and later) that the user task's output operational label is
connected to the BSS input operational label. A detailed
overview of a BSSline printer spooler is shown in Figure 11,

Since the flow of data is initiated and terminated by con-
ventional RBM operational labels, many variations of BSS are
possible as illustrated in Figure 12,

LOADING BSS

The control cards for allocating the file and loading BSS are:

1JOB
1PAUSE
IRADEDIT
1#ADD UP,COPY,ALL,,R,SY
I#END ,
IASSIGN OV = COPY, UP
IOLOAD ,F

1$TCB +C30C, +1200
I$ROOT ,,BI3

1$END
IRADEDIT
1# TRUNCATE
I#END
IFIN

KEY-IN 'sY, S!

UP, COPY

User Task

Line Printer

Figure 10, Simplified Overview of Line Printer Spooler

Basic Spooling System 141

Logical Device

r— =77

1
—>oplabel —»y dfn/dfn
! |

| E

User Task

L oplabel —~| BSS

Circular
Disk
Spooling

File

L= oplabel —=dfn

#

Line Printer

Figure 11, Detailed Overview of Line Printer Spooler

With this job stack, BSS will be loaded into a permanent
file named 'COPY", in the 'UP' area. BSS, when invoked,
as with aQ COPY keyin, will run at interrupt level X'10C’
(interrupt level is user specified).

Note: The'Q' keyin can only be used to load programs in
the 'UP' area,

ALLOCATING SPOOLING FILES

A spool file must be allocated in the 'SD' area. Care must
be taken in naming the spool file. For example, if BSS will
spool data to the CP foreground oplabel and the default
spooling file name is being used, the first two characters of
the file name must be 'CP'. The remaining six characters
must be 'SPOOL'., The control cards for allocating a CP
spool file and initiating the copy are:

1JOB

IRADEDIT

1#ADD SD, CPSPOOL, 100, , R
IFEND

Note: The spooling file must be in the 'R' format, Consult
Table 21 for spooling file size requirements,

142 Allocating Sﬁooling Files/Initiating BSS

INITIATING BSS

BSS may be brought into core as a resident foreground task
at boot time, or as a semiresident or nonresident foreground
task through use of the background job stack, or through use

~ of the 'Q’ keyin (assuming BSS resides in the 'UP' area).

BSS requires cerfain fundamental information in order to
initiate an operation, namely the source of the data, the
destination for the data, and the name of the intermediate
spooling file to be used. The relationship of the destination
operational label and spooling file name is'op SPOOL', 'SD'
where op is the destination operational label, The default
association can be overriden by supplying any spooling file
name through assembly or load time options,

If BSS has been assembled with the source, destination, and
spooling file defined, then no operator intervention is re-
quired to initiate operation once BSS is loaded.

Lacking sufficient information, BSS will query the operator
for source and destination operational labels, If the source
has not been defined by assembly BSS will prompt with:

SPECIFY INPUT

to which the operator may respond with a two=character
foreground operational label to be used for BSS input,

If the destination has not beeﬁ defined by assembly or if BSS
will prompt with:

SPECIFY OUTPUT

to which the operator may respond with a two~character
foreground operational label. BSS will inform the operator

599 Buypiiiug

124}

» dfn

——dfn ————

sl
(CR_

dfn

o
ua

l—LOgiCO|—]
User Task |——=' Device |
| dfn/dfn
| O |
Seq. dfn

Spooling file established by RADEDIT
known to BSS by assembly or derived

from destination oplb.

dfn =0 dfn =0
Drain only) (Fill only)
(y dfn\‘____ y
‘ Source Destination
)’ / oplb BSS oplb
|

Disk

F”e \

Oplb/dfn association by
SYSGEN

M:ASSIGN

IASSIGN

FL Keyin

Device/dfn association by
SYSGEN
DS Keyin

i Logical |

| dfn/dfn !
 dfn/dfn |

‘| Device |—

= dfn MT
V"L\.
dfn ————y LP

A

User Task

Figure 12, Variations of Basic Spooling Systems

Table 21,

Spooling Volume Requirements

Sectors Required
Per 10 Minutes Operation
Rated Comp. Char.
Device Model Speed Per 10 Minutes Model Model Model Model
Type Number {Rec/Min) Operation 7204 7242 7250 32xx
Readers 7121 200 80K 225 79 225 310
7122 400 160K 450 160 . 450 625
7140 1500 600K 1700 580 1700 2350
Printers 7450 225 106K 295 100 295 415
3451 350 175K 490 170 490 680
7440 800 400K 1100 390 1100 1550
7445 1000 500K 1400 490 1400 1950
Punches 7165 100 40K 110 390 110 155
7160 200 80K 225 79 225 310
Assumptions: 1. 50% overall data compression,
2, 80-byte records.
3. 100-byte print records.

of its last word address, so that the first available address

for the loading of subsequent foreground programs may be
determined. However, the last word address will not appear
if Data Switch 2 is set,

BSS OPERATION AND CONTROL

The copy process will proceed immediately after BSS is ini-
tiated and the source, destination, and spooling file are
known,

FORMS CONTROL

When a *FORM record is encountered in an output stream,
control will be transferred to the Forms Control Module,
Upon entry, the 'A' register will contain the retum address
to BSS and the 'X' register will point to the following argu~-
ment list

0 X'3005'

1 'oC!

2 Address of 'FORM' record

3 Byte length of 'FORM' record

144 BSS Operation and Control

Upon exit the X-register has the following significance:
=~} STOP the stream
==2 SKIP the stream
Other CONTINUE the stream

The delivered Forms Control Module will output the *FORM
record to 'OC' and exit with X = -1 to STOP the stream.

The purpose of isolating this code is to allow installation to
conveniently add installation dependent code (e.g., special
forms routing).

BSS can be controlled with the following keyins:
*GO xx Start operation to foreground oplabel
xx. Normally, this keyin will only

be required after a #STOP or #LOCK
keyin,

#STOP xx Suspend operation fo foreground op-

label xx. Handy for verifying output,

Same as #STOP, but takes effect at
the conclusion of the current file
being output. Furthermore, if a
#STOP is in effect, this keyin is an
implied #START, LOCK only applies
to the output oplabel,

#LOCK xX

#SKIP

#BACK

#TERM

#BIN

#EBC

#IVFC

74

xx Skip forward to next EOF in output
stream, Data skipped in this fashion
will remain in the spool file.

xx Restart output for operational label xx
at the backup point. The backup point
is the spooling file holdback point
(defaults to five granules or previous
EOF, whichever is greater),

xx Terminate the BSS task associated with
output operational label xx. BSS will
automatically terminate acopy opera-
tion when two consecutive EOFs are
read, All operations are ceased, the
spooling file directory is updated and
an M:TERM is performed.

xx Perform "write binary" to output
oplabel.

xx Perform "write EBCDIC" to output
) oplabel.

xx Append single space vertical format
byte to output oplabel,

f/asé on’lL ﬂﬂ/ M /fgmamu;;

X
In sol Fi
ABORT CODES

If the spool file cannot be found, BSS will abort with

code #F.

If any fatal errors occur, BSS will abort with the following

codes:
#1
O
#F

Error on input
Error on output

Error on spooling file

BSS will not abort if operator intervention is required on the
output or input oplabel. Instead, BSS will output

##STOPPED xx

and simulate a #STOP keyin. The operator may correct the
problem and then keyin #START,

ASSEMBLY OPTIONS

Various options can be included in BSS at assembly time,
once the source deck is extracted from the standard release
tape. These options are described in the Technical Manual
(and the source listing) and control such items as default

input and output oplabels as well asspool filename and area.

The cost for each concurrent spooled operafion is as follows:

1K core for BSS + 2* spooling file block size + 2*
record size (defaults to 140 bytes).

3 foreground DFNs for spooling file access, input
and output,

2 foreground operational labels.

1 spooling file (R format). See Table 21 for file

size requirement,

1 foreground interrupt level lower in priority
than 10,

1 foreground or background DFN for user task,

1 foreground or background operational label for
user task.

Abort Codes/Assembly Options 145

APPENDIX A. ADDITIONAL RBM PROCESSORS

A set of subsystems and processors is distributed with RBM
on the transmittal tape. The Overlay Loader, RAD Editor,
Utility, and Debug processors are described in Chapters 7,
8, 9, and 12 respectively. XSYMBOL, FORTRAN, ANS
FORTRAN, and the FORTRAN library are described in their
own individual manuals (see the Related Publications page
of this manual). :

The following additional processors are available on the
transmittal tape and are described in this appendix:

Name Purpose

PLOT A symbiont subsystem for the 7530 or 7531
' graph plofter, (Catalog No. 705780.)

A stand-alone DUMP program to be used in
conjunction with RBM.

" INDUMP

COMPRESS A processor for creating blocked compressed
EBCDIC files on tape, used in preparing the
source and listing files on the transmittal
tape. '

EXPAND A processor for expanding the blocked, com-
pressed files created by COMPRESS to files
composed of either 80-byte source records or

134-byte line printer listing records.

REPLACE A processor for replacing monitor overlays,
useful in system maintenance (described in

the RBM /SM Reference Manual, 90 30 36).

SYMBIONT PLOTTING SYSTEM

The symbiont plotting system performs circular buffering of
plotter commands in a RAD or disk file (PLSYMB). A set of
background subroutines in the FORTRAN subroutine library
is provided to build the file. The background subroutines

trigger a foreground task that reads the file and drives the

plotter. The trigger is accomplished via a public library

subroutine. A set of unsolicited operator key=-ins permit
the operator to supervise the plotting operation.

UNSOLICITED OPERATOR KEY-INS FOR PLOT
Key-in Effect

PLPR (INIT) Report the amount of RAD space left in
the plot file. (Until the end-of-file is
encountered, the amount of space used
will be reported.) After the plot data
have wrapped around, the amount of

unused space will then be reported.
PLHA (LT)
PLAB (ORT)

Stop plotting immediately.

Stop plotting immediately and discard
plot data fo the beginning of the next
plot and halt.

Key-in Effect

PLST (ART) Stop plotting.

PLSU (SPEND) Stop plotting at the end of the current
plot.

These key-ins have no effect on the background job.

BASIC PLOTTER CONTROL SUBROUTINES

This group of four subroutines in the FORTRAN library gives
the assembly language programmer all of the functions nec-
essary to draw a plot. They are used by other programs that
give the programmer more sophisticated functions to simplify
the task of making a plot. The subroutines generate plotter
control data and transmit it to the RAD by a call to the
Monitor I/O. A foreground program is then started that
reads the data from the RAD and writes it on the plotter.

If a call is executed that would move the pen off the paper,
the call is ignored. It is assumed that the pen starts one-half
inch from the minus-Y edge of the paper (the right border of
the paper roll.)

ENTRY POINTS
RCPYI P,L

B PENUP (register T is changed)

This entry will cause the pen to be raised if it is down.
RCPY! P,L

B PENDN (register T is changed)

This entry will cause the pen to be lowered if it is up.
RCPYI P,L

B INITIAL (only register B is saved)

The current pen position is set fo X=0, Y=0, and this posi-
tion will now be the new plotter reference point. Accumu-
lated data is output at this time. Note thatatany time there
may be a partial buffer of plot data that has not been trans-
mitted to the device. Therefore, "INITIAL" must be en~
tered at the end of the plot job to ensure the completion
of the plot.

RCPYI P, L
B MMVE (register T is changed)
X is in register E and Y is in register A. The pen is moved

along an approximation to a straight line from its current
position to the new location X,Y. X andY are fixed

Appendix A 147

points, the number of increments from the reference point
that is normally the lower left corner of the plof.

See the FORTRAN library description for a description of
FORTRAN calls to higher-level PLOT subroutines.

INDUMP

INDUMP is a "stand alone™ dump facility that provides a
printed record of the contents of memory when the RBM
postmortem dump, operator key-in dumps, or the DEBUG
dumps cannot be used.

INDUMP LOADING TECHNIQUES
RESIDENT FOREGROUND

INDUMPmay be loaded into the resident foreground area by
the usual techniques. It requires 60014 memory locations,
The last 20014 memory locations may be overwritten if the
command to display the file control tables in expanded form
is not to be used.

RESIDENT HIGH MEMORY

If the memory size in SYSGEN is indicated to be other than
a multiple of 8192, INDUMP will automatically be moved
to K:UNAVBG (beginning of "unavailable"” background
memory) when loaded into the foreground. The space ini-
tially occupied by INDUMP in the foreground area may
then be overwritten.

SELF-LOADING

A version of INDUMP may be prepared that can be loaded
using the hardware bootstrap from cards, magnetic tape, or
paper tape. To do this, the REL version of INDUMP is
loaded and executed with a IXEQ card with the following
parameters, which will generate the self-booting version
on the BO device:

IXEQ la,ma,fa,ba,cc,oc,lonl,ls

where
la is the load address.

ma is the RBM last word address.

fa is the foreground last word address.
ba is the background last word address.
cc is the channel and device number of the boot

device (format: ccdd).

oc is the channel and device number of the key-
board printer (format: ccdd).

148 Appendix A

o is the channel and device number of the line
printer (format: ccdd).

nl is the number of lines per page (37 or 52).

is FFFF for a low-speed line printer and O for a
high-speed line printer.

@

All parameters are four—character hexadecimal quantities
except nl, which is decimal.

If only la is given, the other parameters will be picked up
from the RBM system, which punches the self-booting
version.

INDUMP OPERATIONS

INDUMP may be used to provide snapshots of the registers
and core when DEBUG cannot be used. The callhas the form

FWA = first word

RCPYI P,L
{ address

B INDUMPFWA + 1

DATA LOWLIM

DATA HIGHLIM
RETURN

INDUMP may be called to permit the operator to type in
commands to it using the calling sequence

RCPY!I P,L
B INDUMPFWA
RETURN ON GO

command

RETURN

INDUMP may be started from the console in the event of
system failure. The procedure is as follows:

1. Move the COMPUTE switch to the IDLE position.

2. Copy the values of the P register and PSW (these will
be input later using the PI command).

3. Place the startaddress of INDUMP in the data switches.
4. Select the S register with the register SELECT switch.
5. Move the CLEAR/ENTERswitch to CLEAR; then enter.
6. Place the STORE/FETCH switch in the FETCH posi-
tion and the ADDRESS HOLD switch in the HOLD

position.

7. Momentarily move the COMPUTE switch to the STEP
position (3 only).

8. Move the STORE /FETCH and ADDRESS HOLD switches
back to NORMAL.

9. Move the COMPUTE switch to RUN.

After INDUMP is started, it will type out the message
ENTER LIMITS. The operator can then respond with a
command of the form

command [hex-value, hex-value] @

where command may be

DM Dump RBM area.

DF Dump Foreground area, including Public
Library.

DB Dump Background area.

DA Dump all of core up to K:UNAVBG.

.ZM Zero RBM area, including Public Library.
-ZF Zero Foreground area.

ZB Zero Background area.

ZA Zero all of core up to K:UNAVBG.

PI Place the first hex value in the stored P regis-
ter location and the second in the stored PSW
location.

GO Restart operation of RBM with values given by
P1 command or obtained from call.

DT Dump file contro! tables.

After a dump or zeroing between limits, the ENTER LIMITS
message will be retyped and a new command may be entered.
If hex values are specified on any command, they will over-
ride the command's implicit limits,

COMPRESS

The COMPRESS processor reduces the length of the RBM
distribution tape. COMPRESS reads records from the Sl
file or device, expands them to 134 bytes by filling with
blanks on the right, then blank-compresses and blocks those
records into 1024-byte blocks. It then outputs those blocks
to the CO device file.

EXPAND

EXPAND takes the ‘blocked records from Cl formed by
COMPRESS and generates either 80-byte source records

or 110-byte listing record on the EQO device file. The
EXPAND processor is invoked by

1EXPAND {7}, ident[,n]

where

S indicates that the source records are to be writ-
ten on the EO operational label.

L indicates that the listing records are to be writ-
ten on the EO operational label.

ident is a 1-8 character identifier that exists be-
ginning in column 73 of the source file.

n indicates the number of files to be expanded.

The operational labels CI (Compressed Input) and EO (Ex-
ternal Output) must be assigned to the appropriate device
file numbers before executing EXPAND.

The EXPAND processor searches the ClI device until it finds
the specified ident. If a double EOF is encountered, the
tape will be rewound and a second search made. If the
ident is not found on the second search, an appropriate
message is output on OC.

When the selected ident is located, the file is decompressed
and output on the EQ device according to the selection

parameter S or L.

For example, the command

IEXPAND L, TOC

will cause the EXPAND processor to list the TOC (Table
of Contents file on EOQ. Similarly, the command

{1EXPAND L, EXP,3

will cause the EXPAND processor to list three files, be-
ginning with EXPAND, -

To obtain a source magnetic tape, assign EO to a magnetic
tape and input

IEXPAND S,EXP

which will produce a source file acceptable as symbolic
input to XSYMBOL.

Appendix A 149

The following table should be used to determine the standard assignments for an installation's background operational labels and to determine which
operational labels, if any, should be suppressed by being assigned to file 0. The standard operational labels are defined under the JASSIGN command
in Chapter 2, ‘

g xpuaddy (G|

4 XION3ddV

Operational Devi
Label gviee cc sl Ut Al BI BO uo Lk po
Processor Number 1
RBM (Job Control Read/Write Read Read Read Object Write Control
Processor) unsolicited Control Absolute | modules with Command
key~in Commands Binary IREL command Images
Read)
xsymeoL' Read Source [oy Write Reloc, Used for CC | Write XSYMBOL
Statements Records Binary Diagnostics Error Messages
Concordance Read Source 'erfe Cancordance:
Statements Error Messages
Basic FORTRAN IV or Read Source Write Reloc.
ANS FORTRAN IV Statements Binary
) : Write Library
Math Library Error Messages
Overlay Loader Read
Control Log Control Write Loader Errar
Commands ! Commands M H
i
RAD Editor Read Object Module Qutput Copies of Ob= ! : Write Error M
Control Input to System ject Modules from Sys~ | Log Control rre r:;m es=
Commands and User tem and User Lihrories Commands wges:; kay~!
Libraries : Pperatar key=ins
Utility Executive Read i .
Control : Log Control | Write Utility Ercor
Commands Commands | Message
}
tt ‘}_
Utility Copy Read Control Read |
: Commands Input
Read Control
Utility RECEDIT Commands and Read Write
Modific Input | Inpuf Qutput
Utility OMEDIT Read Control Read Read Binary Write
Commands Input Modific, Input Output
Utility DUMP Read Control Read
Commands Input
Utility SEQEDIT Read Update Read Write
Data Input Output
"Uses oplabel SO to output source statements (updated, if applicable), mSuppressed if assigned to same device as OC,
t
”Suppresxed if assigned to same device as LO. ! fMuy use any oplabel for output.

39vSN 138v1 TYNOILVYId0 WaY

Gl

L

Operational 1
label | o L PM oc X1 LRl ov x2 X3 52 Go X4 x5
Processor :
i
RBM (Job Control Write Abso- Write Proces- Read RBM | Write Pro- Write Ob-
Processor) lute Binary sor and Mon- Overlays gram Loaded ject Mod-
Monitor (SYS- | itor Abort | by IABS ule with |
GEN only) Messages | Command IREL i
| { command
XSYMBOL WRITE Listing Operdtor Intermediate Read ; Qutput Output . Output Output
Output and Commu= Output XSYMBOL i Encoded Program i Standard | Execution
XSYMBOL nications Overlays | i Text Locals I Proce~= Object
Error Messages : . dures Language
Concordance Write Listing j i
QOutput and ; I
Concordance ’ i
Error Messages I 1
; =
Basic FORTRAN IV or | Write Listing Intermediate Read i | - Output
ANS FORTRAN IV Qutput and ! Qutput FORTRAN | Execution
FORTRAN Overlays | Object
Error Messages : Language
Math Library Write Library | Operator !
: Error Messages i Commu-
| nications |
Overlay Loader Write Maps Read Reloc, 1 Operator Contains Sym= ‘ Read Write Read Read
Binary 1 Commu- bol Table for | OLOAD Core MODIR Reloe.
Library File ¢ nications each segment ‘ Overlays Images Fite Binary
i +
i
RAD Editor Write Maps Operator Replace Files | Read RAD Replace Maintain Li~ Maintain
and Dumps Commu-~ and Maintain | Editor Files and | braries and Libraries
of Files nications Libraries i Overlays Maintain | Update Di-
i Libraries | rectories
Utility Executive Write Utility Operator Read Prestore
Error Messages, Commu= Utility Commands
Control Com- nications Overlays From SI
mand Images and
other Output
Utility Copy Input
for
Verify

Utility RECEDIT

Write Modi~
fication Log

Utility OMEDIT

Write Module Log

Prestore Bl

g x1puaddy

Utility DUMP

Write Dump

Utility SEQEDIT

Write Listing

APPENDIX C. SYSTEM ZERO TABLE AND CONSTANTS

Table C-1. Monitor Zero Table

Address
Dec. Hex. ~Name Purpose and Assignment
0 0 Reserved for Monitor Use.
1 1 K:AC Pointer to Current Floating Accumulator.
2 2 K:AC1 Pointer to Current Floating Accumulator (I)‘.
3 3 K:AC2 Pointer to Current Ffoclﬁng Accumulator (2).
4 4 K:AC3 Pointer to Current Floating Accumulator (3).
5 5 K:FFLG Pointer to Current Floating Flags.
6 6 K:BASE Pointer to Current Task Reentrant Temp Stack.
"7 7 K:TCB Pointer to Current Task TCB.
8 8 Reserved for Monitor use.
9 9 Standard Constants for Foreground, Monitor, and Background
: . Use (see Table C-2 for complete list).
63 3F ‘
64 40 10CS Pointers and Constants.
99" 63
100 64 Reserved for Monitor Use.
132 84
133 85 Debug Transfer Vector D:KEY.
134 86 Debug Transfer Vector D:CARD.
135 87 Debug Transfer Vector D:SNAP.
136 88 Reserved for Debug Use.
167 A7
168 A8 Real-Time Foreground User Storage (reserved for foreground
. : communication between foreground and background or for
i98 -C6 address literals or constants).

152

Appendix C

Table C-1. Monitor Zero Table {cont.)

Address

Dec. Hex. Name Purpose and Assignment

199 Cc7 Monitor Service Routines Transfer Vectors (see Table 7 for list).

225 El

226 E2 Monitor Constants (see Table C-3).

251 F8

252 FC Counter Interrupt Locations {optional).

255 FF

Table C-2. Standard Constants
Address Value Address Value

Dec. Hex. Dec. Hex. Dec. Hex. Dec. Hex.

9 9 32768 8000 20 14 16 10

10 A 16384 4000 21 15 8 8

11 B 8192 2000 22 16 4 4

12 C 4096 1000 23 17 2 2

13 D 2048 800 24 18 1 1

14 E 1024 400 25 19 0 0

15 F 512 200 26 1A -1 FFFF

16 10 256 100 27 18] -2 FFFE
a7 n 128 80 28 1c 3 3

18 12 64 4 29 D -3 FFFD

19 13 32 20 30 T 4 | FFRC

Appendix C

153

Table C-2. Standard Constants {cont.)

Address Value Address ! Value

Dec. Hex. Dec. Hex. Dec. Hex. Dec. Hex.

31 IF 5 5 48 30 4 E

32 20 -5 FFFB 49 31 ' -14 FFF2 -

33 21 3 6 50 32 15 F

34 22 -6 FFFA 51 33 -15 | FFFl

35 23 7 7 52 34 , -16 FFFO

36 24 -7 FFF9 53 35 32767 | 7FFF

37 25 -8 FFF8 54 36 32512 7F00

38 26 9 9 55 37 33023 8OFF

39 27 -9 FFF7 56 38 65280 FFOO

40 28 10 A 57 39 255 OOFF

41 29 -10 FFF6 58 3A 61440 FO0O0
2 24 n B 59 38 3840 OF00

8 28 -11 FFE5 60 3¢ 240 00FO0

44 2C 12 C 61 3D 49152 €000

45 2D -12 FFF4 62 3E 31 1F

46 2E 13 D 63 3F 127 7F

47 2F -13 FFF3

Table C=3. Monitor Constants
Address
Dec. Hex. Name Purpose
226 E2
Reserved for Monitor use.

227 £3

228 E4 K:MASTD Pointer to Master Dictionary.

229 £5 K:PAGE Number of Lines/Printer Page (SYSGEN Parameter).

230 E6 K:BACBUF Background 1/0 Buffer Pool FWA.

23.1 E7 K:BACKP Protected Background FWA (Start of TCB).

232 E8 Reserved for Monitor use.

154

Appendix C

Table C-3. Monitor Constants (cont.)

Address
Dec. Hex. Ncmef Purpose
233 E9 K:PLFWA Public Library FWA. -
234 EA - K:RFFWA Resident Foreground FWA.
235 EB K:NFFWA Nonresident Foreground FWA.
236 EC K:BACKBG Unprotected Background FWA.
237 ED K:UNAVBG Unavailable Memory FWA.,
238 EE K:BLOCK Size of Blocking Buffer in Words (180 or 512).
239 EF K:FEF FORTRAN Background Error. Severity (1).
240 FO K:TVECT Pointer to Transfer Vector Table.
241 Fl K:FWA Legal TVECT Entries to FGD-FWA.
242 F2 K:LWA Legal- TVECT Entries to FBD-LWA+1.
243 F3 F:FWALI TVECT FWA for T Register Check.
244 F4 K:LWA1 TVECT LWA+1 for T Register Check.
245 F5 K:OLOAD Pointer to RBM OV:LOAD Table.
246 Fé P:CST9 Reserved for RBM use.
247 F7 K:CCBUF Address of Control Card Buffer.
248 F8 K:NRFQ Pointer to Nonresident Foreground Queue Table.
249 F9 K:NEXT Next Available Sector in BT Area.
250 FA K:PROTCT Pointer to Protection Register Table.
251 FB K:PMDTBL Pointer to Postmortem Dump Table.
405 195 K:CPU

CPU Type and Hardware Options.

toy . .
These names are as defined in the RBM Monitor and are not system definitions. Any references to these locations by

these names must be defined in the user program (e.g., K:PAGE EQU X'E5').

Relationships for Monitor Constants:
(K:PLFWA) = LWA+1 of RBM.

1.
2.
3.

(K:RFFWA) = LWA+] of Public Library.
(K:NFFWA) = LWA-+1 of Resident Foreground

4. (K:BACKP) = LWA+1 of Nonresident Foreground.

5. (K:BACKBG) = (K:BACKP) + 39.
6. (K:CCBUF) = (K:UNAVBG) - 62.

Appendix C

155

APPENDIX D. ERROR MESSAGES, WARNING MESSAGES, AND ABORT CODES

RBM MESSAGES AND ABORT CODES
JCP CONTROL COMMAND DIAGNOSTICS

The following error messages may appear on the background
DO device as a result of an error condition detected by
JCP. These diagnostics supplement the abort or attend-
mode error codes printed by JCP.

Comments/

Message Associated Commands

.BK OPLB/DFN TBL FULL -~ ASSIGN, DEFINE, default
: ’ assignments for system
processors

.FG OPLB/DFN TBL FULL ASSIGN

.ILL C:CODE C: (Connect)

.ILL C.TCB C: (Connect)

.ILL RAD SEQUENCE WEOF, REWIND, UNLOAD,
FBACK, FSKIP, RBACK, RSKIP
.INV COMMAND Command not recognized as
a Monitor service command,
system processor, or user
processor.

.INV OPLB OR DFN ASSIGN, DEFINE, WEOF,

REWIND, UNLOAD, FBACK,

Message

Comments/
Associated Commands

.NO 'FG' KEY-IN ASSIGN, XEQ, C:

.NO 'SY' KEY-IN WEOF, ABS, REL
WEOF, REWIND, UNLOAD, |
FBACK, FSKIP, RBACK,
RSKIP -

.OP NOT MEANINGFUL

.RAD TEMP OVERFLOW DEFINE, default assignments -

for system processors

RBM ABORT CODES

The codes listed in Table D-1 are the standard background-
job abort codes issued by RBM for abort conditions detected
by the Monitor, JCP, RAD Editor, and Utility, and also
by the Basic FORTRAN 1V compiler and the Extended Sym-
bol assembler. Note that the codes for abort conditions
detected by the Overlay Lodder are listed separately in
Table D-3. '

The abort codes appear in a standard abort message of the
form

1IBKG xx ABORT loc zzzz

FSKIP, RBACK, RSKIP where
.INV OPTION An invalid option has been XX is the abort code.
encountered on a Monitor
service command zzzz is the location at which the abort occurred.
Table D-1. RBM Abort Codes
Code Meaning
AE Assignment error during loading; improper 1/0O assignment or invalid format.
Al Irrecoverable 1/O error on device assigned to operational label Al.
BI Irrecoverable 1/O error on Bl device.
BO Irrecoverable 1/O error on BO device.
CcC Error.in confrol cards or in sequence of job sfqg_!zg.
CK Irrecoverable error while checkpointing.
Cs Checksum error from absolute or relocatable binary input.
DE Debug nof resident when requested.

156 Appendix D

Table D-1. RBM Abort Codes (cont.)

Code Meaning

ER Operator-recognized error condition.

ES FORTRAN library abort!.

FC Illegal FORTRAN control card.

FS FORTRAN abort'.

FX A control card was encountered in the FORTRAN source deck.

GO - | TIrrecoverable error on output to the GO file when using a IREL command.

HX Ilegal hex parameter. .

IE Error in input deck. (Usually, a negative ORG item has been input.)

10 Irrecoverable 1/O error.

LO irrecoverable 1/0 error on LO device.

MF Machine fault interrupt has occurred.

NA Nonexistent address used by background program (530 systems only).

NP No patch area has been allocated.

op Operator abort, from unsolicited key-in.

oV Problem with device assigned to operational label OV. (Normally, OV is assigned to the RAD.)
PE Parity error in background (perhaps attempting to read from unavailable memory).
PO The patch area has overflowed.

PU Number of argument greater than temporary storage in M:PUSH!.

PV Protection violation.

RE RAD Editor abortt.

RS Irrecoverable error during restart.

St Irrecoverable input error in SI device.

5Q Sequence error in absolute or relocatable binary deck.

TL Background program time limit exceeded. -
TS Temp stack overflow.

TY Invalid load type in ABS deck.

uT Utility subsystem abort'.

XE Fatal error in loading.

XS Extended Symbol abort!.

"After the abort code is output, the processor will exit via the RBM routine M:ABORT.

Note: The processing of the job stack is discontinued following any abort. 1f an "ATTEND" control command
was in effect, the Monitor will enter an "idle" state, This will allow the operator to correct the prob-
lem and restart the job. If not in "attend", the Job Control Processor will read commands until a
1JOB or !FIN command is encountered. All control commands encountered prior to the 1JOB or IFIN
command will be logged with an indication (">" will precede the command) that they have been
ignored.

Appendix D 157

OVERLAY LOADER MESSAGES AND ABORT CODES
VO ERROR MESSAGE

The 1/O error message has the following format. It is
followed by o " 1 IBKGD 10 ABORT..." message

** oplb device type and number diagnostic

where
11 identifies Overlay Loader as the message source.
oplb is the operational label of the device or file

on which the error occurred.

device type and number identify the device.

diagnostic is an error diagnostic (listed below) cor-
responding to an I/O completion code. f

The following diagnostics may occur:

UNRECOVERABLE 1/0 ERROR

CALLING SEQUENCE ERROR

INVALID OPERATIONAL LABEL

OL =0, OR OPERAT MEANINGLESS

ILLEGAL END OF FILE

END OF TAPE

INCORRECT RECORD LENGTH

ILLEGAL BUFFERING

fSee Table 10, "1/O Completion Codes", in Chapter 4.

WRITE PROTECTED

BEGINNING OF TAPE

ILLEGAL RAD SEQUENCE
BLOCKING BUFFER UNAVAILABLE

An example of the l/O‘ abort message is given below:
$$ BI MTDO END OF TAPE
1IBKGD 10 ABORT,LOC 3F4C

where
Bl is the oplb:
MTDO is the device name and number.
END OF TAPE is the diagnostic.
3F4C is the 1/O abort location.

LOADER ERROR MESSAGES

The Overlay Loader loading érror messages are listed in
Table D-2.

The type of message is indicated as follows:

A Error causing an Overlay Loader abort, i.e.,
error message is followed by an abort message.

R Error or condition causing an operator response
to be solicited, i.e,, the message is followed
by an RBM "1IBEGIN WAIT" message.

W Warning message only; loading proceeds.

Table D=2. Loader Error Messages

- Message Type Meaning
$$ LIBSYM UNDEFINED! A There was no file entry on the system Data area of the RAD or disk pack
I (OLOAD only) for the LIBSYM table. Overlay Loader aborts with code PL.
$$ ERR BU w Sufficient blocking buffer space unavailable. Severity level is set.
$$ ERR CC R A control command card has a format or parameter error. An S key-in
causes the next control command to be read in from CC. This may be
a corrected command to replace the one in error. it
$$ ERR CS R There was a checksum error on a binary record. An S key-in causes the
record to be reread. ff
$$ ERR CO w Foreground COMMON, based below root, overlaps roof. Warning only,
no severity level set.
$$ ERR C1 W. The Loader has encountered COMMON allocation in the root of a non-
resident foreground program with the R option specified but without cmn
specified on the YOLOAD command. The R specification is ignored and .
COMMON base is set =K:BACKP minus the size of COMMON.

158 Appendix D

Table D=2. Loader Error Messages {cont.)

Message Type Meaning

$$ ERR IB R Illegal binary format (that is, the first word was not 'FF' or '9F') was
detected. An S key-in causes the record to be reread. It

$$ ERR ID : R The indent on the binary module just loaded does not compare with the
indent specified on the I1$LD command. On an S key~-in, the Loader
accepts the binary module as is and continues processing.

$$ ERR IS RorA Control commands were improperly sequenced in the control command
stack. An S key=in causes the next control command to be read. How-
ever, if the sequence error wasdue to a SEG command, the Loader aborts.

$$ ERR RC w Trailing reserve overlapped COMMON; no error severity level is set.

$$ ERR SQ R There was an incorrect sequence number on a binary record. An S key-in
causes the record to be reread.

$$ ERR TA w No fransfer address was encountered in the loading of the root program
portion. The Loader sets a default transfer address as the first word of the
program and generated an error severity level of one.

$$ ERR URt w There were unsatisfied references in the path.

$$ TOO MANY DEFs! A There were more DEFs in the Public Library than were allocated at sys-
(OLOAD only) tem generation. Overlay Loader aborts with code PL.

$$ PUBLIB NOT LOADED A Severity level greater than zero was encountered or generated during
(OLOAD only) Public Library loading. Overlay Loader aborts with code PL.

$$ ERR us w A symbol table entry was not recognized.

$$ ERR XL w Exloc of program is outside the appropriate area.

Frhis message (OLOAD only) may be written on DO during writing of the Public Library, LIBSYM, or TVECT table onto
the disk, If the alarm occurs, the Public Library was not completely written and will have to be reloaded after the
error is corrected.

the Loader does not reposition the record for rereading. If paper tape or cards are repositioned, the record is reread;
if they are not repositioned, the next record is read. If the record is on disk or magnetic tape, the Monitor 1/O error
recovery procedures positions to the beginning of the next record. However, the WAIT permits the taking of dumps,
etc., before changing the environment. :

LOADER ABORT CODES RAD EDITOR MESSAGES AND ABORT CODE

Table D~3 lists the abort codes specific to conditions de- The RAD Editor error and warning messages are listed in
tected by the Overlay Loader during the loading process. Table D-4, The type of message is indicated as follows:
:’he codes appear in the standard abort message of the A Error causing a RAD Editor abort, i.e., error
em message is followed by an abort message.
1IBKG xx ABORT LOC zzzz R Error causing an-operator response tobe solicited,
(usually only if attend mode is in effect, abort
where otherwise), i.e., error message is followed by
an RBM "T1BEGIN WAIT" message.
> is the abort code. W Warning message only; RAD editing proceeds.
zzzz is the location at which the abort occurred AC Error causing RAD Editor to abort the current
(if significant). command processing; reads next command,

. Appendix D 159

Table D-3. ‘Overlay Loader Abort Codes

Code Meaning

Al Error in accessing the RBMSYM file. 3

A2 Error in cccessfng the LIBSYM file.

A3 Error in accessing the EBCDIC library file.

. . . . These codes are frequently caused by an insufficient

A4 Error in accessing fhe DEFREF library file. > allocation of RAD Device File Numbers at SYSGEN..

A5 Error in accessing the MODIR library file.

Ab No blocking buffer is available for the RBMID file.

A8 Error in accessing the TVECT file. J

A9 Error in closing the RBMID file.

BB Cannot assign blocking buffer for input.

cm! A COMMON displacement or size larger than that stipulated on the !OLOAD command o; in a start
item was detected. (Background abort only.)

DSﬂ The same identifier was used to name two different segments.

EF" An illegal end-of-file was detected.

EL Excessive Length. The run-time size of the program being loaded has exceeded the specified or default
limit (see Chapter 7, Table 19).

IT An illegal item type was detected.

L1 The library files cannot be loaded because of incorrect construction of the library.

12" Labeled COMMON data (subtype 2) is for a block outside the current segment.

13" The number of Labeled COMMON indicies allowable per module has been exceeded (currently
limited to 40).

L4’ Block size prescribed (subtype 0) is greater than that already allocated.

15" Lobeled COMMON symbol is defined as a program symbol within the current path.

Lét Labeled COMMON data from a Library Module (root) is intended for a block allocated in the program
section of the root.

LBH An external DEF was encountered with the same label as a prior labeled COMMON block.

LS Library search overflow. The number of unique library definitions and references along a program path
exceed 300.

On An Overlay Loader function that prevents proceeding has occurred. The number of the overlay in which
the malfunction occurred is indicated by n.

PL OLOAD was unable to write the Public Library, the LIBSYM, or the TVECT files onto the RAD,

RL Root of excessive length.

RS Overlay Loader unable to correctly read the RBMSYM file from the SD area.

sa™t Not enough segments were allocated for the task. The segments parameter of the IOLOAD command
should be larger.

160 Appendix D

Table D-3. Overlay Loader Abort Codes (cont.)

Code Meaning

Sb Next segment of the Overlay Loader cannot be loaded.

SE Input ROM had an error severity level greater than zero.

sGHt Format or parameter error was detected on a $SEG command,

SL The length of a segment was excessive, (see I$ROOT and !$SEG commands for maximum segment size).

TOM There was a table overflow. -Decrease the size of the program (OLOAD only) or reduce the number of
extemal symbols.

UNt The number (on the 1$SEG card) of the segment to which this one is attached has not been defined,

fLoqding will continue until terminated but the load program will not be generated and exit will be through M:ABORT,

HLoading will be terminated and, if a map has been requested, it will follow to the point of termination, after which

the exit will be through M:ABORT.

Table D-4, RAD Editor Error and Waming Messages

Message Type Meaning

ASSIGN ERR: areq, A The RAD Editor was unable to assign an operational label to a filename because

filename the number of available RAD or disk pack device=file numbers is insufficient or
because the specified file does not exist.

BAD IDENT A The object module on BI does not have the same "identification" in the start
module item.

##BTL DOES NOT EXIST | A The disk pack does not have a bad frack list written in sector 2 which is

ON DEVICE necessary for 1#GDTRACK or !#BDTRACK processing.

##BTL OVERFLOW w There are more flawed tracks on the disk pack than there are available alternate
tracks,

CALL SEQ ERR oplb A A calling sequence error occurred for input/output on the device having the
operational label oplb.

CAN'T FIND areq, w An attempt was made to save, clear, truncate, or delete a file whose name

filename does not exist in the specified area, or the specified area does not exist.

CHCK WRITE ERR A A check write error occurred (that is, data recorded on the disk could not be
verified),

CKSM ERR Ror A The last record in the object module being read from BI has a checksum error,
If the job is in attend mode, operator response is solicited; an operator response
of S causes the Editor to read the next record from BI,

CLEARING R

DELETING area These messages (followed by !1BEGIN WAIT) are output whenever the indicated

SQUEEZING operation is started, A key~in of S allows the operation to proceed.

TRUNCATING

CORE OVERFLOW The last command cannot be processed for lack of background space.

DONE w Message is output when the operation is completed.

Appendix D

161

Table D=4, RAD Editor Error and Warning Messages (cont.’)

Message Type Meaning
DUP IDENT A The last object module read from BI cannot be added to the library with a
: 1#LADD command because it is already in the library,

DUPLICATE: areaq, w An attempt was made to add a file whose name already exists for this area.

filename

EDIT ERR A File directory data on the disk has been rendered invalid.,

EMPTY oplb R The device assigned to the operational label is in manual mode.

EOF oplb A An unexpected end-of-file was encountered on the device having the
operational label oplb.

EOF READ FILE w An EOF has been encountered on the input file. Copying will continue until
EOT on the read file or EOT on the write file is encountered.

EOT oplb A An unexpected end~of-tape was encountered on the device having the
operational label oplb.

EOT WRITE FILE w An unexpected EOT occurred on the file currently receiving data. This is a
waming to the user that the output file is smaller than the input file (as in
1#FCOPY) but that the data already written is correct, The RAD Editor reads
the next command,

{FG} PROTECTED: R The spekcified area or filename has an SY or FG write protect code and an SY

SY area, filename key=-in is not in effect. This message will be followed by IBEGIN WAIT,

FORMAT CONFLICT: | W The filename being restored to the area conflicts in format or record size with

areaq, filename : the existing filename in the area,

xxxx HAS ALT An alternate track already exists in the bad track list for track xxxx,

IDENT NOT FOUND The identification in start module item is blank, or there is no object module
on BI,

ILLEG BIN A An illegal binary record (first byte not X'FF' or X'9F') has been read in an
object module on BI, RAD Editor aborts,

INV CTRL w Control command is invalid, It cannot be recognized by RAD Editor or has
incorrect syntax.

INV 1/0 OP oplb A An invalid input/output operation was attempted on the device having the
operational label oplb.

LENGTH ERR oplb A A record of incorrect length was read from or written on the device having the
operational label oplb.

LOAD ERR A The required RAD Editor overlay cannot be loaded,

LOC pppp ERR:0001 A During the ¥ GDTRACK-!#BDTRACK processing, the device number specified
was 1) not found in the system tables or, 2) was found to be a RAD rather than
a disk pack,

LOC pppp ERR:0002 A An end-of-tape was detected while writing the bad track list on sector 2,

LOC pppp ERR:0003 A An end-of-tape was detected while reading the bad track list on sector 2,

LOC pppp ERR:0010 A An error was detected while assigning the operational label X1 to the device

number specified in the 1# GDTRACK or ¥ BDTRACK command,

162

Appendix D

Table D-4. RAD Editor Error and Warning Messages (cont.)

Message Type Meaning

LOC pppp ERR:0100 AC A 1#GDTRACK or !#BDTRACK command requires a minimum of two fields
(e.g., 0 < DN < FF plus a track number or 'ALL"),

LOC pppp ERR:0102 | A The device number field on the !# GDTRACK or !#BDTRACK command is a
null field or zero.

LOC pppp ERR:0110 AC The track number on a !#GDTRACK or !#BDTRACK command must be numeric
and 0< track # < maximum track number for the device.

LOC pppp ERR:0111 AC User tried to |# GDTRACK or !#BDTRACK track zero.

LOC pppp ERR:0120 A An 1/0 error occurred during the write headers on the disk pack.

" ## LOC pppp ERR:0130 | A A RAD device number was used on a # GDTRACK or !#BDTRACK command.

LOC pppp ERR:0140 AC User tried to create a bad track list on an inappropriate disk pack (Mode! 7242
and 7246).

LOC pppp ERR:0150 A An 1/0 error occurred during the read headers on the disk pack.

LOC pppp ERR:0170 AC User tried to use command !1#BDTRACK +dn, ALL on an inappropriate disk pack
(Model 7251 or 7252),

LOC pppp ERR:0200 A RAD Editor cannot find the device number specified on the !fINITIALIZE
command in the system tables,

LOC pppp ERR:0210 A The device number on the #INITIALIZE command specifies a RAD,

LOC pppp ERR:0230 A The bad track list for the specified device number does not exist in the system
tables,

LOC pppp ERR:0260 A No device format exists for the specified device number,

LOC pppp ERR:0261 A An undefined device format code was found in the system tables,

LOC pppp ERR:0300 A During the #DPCOPY processing, no device format code was found for the
specified disk pack.

LOC pppp ERR:0310 A The device number specified in the 1#DPCOPY command was not found in the
1/0 Control Subtable.

MAX TRACK W User has tried to fGDTRACK or #BDTRACK using a track that does not exist

EXCEEDED on the disk pack,

NO ALTERNATE w An alternate track is not available for execution of the !#BDTRACK command.

NO BLOCK oplb A No blocking buffer is available for the file assigned to the operational label
oplb.

NO GD/BD TRACK | W User cannot !# GDTRACK or 1#BDTRACK track zero.

ON TRACK 0

OVERFLOW: areaq, w Allocation of the amount of storage indicated by the file parameter on the

filename 1# ADD command or restoration of a file not currently allocated would cause
the permanent area to overflow, or a library file has overflowed during execu~
tion of a 1#LADD command.

PARAM ERR W Control command has a parameter error, A parameter has incorrect content,

has been omitted, or is not consistent with the other parameters,

Appendix D

163

Table D-4, RAD Editor Error and Warning Messages (cont.)

Message Type Meaning

OPEN FILE, NO W
CHANGE: area, file

The file has an operational label assigned to it when a ¥DELETE, I#TRUNCATE,
H#CLEAR or #SQUEEZE command is executed and the position of the file
. changed. The file must be reassigned before it is used by another processor.

SAVE TAPE NOT R
AT LOAD POINT

The save tape was not at foad point when the 1#SAVE command was encoun-
tered and execution commenced.

SEQ ERR Ror A

The last record in the object module being read from BI has a sequence error.

SZ ERR A

The object module on BI cannot be placed in the library because it has more
than 61 external definitions and references,

TRACK ZEROBAD | W

During construction of a bad track list, track zero is found to be flawed.

TRK xxxx NOT IN w
BTL

User has tried to [#GDTRACK a track that does not exist in the bad track list.

TRUNCATED OPEN | W
FILE: areq, filename

The user fruncated an active file,

UNRECOVER 1/O A An irrecoverable 1/O error occurred on the device assigned to the operational
oplb label oplb.
WRITE PRO oplb A The file name assigned fo the operational label oplb is SY or FG write pro-
' tected and an.SY key-in is not in effect.
DO NOT ABORT w SQUEEZE in process.
DURING SQUEEZE

For RAD Editor aborts initiated by the RAD Editor itself
(i.e., not due to an X key-in by the operator), the fol-
lowing abort message is issued:

IBKG RE ABORT LOC zzz2z

where
RE is the RAD Editor abort code.

zzzz is the location at which the abort occurred
(if significant),

UTILITY SUBSYSTEM MESSAGES AND ABORT CODE
UTILITY ERROR MESSAGES

The error messages issued by the Utility subsystem are listed
in Table D-5. If attend mode is in effect, most of these

164 Appendix D

messages will be followed by a HHBEGIN WAIT message on
the OC device (abort otherwise). Only a few of the
messages are followed by an unconditional dbort (code UT)
os indicated in Table D-5.

UTILITY SUBSYSTEM ABORT CODE

Aborts of Utility Subsystem processing are indicated by the
following form of abort message.

HIBKG UT ABORT LOC zzzz
where
Ut is the UTILITY abort code,

zzz7 is the location at which the abort occurred
(if significant),

Table D=-5. Utility Error Messages

Message

Meaning

** BOT oplb, device

An attempt has been made to backspace over the magnetic~tape load
point or the beginning of a disk file, i.e., BOT was encountered be-
fore the required number of records or files had been passed.

** CAL SEQ ERR

The Utility Executive has encountered a calling sequence error on a re-
turn from M:READ/M:WRITE. One reason may be an attempt to copy a
record with an odd byte count onto disk (may occur with BCD 7-track
tapes). See M:READ status returns in Chapter 4 of this manual.

** CKSM ERR oplb,device

A checksum error was detected on a record read from UI or BI.

** CORE OVFLO

The available memory area used for prestoring commands or storing in-
put records (when the CORE opfion on the IUTILITY COPY command
is used) has overflowed. The Utility program aborts.

** DELETE ERR

No UI card images were found in the block to be deleted (for ! *DELETE
and I*SUPPRESS commands). Message on DO only unless in attendmode.

** DEOF oplb,device

Two consecutive file marks were encountered before the required num-
ber of records or files had been passed, i.e., skipped, compared, etc.,
or before the program to be updated had been encountered.

** EMPTY oplb,device

Manual intervention is required (the device is in the manual mode or no
device is recognized).

** EOF oplb,device

An unexpected tape mark, end-of-file (disk), or !EOD has been read
from magnetic tape, cards, paper tape, keyboard/printer, or disk file,
e.g., before a required number of records was passed.

** EOT oplb,device

The end-of-tape or end of disk file was encountered before the required
number of records or files had been passed.

** ERR AREA

An invalid RAD area name has been used.

** ERR FRGD

An attempt has been made to assign a background operational label to
a foreground operational label, device-file number, or RAD file.

** ERR OPLB1

The operational label to be assigned is invalid.

** ERR OPLB2

An attempt has been made to assign one operational label to an invalid
or undefined operational label or RAD file.

** IL RAD SEQ oplb,device

The operational label was invalidly assigned to a random-access or
compressed EBCDIC disk file, or an attempt was made to skip, read,
or write more than one disk file.

** JLLEG BIN oplb, device

The first byte of a record read from Ul or BI did not contain X'FF'
or X'9F',

** INV CTRL

A 1*MODIFY control ¢command was interpreted from SI when the Rec-
ord Editor was not in the modify mode.

** INV OPLB oplb,device

The operational label is not valid. The "oplb,device" portion of the
message may contain invalid data if input/output is attempted for an
operational label not recognized by the Monitor.

** INV 1/0 OP oplb,device

An input/output operation is not meaningful for the requested
device.

Appendix D 165

Table D-5. Utility Error Messages (cont.)

Message

Meaning

** /O ERR oplb, device

The input/output calling sequence is in error, incorrect length is
specified, or no input/output is pending for a check operation.

** LD INPUT UI, device

The modify mode was entered and updating is to be performed. The
operator responds by mounting the tape to be input and keying-in an
S response on OC to confinue.

** LD LIST Ul,device

Both SI and Ul are assigned to the same device. The operator responds
by mounting the tape to be listed and changes the state of the device.

** NO SPARES

An attempt has been made to define a new background operational
label but no room is available in the corresponding table.

** NO name oplb, device

Two consecutive IEODs or tape marks on UL, or one !EOD or tape
mark on Bl were encountered during the editing process before the de-
sired number of modules had been copied (where "name" is the pro-
gram name not found).

** NO name Ul, device

Two consecutive 1EODs or file marks (one end-of-file for a sequential-
access RAD file) are read from Ul before the Object Module Editor has
inserted, replaced, or deleted all requested modules.

** OPLB TABLE OVFL

An attempt has been made to assign or input more than eight operational
labels. Only the first eight unique labels on an 1*OPLB card will be
entered in the operational label table.

** PARAM ERR

Case 1. Update data from SI contains an illegal sequence number;
that is, a nonnumeric character. An error alarm is also
listed on LO.

Case 2. A necessary control command parameter was omitted, or was
of invalid form (e.g., oplb), or was greater than 32,767.

Case 3. The ident parameter (on an !*IDENT card) is greater than 6,
the sequence number parameter is less than 2, or the sum of
the two parameters is greater than 8.

** PRE ERR

The I*PRESTORE command did not follow immediately aofter the
*UTILITY command.

** PRE OVFLO

The RAD prestore file on X5 has overflowed. The Utility program aborts.

** SEQ ERR oplb, device

A sequence error was detected in a record read from SI, UI, or Bl. An
error alarm may be listed on LO also. (Message occurs on OC only if
attend mode is in effect.)

** UNRECOV 1/0 oplb, device

An irrecoverable input/output error has occurred after the maximum
number of retries has been unsuccessfully attempted.

** UNRECOV 1/O Ul,device

An irrecoverable read error has occurred on Ul. The partial card image
input and the message "UI IGNNORED RECORD FOLLOWS xxxxxxxx"
(when xxxxxxxx is the previous nonblank UI ident and/or sequence
number) is output on LO.

** UNRECOV 1/0 UO, device

An irrecoverable write error has occurred on UO. The card image to be
output, and the message "UO RECORD OMITTED" or "UO FILE MARK
OMITTED", are output on LO,

Appendix D

Table D-5. Utility Error Messages (cont.)

Message

Meaning

** VERIFY ERR oplb,device

An error has been found by the verification process. When a
verification error occurs, the COPY routine terminates execufion
of the I*VERIFY command for that device, but continues verifi-
cation on other input devices. If an error is detected on every
input device, the VERIFY function is terminated.

** WRITE PRO oplb, device

An attempt has been made to write on a write~protected magnetic
tape or RAD file.

Appendix D

167

APPENDIX E. USASCII-8 T0 EBCDIC-8 CORRESPONDENCE

oL _ [‘
ROW 0 1 2 3 4 5 6 7 8 9 |A B C D E F
NUL | DLE | KO | K16 | sP & - N26 | N35 | N24 {N49 | N56 { } \ 0
0
{ 0/0 |10 |80 | 90 [2/0 |2/6 | 2/3 | 11/12| 12/3 | 12/10]13/1 | 13/8 | 7/11 |7/13 | 5/12 3/0
: SOH | DC1 | K1 K17 |NO | N9 |/ N27 { a i ~ N57 | A J K31 |1
1 . ‘
o/1 | 1/1 |8/1 | 9/1 | 10/0 | 10/9 | 2715 | 11/11] 6/1 | 6/10 |7/14 | 13/9 | 4/1 [4/10 | 9/15 | 3/1
STX | DC2 | K2 SYN | N1 | NI0O | NI8 [N28 | b k s N58 | B K |s 2
2 , ‘
o2 |12 |82 | 1/6 [10/1 | 10/10{ 11/2 | 11/12| 6/2 | &/W4 |7/3 | 13/10| 4/2 |4/11 |5/3 |3/2
EXT | DC3 | K3 K19 [N2 | N1T | N19 | N29 | ¢ | t N59 | C L T 3
3 .
o3 |1/3 |8/3 | 9/3 [10/2 | 1wo/m1| 11/3 | 1113| 6/3 | 6/12 |7/4 | 13/11| 4/3 |4/12 | 5/4 |3/3
K28 | K29 | kK4 K20 | N3 | NI12 | N20 | N30 | d m u N60 | D M u 4
4
9/12 | 9/13 | 8/4 | 9/4 | 10/3 | 10/12] 11/4 | 11/14| 6/4 | 6/13 |7/5 | 13/12| 4/4 |4/13 |[5/5 |3/4
HT K5 LF K21 | N4 | N13 | N21 |N31 |e® |n v N6l | E N Y 5
5
0/9 (8/5 |[0/10| 9/5 |10/4| 1013 11/5 | 11/15| &/5 | 6/14 {7/6 | 13/13| 4/5 |4/14 |5/6 |3/5
Ké BS ETB | K22 | N5 | N14 | N22 | N32 | f o w N62 | F o) w 6
6
8/6 |o/8 |1/7 | 9/6 |10/5]| 1014] 11/6 | 12/0 | 6/6 | 6/15 |7/7 | 13/14| 4/6 [4/15 | 5/7 |3/6
DEL | K7 ESC | EOT | N6 | N15 | N23 | N33 | g P x N63 | G P X 7
7
7/15 (8/7 | 1/11] o/4 |10/6 | 10150 11/7 | 12/1 | ¢/7 |7/0 |7/8 |13/15|4/7 |5/0 |5/8 |3/7
K23 | CAN | K8 K24 | N7 | N16 | N24 | N34 | h q y GO0 |H Q Y 8
8
97 |1/8 |8/8 | 9/8 |10/7 | 11/0| 11/8 |12/2 | 6/8 |7/1 |7/9 |14/0 | 4/8 |5/1 [5/9 |3/8
K13 | EM | K9 K25 | N8 | N17 | N25 |\ i r z Gl I R z 9
9
813 | 1/9 [8/9 | 9/9 |10/8] 1111179 |6/0 | 6/9 [7/2 |7/10 | 14/1 [4/9 |5/2 |5/10 | 3/9
Ki4 | KI8 | K10 | K26 | [] g N36 | N43 [N50 | G2 | G8 |[Gl4 [G20 | G26
A
8/14 | 972 | 8/10| 9/10 | 5/11 | 5/13 | 7/12 | 3/10 | 12/4 | 12/11|13/2 | 14/2 | 14/8 |14/14| 15/4 | 15/10
VT K15 | K11 | K27 $, # N37 | N44 |N51 |G3 | G9 [GI5 | G21 | G27
B
0/11 [8/15 | 8/11| 9/11 | 2/14 | 2/4 | 2/12 | 2/3 | 12/5 | 12/12{13/3 | 14/3 | 14/9 |14/15] 15/5 | 15/11
FF FS K12 | bC4 | < . % @ N38 | N45 |N52 | G4 | G10 |Gl | G22 | G28
C
0/12 | 1/12 | 8/12| 1/4 |3/12 | 2/10 | 2/5 | 4/0 | 12/6 | 12/13]| 13/4 | 14/4 | 14/10|15/0 | 15/6 | 15/12
CR GS | ENQ| NAK | () - ' N39 | N46 |[N53 G5 [Gl [G17 | G23 | G29
D
013 | 113 [0/5 | 1/5 | 2/8 | 2/9 | 515 | 2/7 | 12/7 | 12/14[13/5 | 14/5 | 14/11|15/1 | 15/7 | 15/13
SO | RS ACK | K30 |+ ; > = N40 | N47 |IN54 | G6 | G12 |GI18 |G24 | G30
E
0/14 | 114 | 0/6 | 9/14 | 2/11 | 3/11 | 3/14 | 3/13 | 12/8 [12/15]|13/6 | 14/6 | 14/12|15/2 | 15/8 | 15/14
SI us BEL | SUB | | | 2 " N41 | N48 |N55 | G7 | G613 |G19 |G25 | EO
F ,
0/15 | 115 | o/7 | 1/10 | 2/1 | 5/14 | 3/15 [2/2 | 12/9 | 13/0 | 13/7 | 14/7 | 14/13|15/3 | 15/9 | 15/15
168 Appendix E

APPENDIX F. LINE PRINTER VFCs (WRITE BINARY]

Print Data Chained to Printer
Pseudo VFC Print with Format Definition Real VFC Order Text (Yes/No) Model
X'60' Print, suppress upspace X'60' PF - Yes A, B, C
X'80" Print, suppress upspace X'60' : PF Yes A, B, C
X'81" Print, then space 1 line ‘ X'Co' PF Yes A, B, C
X'82'-X'8F' Print, then space n lines (2-15) 1) X'60 - PF Yes A, B, C
2) X'CO'+n F No
X'90'-X'9F" Print, then skip to channel n 1) X'60' PF Yes A, B, C
2) X'FO'+n F No
X'A0'-X'AF! Space n lines, print and inhibit 1) X'CO' +n F No A
upspace 2) X'60' PF Yes
X'EQ' +n PF Yes B, C
X'B0'-X'BF' Skip to channel n, print and 1) X'FO'+n F No A
inhibit upspace 2) X'60' PF Yes
X'D0' +n PF Yes B, C
X'CO'-X'CF! Space n lines, prfnf and upspace X'CQ' +n PF Yes A, B, C
X'D0'-X'DF’ Skip to channel n, print and 1) X'FO' +n F No A
inhibit upspace 2) X'60' PF Yes
X'DO" +n PF Yes B, C
X'E0'-X'EF' Space n lines, print and inhibit 1) X'CO* +n F No
upspace 2) X'60' PF Yes A
X'EQ' +n PF Yes B, C
X'FO'-X'FF* Skip to channel n, print and X'FO' +n PF Yes A, B, C
upspace
Notes: PF Print with format
F Format
A Printer models 3451, 7440, 7445
B Printer models 7441, 7442, 7446, 3461, 3463, 3464, 3465, 3466
C Printer model 7450
n Number of lines to skip or channel number. N is limited by line printer capabilities (e.g., a skip

to channel > 1 for the 7450 line printer will result in a skip to channel 1),
Invalid VFCs result in a single space((X'CQ') operation.

Appendix F

169

INDEX

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

A

abort codes, 145, 156, 159, 164
ABS control command (Monitor), 10
accounting and elapsed time, 5
ADD control command, 104
AlO Receivers, 85
allocation

core memory, 73,87

RAD, 72, 101

spooling files, 142
ANS FORTRAN 1V, 6
ASSIGN control command (Monitor), 11
ASSIGN control command (Utility), 114
ATTEND control command (Monitor), 13
automatic dialing (COC), 67

B (branch) Debug command, 137
background, 8,2

Basic FORTRAN 1V, 6

Basic Spooling System, 141-145
BLOCK control command, 93
blocking buffers, 71,93
branching to service routines, 31
BSS, 7

BUFEND control command, 95

C

C (debug input device) Debug control, 137

C: control command (Monitor), 14

calling COPY, 115

calling DUMP, 117

calling Object Module Editor, 119

calling Overlay Loader, 92

calling RAD Editor, 104

calling Record Editor, 120

calling Sequence Editor, 122

calling Utility, 112

card punch, 45

card reader, 40

CC control command (Monitor), 14

CHANGE control command, 121

Character~Oriented Communications (COC)
equipment handler, 62-67

checkpoint, 4

checkpointing background, 86

CLEAR control command, 108

COMPRESS processor, 149

compressed RAD files, 9

computing library file sizes, 102

control command diagnostics, 156

conirol command, Extended Symbol format, 19
control command, FORTRAN 1V format, 20
control commands, Monitor, 10-18

control commands, Processor, 18=20

control commands, Utility, 113

Control Panel Task, 76

COPY control command, 115

COPY operational labels, 115

COPY routine, 114

core layout, Overlay Loader, 89

D (define) Debug command, 134
data files, 4
data files, RAD, 102
Debug commands, 134

B, 137

C, 137

D, 134

E, 137

G, 138

I, 135

K, 137

M, 137

P, 137

Q, 137

R, 136

S, 135

T, 136

X, 136
Debug control, 133
Debug error messages, 138
Debug expansion of instruction, 138
Debug insertion structure, 139
Debug processor, 133-140
DEFINE control command (Monitor), 14
DELETE control command (RAD Editor), 105
DELETE control command (Utility), 120
DPCOPY control command, 106
DUMP control command (RAD Editor), 107
DUMP control command (Utility), 117
DUMP operational labels, 117
DUMP routine, 116

E

E (exit from interrupt level) Debug command, 137
editing operations, M:COC, 66

END control command (Overlay Loader), 100
END control command (RAD Editor), 110

END control command (Utility), 114

EOD control command (Monitor), 14

EXCLUDE control command, 98

Index

171

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

EXPAND processor, 149
Extended Symbol, 6, 19

F

F key-in, 28

FBACK control command (Monitor), 15
FBACK control command (Utility), 113
FCOPY control command (Editor), 106

file name, 4

files, computing library size, 102

files, data, RAD, 102

files, GO and OV, 21

files, library, RAD, 102

files, random RAD, 71

files, sequential RAD, 70

files, special editing random-access, RAD, 42
files, special editing sequential, RAD, 41
files, write on random-access, RAD, 46
FIN contro! command (Monitor), 15
floating accumulator, 9

foreground, 8,2

foreground initialization, 80

foreground I/0O queuving, 4,68,85
foreground priority levels, 78)
foreground priority levels and 1/O priority, 84
foreground programs, 73

foreground user's Debug capability, 133
FORTRAN control command (Processor), 20
FSKIP control command (Monitor), 15
FSKIP control command (Utility), 113

G

G (global symbol table pointer), 138
GDTRACK control command, 109
GO and OV files, 21

Granules, 71

graph plotter, 147

HIO, 35

hardware requirements, (see also RBM/SM Reference
Manual, 90 30 36)

HEX control command (Monitor), 15,132

hexadecimal patch cards, 132

I (insert) Debug command, 135
1/0 check, 36

I/O completion codes, 39

1/O end action, 68

/O initiation, 68

/O operations, 68-72

/O queuing, 4,68

1/O recovery procedure, 22
1/O wait, 85,4

172 Index

IDENT control command, 123
INDUMP processor, 148
INCLUDE control command, 98
INITIALIZE control command, 109
initiating BSS, 142

input/output task, 76

INSERT control command, 120, 121

J

job, 9

JOB control command (Monitor), 15
Job Control Processor (JCP), 10

job step, ¢

JOBC control command (Monitor), 15

K (keyboard/printer) Debug command, 137
key-ins, 24, 176,26-30, 147

BL, 27

BR, 27

C:, 27

CcC, 27

D, 28

DA, 27

DB, 27

DC, 27

DE, 28

DF, 28

DM, 28

DR, 28

DS, 28

DU, 28

F, 28

FG, 29

FL, 29

FR, 29

H, 29

KP, 29

L, 29

M, 29

Q, 30

R, 30

RA, 30

RC, 30

RD, 30

RE, 30

S, 30

Sy, 30

T, 30

TO, 30

UL, 30

w, 30

X, 30

Z, 30
keyboard/printer, special editing, 41
keyboard/printer, write, 44

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

L

LADD control command, 106

language processors, 6

LB control command, 97

LCOM control command, 98

LCOPY control command, 106

LD control command, 97

LDELETE control command, 106

LIB control command, 95

library files, 4,102,131

library files, RAD, 102

LIMIT control command (Monitor), 15
line printer, write to, 45

LIST control command, 119, 121

LMAP control command, 107

Loader error messages, 158, 100

Loader 1/O abort messages, 158

loading BSS, 141

loading foreground programs, 77

loading nonresident foreground programs, 80
loading RBM, 130

loading resident foreground programs, 77
logical/physical device equivalence, 69
Long (load) map format, 90

LREPLACE control command, 106
LSQUEEZE control command, 106

M (modify memory) Debug command, 137
M:ABORT, 49
M:ASSIGN, 56
M:CKREST, 50
M:CLOSE, 53
M:COC, 62-67
M:CTRL, 46
M:DATIME, 48
M:DEFINE, 55
M:DKEYS, 54
M:DOW, 62
M:EXIT, 50
M:HEXIN, 50
M:INHEX, 50
M:1IOEX, 32
M:LOAD, 51
M:OPEN, 52
M:OPFILE, 60
M:POP, 59
M:READ, 36
M:RES, 59
M:=RSVP, 60
M:SAVE, 49
M:SEGLD, 54
M:TERM, 49
M:WAIT, 54
M:WRITE, 42
machine fault task, 74

magnetic tape, special editing, 41
MAP, 90
MAP control command, 106
MD control command, 98
memory requirement, DEBUG, 133
MESSAGE control command (Monitor), 16
MESSAGE control command (RAD Editor), 110
MESSAGE control command (Utility), 113
messages to the operator, boot-time, 130
messages, Debug error, 138
messages, Loader error, 158
messages, Monitor, 22
messages, RAD Editor, 161
messages, Utility, 165
ML control command, 95
MODIFY control command, 119, 121
Monitor constants, 154
Monitor control commands, 10

ABS, 10

ASSIGN, 11

ATTEND, 13

C:, 4

CC, 14

DEFINE, 14

EOD, 14

FBACK, 15

FIN, 15

FSKIP, 15

HEX, 15

JOB, 15

JOBC, 15

LIMIT, 15

MESSAGE, 16

PAUSE, 16

PMD, 16

PURGE, 16

RBACK, 15

REL, 17

REWIND, 17

RSKIP, 15

TEMP, 17

UNLOCAD, 17

WEQF, 18

XED, 18

XEQ, 18
Monitor loading, 130
Monitor messages, 22
Monitor service routines, 31-67
Monitor tasks, 73
Monitor zero table, 152
MP control command, 95
MS control command, 95
multiply/divide exception tasks, 76

nonresident foreground, 9
nonresident foreground creation or updating, 131
nonresident foreground programs, 73

Index

173

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

nonresident foreground programs, loading, 80
nonresident section, Monitor, 1

Object Module Editor control commands, 119
Object Module Editor operational labels, 118
Object Module Editor routine, 117
OLOAD control command (Overlay), 92
operational labels, 11
operational label usage, 150
operator communication, 22,30
operator control, 26
OPLBS control command (Utility), 115
QV file, 20
overlay capabilities, 4
overlay cluster configuration, 89
overlay cluster organization, 87
Overlay control commands, 92-100

BLOCK, 93

BUFEND, 95

END, 86

EXCLUDE, 98

INCLUDE, 98

LB, 97

LCOM, 98

LD, 97

LB, 95

MD, 98

ML, 95

MP, 95

MS, 95

PUBLIB, 99

RES, 98

ROOT, 97

SEG, 99

TCB, 96
Overlay Loader, 87,6
Overlay Loader abort codes, 158
Overlay Loader operational labels, 89
overlay structure example, 88

P

P (selective dumps) Debug commands, 137
paper tape, special editing, 41

paper tape, write to, 44

patches, 132

PAUSE control command (Monitor), 16
PAUSE control command (RAD Editor), 110
PAUSE control command (Utility), 113
PLOT processor, 147

plotter, 147

plotter symbiont, 7

PMD control command (Monitor), 16
Power Off Task, 74

Power On Task, 73

preparing the program deck, 125~129

174 Index

PRESTORE control command, 113
procedures, 1/O recovery, 22
Processor control commands, 18
Processor files, 4

Processor, system, 6

program, 8

Protection Violation Task, 76

PUBLIB control command, 99

Public Library, 4,131

Public Library creation or updating, 131
PURGE control command (Monitor), 16

Q (quit) Debug command, 137
queuing, 1/O, 64

R (remove snapshot or insertion) Debug command, 136

RAD allocation, 101
RAD area mnemonics, 3, 110
RAD Editor, 101-110,6
RAD Editor control commands, 104

ADD, 104

BDTRACK, 109

CLEAR, 108

DELETE, 105

DPCOPY, 106

DUMP, 107

END, 110

FCOPY, 106

GDTRACK, 109

INITIALIZE, 109

LADD, 106

LCOPY, 106

LDELETE, 106

LMAP, 107

LREPLACE, 106

LSQUEEZE, 106

MAP, 107

MESSAGE, 110

PAUSE, 110

RESTORE, 108

SAVE, 107

SQUEEZE, 108

TRUNCATE, 110

VERIFY, 108
RAD Editor messages, 161
RAD Editor operational labels, 103
RAD Editor warning messages, 161
RAD file management, 72
RAD files, 70
RAD/disk areas, 3
RAD/disk pack area organization, 101
RADEDIT control command, 104
random access RAD files, write on, 46
random files, 71

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in

numerical sequence.

random-access RAD files, special editing, 41
RBACK control command (Monitor), 15
RBACK control command (Utility), 114
RBM abort codes, 156
RBM and foreground user's interface, 133
RBM boot procedure, 130
RBM characteristics, 1
RBM Control Task, 9,77
RBM subsystems, 6
RBM system processors, 6, 18
RBM/processor interface, 20
RCOC, 66
read automatic, 40-42
read binary, 40-42
read binary from keyboard/printer, 41
read binary from paper tape, 41
real-time priority, M:READ, 41
real-time programming, 73-85
rebooting the system from RAD, 130
Record Editor operational label, 120
Record Editor routine, 120
reentrant routines, 5
REL control command (Monitor), 17
RES control command, 98
resident foreground creation or updating, 131
resident foreground programs, 73
resident foreground programs, loading, 77
resident foreground, scheduling tasks, 77
resident section, Monitor, 1
restart, 4
RESTORE control command, 108
return registers, M:READ, 37
return registers, M:WRITE, 44
return status from M:10EX, 34
return status from M:READ, M:WRITE, M:CTRL, 38
REWIND control command (Monitor), 17
REWIND control command (Utility), 114
ROOT control command, 97
routines, monitor service, 31

Abort, M:ABORT, 49

Absolute Core Image Loader, M:LOAD, 51

Allocate Temp Storage without Transfer, M:RES, 59

Assign RAD Files, M:ASSIGN, 56
Character-Oriented Communication, M:COC, 62
Checkpoint/Restart, M:CKREST, 50

Close RAD File, M:CLOSE, 53

Convert OPLB to DFN, M:OPFILE, 60
Date and Time-of=Day, M:DATIME, 48
Diagnostic Output Writer, M:DOW, 62
General Control, M:CTRL, 46

General 1/O Driver, M:IOEX, 32

General Read, M:READ, 36

General Write, M:WRITE, 42

Hex to Integer Conversion, M:HEXIN, 50
Integer to Hex Conversion, M:INHEX, 50
Interrupt Restore, M:EXIT, 50

Interrupt Save, M:SAVE, 49

Load Overlay Segments, M:SEGLD, 54
M:COC Service, 62

Normal Exit from Background, M:TERM, 49

Open RAD File, M:OPEN, 52
RAD File Definition, M:DEFINE, 55
Read Data Keys, M:DKEYS, 54
Reserve or Release Peripherals, M:RSVP, 60
Simulated Wait Instruction, M:WAIT, 54
Temp Storage Release, M:POP, 59
routines, reentrant, 5
routines, SYSGEN optional, 147
RPG, 6
RSKIP control command (Monitor), 15
RSKIP control command (Utility), 114

)

S (insert snapshot) Debug command, 135
SAVE control command, 107

save tape, system, 130

scheduling resident foreground tasks, 77
secondary storage management, 3

SEG control command, 99

semiresident foreground program, 73
SEQUENCE control command, 123
Sequence Editor control commands, 122
Sequence Editor operational labels, 122
Sequence Editor routine, 122

sequential files, 70

sequential RAD files, special editing, 41
sequential RAD files, write on, 45
service processors, 6

service routines, 32

SI10, 35

solicited control, 26

SORT, 6

special editing for card reader, 45
special editing for magnetic tape, 41

special editing for paper tape or keyboard/printer, 41

special editing for random=access RAD files, 42
special editing for sequential RAD files, 41
spooling system, 141-145

SQUEEZE control command, 108

standard background operational labels, 11
standard foreground operational labels, 12
standard constants, 153

standard device unit numbers, 12,69
startup, system, 130)

status returns for M:COC, 65

SUPPRESS control command, 123

symbiont plotting system, 147

system communication, 22

system equipment, 1

system initialization and creation, 5
system patching, 132

system save tape, 130

system startup, 130-132

T

T (selective dump) Debug command, 136
tape, system save, 130

Index

175

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed in
numerical sequence.

task, 8 UTILITY COPY, 115,116

Task Control Block (TCB) functions, 80 UTILITY DUMP, 117

task dismissal on wait 1/O, 84 UTILITY OMEDIT, 119

task entrance format, 83 ' UTILITY RECEDIT, 120

TCB control command, 96 UTILITY SEQEDIT, 122

TEMP control command (Monitor), 17 VERIFY, 116

temporary stack, 9 WEOF, 114

transfer vector for monitor services, 31 Utility Control Function processor, 113
TRUNCATE control command, 110 Utility error messages, 165

Utility executive program, 112
Utility 1/O error messages, 165

U Utility operational labels, 115,117, 118, 120, 122
Utility program organization, 111

UNLOAD control command (Monitor), 17 utility programs, 111-124

UNLOAD control command (Utility), 114 Utility source input interpreter, 111

unsolicited control, 26 Utility subsystem, 6,111

UTILITY control command, 112
Utility Control commands, 113

ASSIGN, 114
BCOPY, 116
CHANGE, 121
COPY, 116
DELETE, 120,121, 123
DUMP, 117

END, 114
FBACK, 113
FSKIP, 113
IDENT, 123
INSERT, 120,121
LIST, 119, 121
MESSAGE, 113
MODIFY, 119,121

MODIFY SYSTEM, 119

OPLBS, 115

PAUSE, 113
PRESTORE, 114
RBACK, 114
REWIND, 114
RSK1IP, 114
SEQUENCE, 123, 124
SUPPRESS, 123
UNLOAD, 114
UTILITY, T

176 Index

Y

VERIFY control command {(Editor), 108
VERIFY control command (Utility), 116

wait I/O, 85,4
WEOF control command (Monitor), 18
WEOF control command (Utility), 114

X

X (step snapshot) Debug command, 136
XED control command (Monitor), 18

XEQ control command (Monitor), 18

XSP, 7

XSYMBOL control command (Processor), 19

z

zero table, 152

Corporation

)1 South Aviation Boulevard
El Segundo, California 90245

Reader Comment Form

ROX

We would appreciate your comments and suggestions for improving this publication.

Publication No.

Rev. Letter | Title

Current Date

D Learning
D Reference

How did you use this publication?

[] tnstalling

D Maintaining

D Sales
D Operating

Is the material presented effectively?

D Fully Covered L__] Well tllustrated D Well Organized I:] Clear

D Very Good

D Good

What is your overall rating of this publication?

D Fair
D Poor

D Very Poor

What is your occupation?

Your other comments may be entered here. Please be specific and give page, column, and line number references where
applicable. To report errors, Please use the Xerox Software Improvement or Difficulty Report (1188) instead of this form.

Your Name & Return Address

2190(12/72)

Thank You For Your Interest. (fold & fasten as shown on back, no postage needed if mailed in U.S.A.)

Staple

First Class
Permit No. 229
El Segundo,
California

BUSINESS REPLY MAIL
No postage stamp necessary if mailed in the United States

Postage will be paid by

Xerox Corporation
701 South Aviation Boulevard
El Segundo, California 90245

Attn: Programming Publications

701 South Aviation Boulevard
El Segundo, California 90245
213 679-4511

XEROX

XEROX® s a trademark of XEROX CORPORATION,

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	0010
	0011
	0012
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	replyA
	replyB
	xBack

